Heterogeneous Reconfigurable Systems The Road to Low-power Systems-on-a-Chip

Jan M. Rabaey

University of California @ Berkeley
October 31, 1997

http://infopad.eecs.berkeley.edu/research/reconfigurable

A new breed of designs

- Embedded applications where density, performance, and power are the real issues!
- DSP intensive
- Mix programmable and application-specific modules
- Mixed-mode

System-on-a-Chip

The System-on-a-Chip

"A system is a self-contained entity composed of a variety of components with heterogeneous properties communicating with each other using a variety of protocols" [VLSI93].

- Tracks the exponential growth in available transistors and interconnect
- A combination of pre-designed hardware modules and software physically realized as a single chip
- Subject to rigid constraints in Delay-Power-Area

Application Target

Small footprint, integrated embedded applications, that require high performance @ low energy. Programmability and adaptivity are essential

- Adaptive multimedia
- Multi-modal wireless radio's
- Sensors or output devices integrated with sophisticated data formatting and processing

Opportunity: Most computational complexity and energy in a few kernels

Perspective: Silicon in 2010

Die Area: 2.5x2.5 cm

Voltage: 0.6 V

Technology: 0.07 μm

	Density	Access Time
	(Gbits/cm2)	(ns)
DRAM	8.5	10
DRAM (Logic)	2.5	10
SRAM (Cache)	0.3	1.5

	Density	Max. Ave. Power	Clock Rate
	(Mgates/cm2)	(W/cm2)	(GHz)
Custom	25	54	3
Std. Cell	10	27	1.5
Gate Array	5	18	1
Single-Mask GA	2.5	12.5	0.7
FPGA	0.4	4.5	0.25

Example: SAR Image Formation

Today

1 cubic foot 60 MHz - 1 kW (0.6 MHz/Watt)

10MHz/Watt!

Integrated Sensor Systems

Multi-Spectral Imager: 1000x1000

- Visible
- IR
- Near-IR

Image Conditioning: 100 GOPS

The SOC Opportunity

Mobile multimedia terminal

Opportunities for Optimization

- System Functionality
- Design Partitioning
- Architecture Selection

Motivating Heterogeneity

MPU Performance

Motivating Heterogeneity

The Low-Energy Roseinsp

- Voltage as a Design Variable
 - » Match voltage and frequency to required performance
- Minimize waste (or reduce switching capacitance)
 - » Match computation and architecture
 - » Preserve locality inherent in algorithm
 - » Exploit signal statistics
 - » Energy (performance) on demand
- Easier accomplished in application-specific than programmable devices
- Requires new look at programmable architectures

Programmable versus Application-Specific

Example: Correlator for CDMA Radio:

Energy/Flexibility Tradeoff's

Arm 6 core (5V, 20 MHz): 2765 nJ 167697 fJsec

Xilinx 4003 (5V, 64 MHz) 394 nJ 394 fJsec

ASIC Datapath (1.5V, 64 MHz) 1.2 nJ 1.04 fJsec

- * Energy/symbol
- * Normalized Energy-Delay Product (5V)

A New Look at Architectures

Application-Specific System-on-a-Chip

- Most common model at present
- Efficient
- but ... ad hoc and \$\$\$

A New Look at Architectures

Example: V-IRAM-2 [Patterson97]: Combined RISC/

Vector Processor / DRAM

- 0.18 μm technology (2002)
 16 GFLOPS/128 GOPS
- Higher performance at lower clock due to parallelism
- Reduced overhead of instruction fetching (compared to VLIW and superscalar)
- Locality
- Optimized for application range (MMX)

Merging RISC and FPGA

Examples: BRASS [UC Berkeley], Napa1000 [National]

A New Look at Architectures Reconfiguration

Bit-Level Operations e.g. encoding

e.g. Filters, AGU

Dedicated data paths Arithmetic kernels e.g. Convolution

RTOS Process management

Challenges

- Understand and quantify the inherent advantages in terms of energy, performance and area of implementing an algorithm on a particular programmable fabric
- Develop good performance models to guide partitioning between heterogeneous programmable devices

Roads to success:

