The LEON Processor User’s M anual

Version 2.3.1
May 2001

Jiri Gaider
Gaider Research

2 The LEON processor user’'s manual

Gaisler Research
jiri@gaisler.com

The LEON processor user's manual

Copyright 2001 Gaisler Research.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, un-
der the above conditions for modified versions.

Gaisler Research 3 LEON user’'s manual

11
1.2
1.3
14
141
1.4.2
1.4.3
144
145
1.4.6
1.4.7
1.4.8
1.4.9
1.4.10
1411

21
22
2.3
24
2.5
2.6
2.7
2.8
29
2.10
211

3.1

311
312
3.13
314
3.2

321
3.2.2
323
324
3.25
3.2.6
3.3

4.1
4.2
4.3

(@Y= VT 6
NewsSin LEON-L VErSION 2.3.1.....cciiiiiiriirieieeniesie et sneas 6
NewsSiNn LEON-LVEISION 2.3cooiiiiieieeee e e 6
o= 0SS 6
FUNCLIONA OVENVIBIW ...ttt 7
L1 o = U o 1 SR 7
Floating-point unit and CO-PrOCESSONcccueiierierierieriesiesieseeee e s seeas 7
CaChe SUB-SYSIEM ... 7
MEMOIY INEEITACEeeeiieee e 8
101 £ 8
LAT = (0 (o o S 8
A ISR 8
INEEITUPE CONEIONEN ... e 8
== = I L@ N oo 8
AMBA 0N-ChiP DUSES.......ooiiieee e 8
2 7008 o = [S 8
(@ I T1 =0 1= ST T 9
(@7 VT SRR 9
INSErUCEION PIPEIINE. ... e 10
YW T o VAT 0 1 T o 10
Multiply and accumulate INSLrUCLIONScocveveeerieeienee e 11
DiVIAE INSITUCTIONS ...ttt 11
AS] ASSIGNMENT......cciiiiecece et e e e e aeeeeeaee e 11
(0= 0] SR 12
ProCessor reSet OPEralioN.........ccoververierereeieiee et s 13
PEITOIMANCE. ..ot 13
CO-ProCesSOr INTEITACE.ceiieeie e 13
[O T 1< =0 14
CaChe SUB-SYSIEM ... 15
INSLFUCHION CBCNE.......coeiee e 15
(@] 07 ¢ 1 o] o FOR SRS PTT PR 15
Instruction cache fluShiNgccoooviieii i 15
DiagnOStiC CACNE BCCESSviiiiieierieeiestee et 15
INSErUCLION CACHE TAG.... .ot e 16
Data CCHE ..o e 16
(@701 =10 o [16
LAY L o1 = S 16
Datacache flushingcooveii e 17
DiagnOoStiC CACNE BCCESSviiieiiieieeeie e 17
CAChE DYPESS......ee vt 17
(DL ez o= L= = o [P 17
Cache Control REQISLENccveieieeieee et 18
AMBA ON-Chip BUSES.......oeiiireeir e 20
AHB DUS ...ttt et 20
N = o 11O 21

Gaisler Research 4 LEON user’'s manual

4.4

5

5.1
5.2
521
522
523
5.3
531
532
5.4
54.1
54.2
5.4.3
54.4
5.4.5
5.4.6
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.7.1
6.7.2
6.8

7.1
7.2
7.3

8.1
8.2
8.3

9.1
9.2
9.3
9.4

AHB CaChE @SPECLES........ooviiiieriesie et 22
ON-Chip PEIPREralS......c.ceceeeece e 23
ON-ChIP FEOISIEN'S ... e e 23
INEEITUPE CONETONEN ... e 24
(@7 01C =[]0 o [24
INEEITUPE BSSIGNMENT ...ttt e 25
CONLIOl FEGISIEIS ...ttt b e 25
B I 0= U o 1 SRS 27
(@012 = (0] [T 27
REGISIEN'S ... 28
0 o I RS RRSTRRN 29
TranSMItter OPEIaLIONcocueieeieeie et 29
RECEIVEr OPEIELION.cueiueieeeieie ettt 30
Bald-rate generationcccceieeieeiieseese et 30
[I0T0] 0 072 1q 11100 |- TR 30
INEEITUPE GENEIEHION ...ttt 31
0 S I (= ¢ 1 = £ 31
Parall€l 17O POI ..o 32
LEON cONfiguration rEQISLENccurerirereeieereesie et 33
POWEI=AOWN.......eoiiiiectieieeceee ettt sr b nre s 34
EXternal MEemMOrY @CCESS.ccoiieerieeieeiee ettt 35
Y= 0T Y 1= g = o= S 35
MEMOrY CONEIOITENeiueieieiieeie et 35
RAIM BCCESS.......eeiiiiieeiie ettt s e s ne e s ne e sne e snee s 36
PROM BCCESSutiiiiiiieesiie et sttt sttt sttt se e sbe e saee e b e s neeenseesnneens 37
Memory MapPPEd /Oeoeee et 37
BUISE CYCIES ... et 38
8-bit and 16-bit memory CoONfiguIrationccooeverererenieneeeee e 38
Memory configuration register L..........coevieceieere e 39
Memory configuration regiSter 2.........oceeieeieieereeeeee e 40
WWIITE PIOLECTION. ...ttt 40
SIONEIS .ot e e r e re e e reenns 42
MemOry DUS SIgNAIS.......coeeiee e e 42
System iNterface SIGNAIS........ooe v 42
S0 0= 0 [=ox 11 0] o o 43
VHDL model architeCture............ocooeeiieiiieseeeeee e 45
MOdel NIErarChYcoeiiiieee e 45
Model COUING SEYIE.....ccueieeeeece et 46
ClocKing SChEME ... s 46
\V/KoTo (< I @0 01 110 U1 = i (o] o I 47
SynthesiS CONFIGUIALIONc..ovuiiiriiesieee e 47
Integer unit CONFIGUIatioN........cooeiiiiiece e e 48
Cache CONFIQUIALTIONcoeeiiieriesiesieee e 49