- » Benchmark analysis [Hennesy & Patterson]
- » Parameter identification [Guerra95]

Architecture Parameters

Programming Element

- » Granularity size of PE in terms of word length, operators, data storage, contexts
- » Flexibility range of operations that can be performed on PE

Implementation Fabric

- » Homogeneity variation of granularity and flexibility over PEs
- » Connectivity degree of interconnectedness between PEs (includes locality and regularity)

Choice of granularity

Efficiency comparison between processors and FPGAs (Dehon96)

Choice of granularity

- Parametrical comparison over wide range of realtime video processing applications [Philips97]
- Uses reconfigurable array of weakly programmable processing elements
- Coarse-grain architectures are more efficient than fine-grained structures (for this class of applications)

Multi-granularity Architecture — Berkeley Pleiades Project

- Computational kernels are "spawned" to satellite processors
- Control processor supports RTOS and reconfiguration
- Embodies all aspects of "Low Energy Roadmap"

Satellite Processors

Communication Network

Dedicated links
Reduced swing
Local buses
Segmented buses

Architecture Comparison

Aggressive Low-power Design

- Satellite processors optimized for specific task
 - » small control and data access overhead
 - » parallelism and pipelining easily supported
- Data-driven synchronization opens door for drastic reduction in clock power and enables globally asynchronous strategy
- Dynamic scaling and selection of supply voltage and execution rate using integrated dc-dc converter
- Low-swing configurable interconnect network
- Small grain FPGA cell reduces interconnect power

Synchronization

Logic

Distributed data-driven control enables globally asynchronous / locally synchronous synchronization

- Avoids overhead of clock distribution
- Enables varying voltages and execution rates
- Modular and scalable

Out

Dynamic Voltage Scaling

Design Methodology and Flow

- Requires architecture exploration over heterogeneous implementation fabrics
- Should support refinement and co-design of hardware and software, as well as behavior and architecture
- Should consider all important metrics, or present PDA (Power-Delay-Area) perspective

Behavior-Architecture Co-design

Design Flow for Heterogeneous Architectures

Specification/Behavior

Bottleneck Detection

Static Analysis/Dynamic Profiling

Exploration / Trade-off

Power & Timing Estimation for Different Implementations

Partitioning, Allocation, Refinement

Software Compilation Hardware Mapping / Reconfig Interface Code Generation

Bottleneck Detection

Kernel: A loop that has high computational intensity

Algorithm Specification (C++)

*Assign weight to each operation

```
ComputeLag(...)
{
    R=dprod(res,res);

    for (lag=0..127)
     {
        lp=getLT(lt);
        G = dprod(lp, lp);
     }
}
```

Process Subframe327.4 uW
ComputeLag 106.6 uW
IFilterCodebook 63.19 uW
QuantizeGains 46.30 uW
CodebookSearch 44.24 uW
ComputeWeightedInput 22.14 uW
UpdateFilterState 9.150 uW
OrthoganalizeCodebook 6.819 uW
ThetaToCodeword 0.009 uW

*Basic block level Profiling via Quantify, g++, and PowerPlay (UC Berkeley)

AlphaToReflection	7.311e-09F	8.225e-07W
ReflectionToAlpha	1.331e-09F	1.497e-07W
ProcessSubframe	1.170e-05F	1.317e-03W
addlp bits: 8	1.286e-10F	1.447e-08W

Example: VSELP Speech Coder

Hardware-Software Exploration

Performance, Power and Area Predictions

Hardware-Software Exploration

When can we expect to see this from the CAD industry?

- Not much activity yet
 ...so don't hold your

 breath
- Some interesting activities under way that address some of the issues raised
 - » Conceptual design
 - » Hyper-spreadsheets
 - » High-level modeling
- Examples: Co-ware, Alta, Escalade

Architectural Alternatives

Impact of Mapping on Performance

Summary

- Reconfiguration A new paradigm in computation: a greater role for interconnect!
- Matching granularity in computation and architecture opens opportunities for high performance / low energy computing
- Heterogeneous architectures are probable choice for system on-a-chip, yet pose important challenges in terms of applicability and flexibility