Memory controller configurationccceceveeiecceceere e 49

Gaisler Research 5 LEON user’'s manual

9.5
9.6
9.7
9.7.1
9.7.2
9.7.3
9.8
981
9.8.2
9.8.3
984

10
10.1
10.2
10.3
10.4
10.5
10.6
10.6.1
10.6.2
10.7

11
111
11.2
1121
11.2.2
11.2.3
1124

12
121
12.2
1221
12.2.2
12.2.3
12.2.4

Debug CONFIGUIBLION.c..ceueeiiieriesie et 49
Peripheral configuration............ccccoeeieiieiice e 50
BOOt CONFIQUIBLTON.c..eieieiieie ittt 50
Booting from internal Prom...........cocooeiirineiereesese e 50
PMON S-record [080ENccueiiiiiiiesieeeeee et 51
00 | 1100 o TR 51
AMBA CONFIQUIBLIONeeieiiisieiesiee e 52
AHB master configurationcccccceeiieieiieese e 52
AHB Slave CONfIQUIaLioN.........cooeriiiieieeie e 52
AHB cachability CONfigUIrationccoceieiinirineseseeeeee e 52
W = R oo) 1T [N = 1 o o S 53
SIMUIBLION ..ttt st s b e e neesne e 54
Un-packing the tar-fil@ ... 54
Compilation Of MOEccveiiieeceee e 54
GeneriCtest DENCH ..o 54
1S S 0] o= 55
TESE SUITE. ...ttt sttt nb et e b 55
Simulator SPECITIC SUPPOIT......ccvereeeieriesiie st eie st 55
1Yo L=, S 1o S 55
SYNOPSYSVSS ...t e 55
POSt-SyNtheSIS SIMUIBETION ... e 55
SYNENESIS. .. 56
GENENEL ... et e b nreens 56
SYNLNESIS PrOCEAUIE........eoeeeeeie e 56
SYNPLITY e 57
SYNOPSYS-DC... ittt 57
Synopsys-FC2 and SYNOPSYS-FE ..o 57
=70 o [0 S 58
Porting to a new technology or synthesistool............cccccoveeveeieceececce e 59
(T 0T = S 59
Target SPeCific MEgarCallS........ooiiiiireeee e 59
S 0TS (= g 1 = T 59
Cache ram memory CElIS.... ..o 60
=0 S 60

| Gaisler Research 6 LEON user’'s manual

11

1.2

1.3

Overview

The LEON VHDL model implements a 32-bit processor conforming to the SPARC V8
architecture. It is designed for embedded applications with the following features on-chip:
separate instruction and data caches, hardware multiplier and divider, interrupt controller,
two 24-bit timers, two UARTS, power-down function, watchdog, 16-bit 1/0O port and a
flexible memory controller. Additional modules can easily be added using the on-chip
AMBA AHB/APB buses. The VHDL model isfully synthesisable with most synthesistools
and can beimplemented on both FPGA sand ASICs. Simulation can be donewith all VHDL -
87 compliant simulators.

Newsin LEON-1 version 2.3.1

The following modifications have been made in version 2.3.1.

» Updated virtex_prom256.ngo to contain the latest PMON

» Added possihility to put rdbmon in on-chip boot-prom (requires LECCS-1.1.1)
» UARTSs can use PIO[3] as baud rate clock

» Switching between internal and external boot-prom via PIO[4]

Newsin LEON-1 version 2.3

The following modifications have been made in version 2.3:

» Added configurable hardware multiplier to support UMUL/SMUL instructions
* Added aradix-2 divider to support UDIV/SDIV instructions

» Added multiply-accumulate (UMAC/SMAC) instructions

* Re-organized target-dependent code to simplify porting

» Fixed the boot monitor (pmon) to better detect read-modify-write bit

» Added support for Atmel ATC25 libraries

* Full support for Leonardo-2001.1a and Synplify-6.20 without special packages

LEON-1 version 2.3 now support the full SPARC V8 standard.

License

The LEON VHDL model isprovided under two licenses. the GNU Public License (GPL) and
the Lesser GNU Public License (LGPL). The LGPL appliesto the LEON model itself while
remaining support files and test benches are provided under GPL. This means that you can
use LEON asacore in asystem-on-chip design without having to publish the source code of
any additional 1P-cores you might use. You must however publish any modifications you
have made to the LEON core itself as described in LGPL.

Gaisler Research 7 LEON user’'s manual

1.4 Functional overview

A block diagram of LEON can be seen in figure 1.

r—— - - - - - - - - - - - - - - - — "/ = A
| LEON processor |
| FPU |
| LEON SPARC |
Integer unit —
| g Co-proc PCl ¢ >
I I
| |-Cache D-Cache ™ User I/O ¢ |
I I
| AMBA AHB AHB |
| Controller |
I I
| Timers | IrqCtrl |
Memory AHB/APB
| Controller UARTS | 1/0 port Bridge |
I I
| | AMBA APB | | |
L — — - — N
8/16/32-bits memory bus
PROM SRAM 110

Figure 1: LEON block diagram

1.4.1 Integer unit

The LEON integer unit implements the full SPARC V8 standard, including all multiply and
divide instructions. The number of register windows is configurable within the limit of the
SPARC standard (2 - 32), with a default setting of 8.

1.4.2 Floating-point unit and co-processor

The LEON model does not include an FPU, but provides adirect interface to the Meiko FPU
core, and a general interface to connect other floating-point units. A generic co-processor
interface is provided to allow interfacing of custom co-processors.

1.4.3 Cache sub-system

Separate instruction and data caches are provided, each configurableto 1 - 64 kbyte, with 8
- 32 bytes per line. Sub-blocking is implemented with one valid bit per 32-bit word. The
caches uses streaming during line-refill to minimiserefill latency. The data cache useswrite-
through policy and implements a double-word write-buffer.

Gaisler Research 8 LEON user’'s manual

1.4.4 Memory interface

The memory interface provides a direct interface PROM, SRAM and memory mapped 1/0O
devices. The memory areas can be programmed to either 8-, 16- or 32-hit data width.

1.45Timers

Two 24-bit timers are provided on-chip. The timers can work in periodic or one-shot mode.
Both timers are clocked by a common 10-bit prescaler.

1.4.6 Watchdog

A 24-bit watchdog is provided on-chip. The watchdog is clocked by the timer prescaler.
When the watchdog reaches zero, an output signal (WDOG) is asserted. This signal can be
used to generate system reset.

1.4.7 UARTs

Two 8-bit UARTSs are provided on-chip. The baud-rate is individually programmable and
datais sent in 8-bitsframes with one stop bit. Optionally, one parity bit can be generated and
checked.

1.4.8 Interrupt controller

The interrupt controller manages a total of 15 interrupts, originating from internal and
external sources. Each interrupt can be programmed to one of two levels.

1.4.9 Parallel 1/0 port

A 16-bit parallél 1/0 port is provided. Each bit can be programmed to be an input or an
output. Some of the bits have aternate usage, such as UART inputs/outputs and external
interrupts inputs.

1.4.10 AMBA on-chip buses

The processor has afull implementation of AMBA AHB and APB on-chip buses. A flexible
configuration scheme makesit simpleto add new IP cores. Also, all provided peripheral units
implement the AMBA AHB/APB interface making it easy to add more of them, or reuse
them on other processors using AMBA.

1.4.11 Boot loader

A on-chip boot loader can optionaly be enabled, allowing to boot the processor and
download applications without any external boot prom. This feature is mostly suitable for
FPGA implementations.

Gaisler Research 9

LEON user’'s manual

2 LEON integer unit

The LEON integer unit (1U) implements SPARC integer instructions as defined in SPARC
Architecture Manual version 8. It is a new implementation not based on any previous
designs. The implementation is focused on portability and low complexity.

2.1 Overview

The LEON integer unit has the following features:

5-stage instruction pipeline
Separate instruction and data cache interface

Support for 2 - 32 register windows

Configurable multiplier (iterative, 16x16, 32x8, 32x16 & 32x32)

Radix-2 divider

Figure 2 shows ablock diagram of the integer unit.

call/branch address

I-cache N\ hia”
data address o jm‘pa ﬂ"r
*********************** H‘IEF**
Fetch
************ Lamst]- - -------PdPCF -~ -~ |- == - - - - - - - oo oo oo oo oo --o oo oo oo oo
Decode
************ E@**********E@***********************************
Execute \‘ \‘ C
N mulidiv
y 32 cexpc
—39, jmpl address
************ Pmins] - - - ------Pmpct - - *******E‘@»***********************
Memory D-cache
3 ddress/dataout
datain
************ Pwinst] - - ------- D wpc} ;IZE\FI e il
Write v | o
tbr, wim, psr
rd
regfile
rs1] 1s2]

Figure 2: LEON integer unit block diagram

| Gaisler Research 10 LEON user’'s manual

2.2 Instruction pipeline

2.3

The LEON integer unit uses a single instruction issue pipeline with 5 stages:

1.

FE (Instruction Fetch): If the instruction cache is enabled, the instruction is fetched
directly from the instruction cache. Otherwise, the fetch is forwarded to the memory
controller. Theinstruction isvalid at the end of this stage and is latched inside the 1U.

. DE (Decode): Theinstruction is decoded and the operands are read. Operands may come

from the register file or from internal data bypasses. CALL and Branch target addresses
are generated in this stage.

EX (Execute): ALU, logical, and shift operations are performed. For memory operations
(e.g., LD) and for IMPL/RETT, the address is generated.

ME (Memory): Data cache is accessed. For cache reads, the data will be valid by the end
of this stage, at which point it is aligned as appropriate. Store data read out in the E-stage
iswritten to the data cache at thistime.

WR (Write): The result of any ALU, logical, shift, or cache read operations are written
back to the register file.

Table 1 lists the cycles per instruction (assuming cache hit and no load interlock):

Instruction Cycles

JMPL 2
Double load 2
Single store 2
Double store 3
SMUL/UMUL 1/2/4/35*
SDIV/UDIV 35
Taken Trap 4
Atomic load/store

All other instructions 1

Table 1: Instruction timing

* depends on multiplier configuration

Multiply instructions

The LEON processor supports the SPARC integer multiply instructions UMUL, SMUL
UMULCC and SMULCC. These instructions perform a 32x32-bit integer multiply,
producing a 64-bit result. SMUL and SMUL CC performs signed multiply while UMUL and
UMULCC performs unsigned multiply. UMULCC and SMULCC aso set the condition
codesto reflect the result. Several multiplier implementation are provided, making it possible
to choose between area, delay and latency (see “Integer unit configuration” on page 48 for
more details).

| Gaisler Research 11 LEON user’'s manual

24

2.5

2.6

Multiply and accumulate instructions

To accelerate DSP algorithms, two multiply&accumulate instructions are implemented:
UMAC and SMAC. The UMAC performs an unsigned 16-bit muliply, producing a 32-bit
result, and adds the result to a 40-bit accumulator made up by the 8 Isb bits from the %y
register and the %asr18 register. The least significant 32 bits are also written to the
destination regsiter. SMAC works similarly but performs an signed multiply and accumul ate.
The MAC instructions execute in one clock but have two clocks latency, meaning that one
pipline stall cycle will be inserted if a sub-sequent instruction tries to use the destination
register of the MAC as a source operand.

Assembler syntax:

umac rsl, reg_imm, rd

smac rsl, reg_imm, rd
Operation:

prod = rs1{15:0] * reg_imm[15:0]

result = (Y[7:0] & %asr18) + prod

(Y[7:0] & %asr18) = result

rd = result[31:0]

%asr18 can be read and written using the rdasr and wrasr instructions.

Divideinstructions

Full support for SPARC V8 divide instructions is provided (SDIV/UDIV/SDIVCC/
UDIVCC). Thedivide instructions perform a 64-by-32bit divide and produce a 32-bit result.
Rounding and overflow detection is performed as defined in the SPARC V8 standard.

ASl assignment

The table shows the address space identifier (ASI) usage for LEON. Only ASI[3:0] are used
for the mapping, ASI[7:4] have no influence on operation.

ASl Usage

0x0, 0x1, 0x2, 0x3, 0x4, 0x7 | Uncached access. Will update the cache on read hit.
0x5 Flush instruction cache

0x6 Flush data cache

0x8, 0x9, OxA, 0xB Cached access

0xC Instruction cache tags

0xD Instruction cache data

OxE Data cache tags

OxF Data cache data

Table 2: AS usage

| Gaisler Research 12 LEON user’'s manual

2.7 Exceptions
LEON adheres to the general SPARC trap model. The table below shows the implemented

traps and their individual priority.

Trap TT Pri Description
reset 0x00 1 Power-on reset
write error 0x2b 2 write buffer error
instruction_access_error 0x01 3 Error during instruction fetch (EDAC, illegal address)
illegal_instruction 0x02 5 UNIMP or other un-implemented instruction
privileged_instruction 0x03 4 Execution of privileged instruction in user mode
fp_disabled 0x04 6 Execution of floating-point instruction
window_overflow 0x05 7 SAVE into invalid window
window_underflow 0x06 7 RESTORE into invalid window
mem_address_not_aligned 0x07 8 Memory access to un-aligned address
fp_exception 0x08 9
data_access_exception 0x09 10 | Accesserror during load or store instruction
tag_overflow O0x0A 10 | Tagged arithmetic overflow
divide_exception O0x2A 10 | Divideby zero
interrupt_level_1 0x11 25 | Asynchronousinterrupt 1
interrupt_level_2 0x12 24 | Asynchronousinterrupt 2
interrupt_level_3 0x13 23 | Asynchronousinterrupt 3
interrupt_level_4 0x14 22 | Asynchronousinterrupt 4
interrupt_level_5 0x15 21 | Asynchronousinterrupt 5
interrupt_level_6 0x16 20 | Asynchronousinterrupt 6
interrupt_level_7 0x17 19 | Asynchronousinterrupt 7
interrupt_level_8 0x18 18 | Asynchronousinterrupt 8
interrupt_level_9 0x19 17 | Asynchronousinterrupt 9
interrupt_level_10 Ox1A 16 | Asynchronousinterrupt 10
interrupt_level_11 0x1B 15 | Asynchronousinterrupt 11
interrupt_level_12 0x1C 14 | Asynchronousinterrupt 12
interrupt_level_13 0x1D 13 | Asynchronousinterrupt 13
interrupt_level_14 Ox1E 13 | Asynchronousinterrupt 14
interrupt_level_15 Ox1F 12 | Asynchronousinterrupt 15
trap_instruction %(8'9':- 11 | Softwaretrap instruction (TA)

X

Table 3: Trap allocation and priority

| Gaisler Research 13 LEON user’'s manual

2.8

29

Processor reset operation

The processor is reset by asserting the RESET input for at least one clock cycle. The
following table indicates the reset values of the registers which are affected by the reset. All
other registers maintain their value (or are undefined).

Register Reset value
PC (program counter) 0x0

nPC (next program counter) 0x4

PSR (processor status register) ET=0, S=1
CCR (cache control register) 0x0

Table 4: Processor reset values

Execution will start from address 0.

Per formance

Using a 16x16 multiplier, the drystone benchmark report 2,000 iteration/SSMHz. This
trandates to 115 drystone MIPS on 50 MHz or 230 MIPS on 100 MHz.

2.10 Co-processor interface

LEON can be configured to provide a generic interface to a special-purpose Co-processor.
Theinterface alows an execution unit to operate in parallel to increase performance. One co-
processor instruction can be started each cycle as long as there are no data dependencies.
When finished, the result is written back to the co-processor register file. The execution unit
is connected to the interface using the following two records:

type cp_unit_in_type is record -- coprocessor execution unit input
opl . std_logic_vector (63 dowmnto 0); -- operand 1
op2 : std_logic_vector (63 dowmnto 0); -- operand 2
opcode : std_logic_vector (9 downto 0); -- opcode
start : std_Il ogic; -- start
| oad : std_Il ogic; -- |l oad operands
flush : std_Il ogic; -- cancel operation

end record;

type cp_unit_out _type is record -- coprocessor execution unit output
res . std_logic_vector (63 downto 0); -- result
(oo : std_logic_vector (1 downto 0); -- condition codes
exc : std_logic_vector (5 downto 0); -- exception
busy : std_Il ogic; -- eu busy

end record;

The waveform diagram for the execution unit interface can be seenin figure 3:

Gaisler Research 14 LEON user’'s manual

TSN [NV [Y U U Y [Y Y O VY [

cpi.opl _°X opl

cpi.op2 _“X op2

cpi.opcode _X” X OPC “X"

cpi.start
cpi.load N\
cpo.busy , \

cpo.cc “X X condition codes

Cpo.exc ‘X X excdption codes

cpo.result ‘A X resit

Figure 3: Execution unit waveform diagram

The execution unit is started by asserting the start signal together with a valid opcode. The
operands are driven on the following cycle together with the load signal. If the instruction
will take more than one cycle to complete, the execution unit must drive busy from the cycle
after the start signal was asserted, until the cycle before the result is valid. The result,
condition codes and exception information are valid from the cycle after the de-assertion of
busy, and until the next assertion of start. The opcode (cpi.opcode]9:0]) is the concatenation
of bits[19,13:5] of the instruction. If execution of a co-processor instruction need to be pre-
maturely aborted (due to an 1U trap), cpi.flush will be asserted for two clock cycles. The
execution unit should then be reset to itsidle condition.

2.11 FPU interface

The LEON model can be connected to the Meiko floating-point core, thereby providing full
floating-point support according to the SPARCV8 standard. Two interface options are
available: either a parallel interface identical to the above described co-processor interface,
or an integrated interface where FP instruction do not execute in parallel with 1U instruction.
The FPU interface is enabled/selected by setting of the FPU element of the configuration
record.

Thedirect FPU interface does not implement afloating-point queue, the processor is stopped
during the execution of floating-point instructions. This means that QNE bit in the %fsr
register alwaysis zero, and any attempts of executing the STDFQ instruction will generate a
FPU exception trap. The paralel interface lets FPU instructions execute in parallel with 1U
instructions and only halts the processor in case of data- or resource dependencies. Refer to
the SPARC V8 manual for a more in-depth discussion of the FPU and co-processor
characteristics.

| Gaisler Research 15 LEON user’'s manual

3 Cachesub-system

3.1 Instruction cache
3.1.1 Operation

The LEON instruction cache is a direct-mapped cache, configurable to 1 - 64 kbyte. The
instruction cache is divided into cache lines with 8 - 32 bytes of data. Each line has a cache
tag associated with it consisting of atag field and one valid bit for each 4-byte sub-block. On
an instruction cache miss to a cachable location, the instruction is fetched and the
corresponding tag and data line updated.

If instruction burst fetch is enabled in the cache control register (CCR) the cachelineisfilled
from main memory starting at the missed address and until the end of the line. At the same
time, the instructions are forwarded to the IU (streaming). If the IU cannot accept the
streamed instructions dueto internal dependenciesor multi-cycleinstruction, the lU ishalted
until thelinefill iscompleted. If the IU executesacontrol transfer instruction (branch/CALL/
JMPL/RETT/TRAP) during the line fill, the line fill will be terminated on the next fetch. If
instruction burst fetch is enabled, instruction streaming is enabled even when the cache is
disabled. In this case, the fetched instructions are only forwarded to the U and the cacheis
not updated.

If amemory access error occurs during aline fill with the IU halted, the corresponding valid
bit in the cache tag will not be set. If the IU later fetches an instruction from the failed
address, a cache miss will occur, triggering a new access to the failed address. If the error
remains, an instruction access error trap (tt=0x1) will be generated.

3.1.2 Instruction cache flushing

The instruction cache is flushed by executing the FLUSH instruction or by writing to
ASI=0x5. The flushing will take one cycle per cache line during which the U will not be
halted, but during which the instruction cache will be disabled. When the flush operation is
completed, the cache will resume the state (disabled, enabled or frozen) indicated in the
cache control register.

3.1.3 Diagnostic cache access

Diagnostic software may read the tags directly by executing a single word load alternate
spaceinstructionsin AS| space OxC. Address bits making up the cache offset will be used to
index thetag to beread, al other address bits areignored. Similarly, the data sub-blocks may
be read by executing a single word load alternate space instructionsin AS| space OxD. The
cache offset indexes the line to be read while A[4:2] indexes which of the eight sub-blocks
to be read.

The tags can be directly written by executing single word store alternate space instructions
in ASI space OxC. The cache offset will index the tag to be written, and D[31:12] is written
into the ATAG filed (see below). The valid bits are written with the D[7:0] of the write data.

The data sub-blocks can be directly written by executing single word store alternate space
instructionsin ASI space 0xD. The cache offset indexes the cache line and A[4:2] selectsthe

Gaisler Research 16 LEON user’'s manual

3.2

sub-block. Notethat diagnostic accessto the cacheis not possible during a FLUSH operation
and will cause a data exeption (trap=0x09) if attempted.

3.1.4 Instruction cache tag

A instruction cache tag entry consists of several fields as shown in figure 4:

31 109 8 7 0
‘ ATAG ‘ oo‘ VALID

Figure 4: Instruction cache tag layout

Field Definitions:

» [30:10]: Address Tag (ATAG) - Contains the tag address of the cache line.

» [7:0]: valid (V) - When set, the corresponding sub-block of the cache line contains valid data.
These bitsisset when asub-block isfilled dueto asuccessful cache miss; acachefill which results
inamemory error will leavethe valid bit unset. A FLUSH instruction will clear al valid bits. V[Q]
corresponds to address 0 in the cache line, V[1] to address 1, V[2] to address 2 and so on.

NOTE: only the necessary bitswill be implemented in the cache tag, depending on the cache
configuration. As an example, a 2 kbyte cache with 32 bytes per line would only have eight
valid bits and 21 tag bits. The cache rams are sized automatically by the ram generators in
the model.

Data cache
3.2.1 Operation

The LEON data cache is a direct-mapped cache, configurable to 1 - 64 kbyte. The write
policy for stores is write-through with no-allocate on write-miss. The data cache is divided
into cache lines of 8 - 32 bytes. Each line has a cache tag associated with it, containing atag
field and one valid bit per 4-byte sub-block. On a data cache read-missto a cachablelocation,
4 bytes of data are loaded into the cache from main memory.

3.2.2 Write buffer

Thewrite buffer (WRB) consists of three 32-bit registers used to temporarily hold store data
until it issent to the destination device. For half-word or byte stores, the stored datareplicated
into proper byte alignment for writing to a word-addressed device, before being loaded into
one of the WRB registers. The WRB is emptied prior to aload-miss cache-fill sequence to
avoid any stale data from being read in to the data cache.

Since the processor executes in parallel with the write buffer, awrite error will not cause an
exception to the store instruction. Depending on memory and cache activity, the write cycle
may not occur until several clock cycles after the store instructions has completed. If awrite
error occurs, the currently executing instruction will take trap 0x2b.

| Gaisler Research 17 LEON user’'s manual

Note: the Ox2b trap handler should flush the data cache, since a write hit would update the
cache while the memory would keep the old value due the write error.

3.2.3 Data cache flushing

The data cache can be flushed by executing the flush instruction or by writing to ASI=0x6
(any address or data). The flushing will take one cycle per line during which the U will not
be halted, but during which the data cache will be disabled. When the flush operation is
completed, the cache will resume the state (disabled, enabled or frozen) indicated in the
cache control register.

3.2.4 Diagnostic cache access

Diagnostic software may read the tags directly by executing a single word load alternate
space instructions in ASI space OXE. The cache offset indexes the tag to be read, all other
address bits are ignored. Similarly, the data sub-blocks may be read by executing a single
word load alternate space instructions in ASI space OxF. The cache offset indexesthe line to
be read while A[4:2] index which of the sub-blocks to be read.

The tags can be directly written by executing single word store alternate space instructions
in ASI space OXE. The cache offset indexesthe tag to be written, and A[31:10] iswritteninto
the ATAG filed (see below). The valid bits are written with the D[7:0] of the write data.

The data sub-blocks can be directly written by executing single word store aternate space
instructions in ASl space OxF. Address bits The cache offset indexes the cache line and
A[4:2] selects the sub-block. The sub-block iswritten with the write data.

Note that diagnostic access to the cache is not possible during a FLUSH operation. An
attempt to perform a diagnostic access during an ongoing flush will cause a data exception
trap (trap = 0x09).

3.2.5 Cache bypass

The memory can be accessed directly without caching by using ASI=0x0. However, if the
accessed location is in the (data) cache, the cache will be updated to reflect the changed
memory contents.

3.2.6 Data cachetag

A data cache tag entry consists of several fields as shown in figure 5:

31 109 8 7 0
ATAG ‘ 00 ‘ VALID

Figure 5: Data cache tag layout

Field Definitions:

Gaisler Research 18 LEON user’'s manual

3.3

e [30:12]: Address Tag (ATAG) - Contains the address of the data held in the cache line.

» [3:0]: vdid (V) - When set, the corresponding sub-block of the cache line contains valid data.
Thesebitsis set when a sub-block isfilled dueto asuccessful cache miss; acachefill which results
in amemory error will leave the valid bit unset. V[0] corresponds to address O in the cache line,
V[1] to address 1, V[2] to address 2 and V[3] to address 3.

NOTE: only the necessary bitswill be implemented in the cache tag, depending on the cache
configuration. As an example, a 2 kbyte cache with 32 bytes per line would only have eight
valid bits and 21 tag bits. The cache rams are sized automatically by the ram generatorsin
the model.

Cache Control Register

The operation of the instruction and data caches is controlled through a common Cache
Control Register (CCR) (figure 6). Each cache can be in one of three modes. disabled,
enabled and frozen. If disabled, no cache operation is performed and load and store requests
are passed directly to the memory controller. If enabled, the cache operates as described
above. In the frozen state, the cache is accessed and kept in sync with the main memory asif
it was enabled, but no new lines are alocated on read misses.

31 17 16 15 14 5 432 10
RESERVED 18 |1P DP) RESERVED oA IF| Des | 1cs |

Figure 6: Cache control register

Field Definitions:

* [31:17]: Reserved

e [16]: Instruction burst fetch (1B). This bit enables burst fill during instruction fetch.

* [15]: Instruction cache flush pending (1P). Thisbit is set when an instruction cache flush operation
isin progress.

» [14]: Data cache flush pending (DP). This hit is set when an data cache flush operation
isin progress.

» [5]: DataCache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen when
an asynchronous interrupt is taken.

* [4]: Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically be
frozen when an asynchronous interrupt is taken.

» [3:2]: Data Cache state (DCS) - Indicates the current data cache state according to the following:
XO0=disabled, 01 = frozen, 11 = enabled.

* [1:0]: Instruction Cache state (ICS) - Indicates the current data cache state according to the
following: X0= disabled, 01 = frozen, 11 = enabled.

If the DF or IF bit is set, the corresponding cache will be frozen when an asynchronous
interrupt is taken. This can be beneficial in real-time system to allow a more accurate

| Gaisler Research 19 LEON user’'s manual

calculation of worst-case execution time for a code segment. The execution of the interrupt
handler will not evict any cache lines and when control is returned to the interrupted task, the
cache state isidentical to what it was before the interrupt.

If a cache has been frozen by an interrupt, it can only be enabled again by enabling it in the
CCR. Thisistypically done at the end of the interrupt handler before control is returned to
the interrupted task.

| Gaisler Research 20 LEON user’'s manual

4.1

AMBA on-chip buses

Two on-chip buses are provided: AMBA AHB and APB. The APB busis used to access on-
chip registers in the peripheral functions, while the AHB bus is used for high-speed data
transfers. The specification for the AMBA bus can be downloaded from ARM, at:
www.arm.com. The full AHB/APB standard is implemented and the AHB/APB bus
controllers can be customised through the TARGET package. Additional (user defined)
AHB/APB peripherals should be added in the MCORE module.

AHB bus

LEON uses the AMBA-2.0 AHB bus to connect the processor (cache controllers) to the
memory controller and other (optional) high-speed units. In the default configuration, the
processor isthe only master on the bus, while two slaves are provided: the memory controller
and the APB bridge. Table 5 below shows the default address allocation.

Addressrange Size Mapping Module
0x00000000 - OX1FFFFFFF 512M | Prom Memory controller
0x20000000 - Ox3FFFFFFF 512M | Memory bus1/O

0x40000000 - Ox7FFFFFFF 1G Ram

0x80000000 - OX9FFFFFFF 256 M | On-chip registers APB bridge

Table 5: AHB address allocation
An attempt to access a non-existing device will generate an AHB error response.

The AHB bus can connect up to 16 masters and any number of slaves. The LEON processor
core is normally connected as master O, while the memory controller and APB bridge are
connected at slaves 0 and 1. Each master is connected to the bus through two records,
corresponding to the AHB signals:

-- AHB master inputs (HCLK and HRESETn routed separately)
type AHB_Mst _In_Type is

record
HGRANT: Std_ULogi c; -- bus grant
HREADY: Std_ULogi c; -- transfer done
HRESP: Std_Logi c_Vector (1 downto 0); -- response type
HRDATA: Std _Logi c_Vector(HDVAX-1 downto 0); -- read data bus
HCACHE: Std_ULogi c; -- cacheabl e access

end record;

-- AHB master outputs
type AHB Mst _Qut _Type is

record
HBUSREQ. Std_ULogi c; - bus request
HLOCK: Std_ULogi c; - lock request
HTRANS: Std_Logi c_Vector (1 downto 0); -- transfer type
HADDR: Std_Logi c_Vector (HAMAX-1 downto 0); -- address bus (byte)
HARI TE: St d_ULogi c; - read/wite
HSI ZE: Std_Logic_Vector(2 downto 0); -- transfer size
HBURST: Std_Logi c_Vector (2 downto 0); -- burst type
HPROT: Std_Logi c_Vector (3 downto 0); -- protection control
HWDATA: Std_Logi c_Vect or (HDVAX-1 downto 0); -- wite data bus

end record;

Each slave is ssimilarly connected through two records:

Gaisler Research 21 LEON user’'s manual

4.2

4.3

-- AHB sl ave inputs (HCLK and HRESETn routed separately)
type AHB_SIv_In_Type is

record
HSEL: St d_ULogi c; -- slave select
HADDR: Std_Logi c_Vector (HAMAX-1 downto 0); -- address bus (byte)
HWRI TE: Std_ULogi c; -- read/wite
HTRANS: Std_Logi c_Vector (1 downto 0); -- transfer type
HSI ZE: Std_Logi c_Vector (2 downto 0); -- transfer size
HBURST: Std_Logi c_Vector (2 downto 0); -- burst type
HWDATA: Std_Logi c_Vect or (HDVAX-1 downto 0); -- wite data bus
HPROT: Std_Logi c_Vector (3 downto 0); -- protection control
HREADY: St d_ULogi c; -- transfer done
HVASTER: Std_Logi c_Vector (3 downto 0); -- current master
HMASTLOCK: St d_ULogi c; -- locked access

end record,;

-- AHB sl ave outputs
type AHB_Slv_Qut _Type is

record
HREADY: Std_ULogi c; -- transfer done
HRESP: Std_Logi c_Vector (1 downto 0); -- response type
HRDATA: Std_Logi c_Vect or (HDVMAX-1 downto 0); -- read data bus
HSPLI T: Std_Logi c_Vector (15 downto 0); -- split conpletion

end record;

The AHB controller (AHBARB) controls the AHB bus and implements both bus decoder/
multiplexer and the bus arbiter. The arbitration scheme isfixed priority where the bus master
with highest index has highest priority. The processor is by default put on the lowest index.
Note to be granted the bus, a master must drive both the request signal and avalid (i.e. non-
idle) transfer type on HTRANS.

APB bus
The APB bridge is connected to the AHB bus as a slave and acts as the (only) master on the
APB bus. The daves are connected through a pair of records containing the APB signals:

-- APB sl ave inputs (PCLK and PRESETn routed separately)
type APB Slv_In_Type is

record
PSEL: Std_ULogi c;
PENABLE: Std_ULogi c;
PADDR: Std_Logi c_Vect or (PAMAX-1 downto 0);
PRI TE: Std_ULogi c;
PWDATA: Std_Logi c_Vect or (PDVAX-1 downto 0);

end record;

-- APB sl ave outputs
type APB_Slv_Qut_Type is
record
PRDATA: Std_Logi c_Vect or (PDVAX-1 downto 0);
end record,;

The number of APB dlaves and their address range is defined through the APB dlave tablein
the TARGET package. The default table has 10 slaves.

AHB statusregister

Any access triggering an error response on the AHB bus will be registered in two registers;
AHB failing address register and AHB status register. The failing address register will store
the address of the access while the memory status register will store the access and error
types. The registers are updated when an error occur, and the NE (new error) is set. While

| Gaisler Research 22 LEON user’'s manual

the NE bit is set, interrupt 1 is generated to inform the processor about the error. After an
error, the NE bit has to be reset by software.

Figure 7 shows the layout of the AHB status register.

31 8 7 6 3 2 0
‘ RESERVED ‘NE‘R\N‘ HMASTER ‘ HSIZE ‘

Figure 7: AHB statusregister

[8]: NE - New error. Set when anew error occurred.

[7]: RW - Read/Write. This bit is set if the failed access was aread cycle, otherwiseit is cleared.
[6:3]: HMASTER - AHB master. Thisfield contains the HMASTER([3:0] of the failed access.
[2:0] HSIZE - transfer size. Thisfiled contains the HSIZE[2:0] of the failed transfer.

4.4 AHB cache aspects

Since no MMU is provided with LEON, the AHB controller generates a signal which
indicates to the AHB masters whether the current access may be cached. The areas
containing cachable data are defined through atable in the AHB configuration record.

The standard configuration is to mark the PROM and RAM areas of the memory controller
as cachable while the remaining AHB address space is non-cachable. There is no cache-
snooping performed by the cache controllers - if datais sent to memory from an other AHB
master than the processor, a (data) cache flush operation should be done before the new data
can safely be used by the processor. Alterntively, the data can be accessed through ASI=0 to
bypass the cache.

| Gaisler Research 23 LEON user’s manual

5 On-chip peripherals

5.1 On-chip registers

A number of system support functions are provided directly on-chip. The functions are
controlled through registers mapped APB bus according to the following table:

Address Register

0x80000000 | Memory configuration register 1
0x80000004 | Memory configuration register 2
0x80000008 | Reserved

0x8000000C | AHB Failing address register
0x80000010 | AHB status register
0x80000014 | Cache control register
0x80000018 | Power-down register
0x8000001C | Write protection register 1
0x80000020 | Write protection register 2
0x80000024 | LEON configuration register
0x80000040 | Timer 1 counter register
0x80000044 | Timer 1 reload register
0x80000048 | Timer 1 control register
0x8000004C | Watchdog register

0x80000050 | Timer 2 counter register
0x80000054 | Timer 2 reload register
0x80000058 | Timer 2 control register
0x80000060 | Scaler counter register
0x80000064 | Scaler reload register
0x80000070 | Uart 1 dataregister

0x80000074 | Uart 1 status register
0x80000078 | Uart 1 control register
0x8000007C | Uart 1 scaler register
0x80000080 | Uart 2 data register

0x80000084 | Uart 2 status register
0x80000088 | Uart 2 control register
0x8000008C | Uart 2 scaler register
0x80000090 | Interrupt mask and priority register
0x80000094 | Interrupt pending register
0x80000098 | Interrupt force register
0x8000009C | Interrupt clear register
0x800000A0 | I/O port input/output register
0x800000A4 | I/O port direction register
0x800000A8 | I/O port interrupt configuration register

Table 6: On-chip registers

Gaisler Research 24 LEON user’'s manual

5.2 Interrupt controller

The LEON interrupt controller is used to prioritize and propagate interrupt requests from
internal or external devicesto the integer unit. In total 15 interrupts are handled, divided on
two priority levels. Figure 8 shows a block diagram of the interrupt controller.

IRQ
Pending
PER_IRQ[7:0] L Priority
4 15 encoder
PCl_IRQ[3:0]——» |——=
IRL[3:0]
4 Irq & trig 4
PIO[15:0] = select >
T=lo} Priority
v mask select

Figure 8: Interrupt controller block diagram

5.2.1 Operation

When an interrupt is generated, the corresponding bit is set in the interrupt pending register.
The pending bits are ANDed with the interrupt mask register and then forwarded to the
priority selector. Each interrupt can be assigned to one of two levels as programmed in the
interrupt level register. Level 1 has higher priority than level 0. The interrupts are prioritised
within each level, with interrupt 15 having the highest priority and interrupt 1 thelowest. The
highest interrupt from level 1 will be forwarded to the IU - if no unmasked pending interrupt
existson level 1, then the highest unmasked interrupt from level O will be forwarded. When
the 1U acknowledges the interrupt, the corresponding pending bit will automatically be
cleared.

Interrupt can also be forced by setting a bit in the interrupt force register. In this case, the IlU
acknowledgement will clear the force bit rather than the pending bit.

After reset, the interrupt mask register is set to all zeros while the remaining control registers
are undefined.

Interrupts 10 - 15 are unused by the default configuration of LEON and can be use by added
IP cores. Note that interrupt 15 is not maskable and should be used with care.

| Gaisler Research 25 LEON user’'s manual

5.2.2 Interrupt assignment

Table 7 shows the assignment of interrupts.

Interrupt Source
15 user defined
14 user defined (PCI)
13 user defined
12 user defined
11 user defined
10 user defined
9 Timer 2
8 Timer 1
7 Parallel 1/0[3]
6 Parallel 1/0[2]
5 Parallel 1/0[1]
4 Parallel 1/0[0]
3 UART 1
2 UART 2
1 AHB error

Table 7: Interrupt assignments

5.2.3 Control registers

The operation of the interrupt controller is programmed through the following registers:

31 17 16 15 10
ILEVEL[15:1] ‘ R‘ IMASK[15:1] ‘ R‘

Figure 9: Interrupt mask and priority register

Field Definitions:

o [31:17]: Interrupt level (ILEVEL[15:1]) - indicates whether an interrupt belongs to priority level
1 (ILEVEL[n]=1) or level 0 (ILEVEL[n]=0).

e [15:1]: Interrupt mask (IMASK[15:0]) - indicates whether an interrupt is masked (IMASK[n]=0)
or enabled (IMASK[n]=1).

e [16],[0]: Reserved

Gaisler Research 26 LEON user’'s manual

31 16 15 10
RESERVED IPEND[15:0] ‘ R‘

Figure 10: Interrupt pending register

Field Definitions:

e [15:1]: Interrupt pending (IPEND[15:0]) - indicates whether an interrupt is pending
(IPEND[Nn]=1).

* [31:16], [O]: Reserved

31 16 15 10
RESERVED IFORCE[15:1] ‘ R‘

Figure 11: Interrupt force register

Field Definitions:

e [15:1]: Interrupt force (IFORCE[15:1]) - indicates whether an interrupt is being forced
(IFORCE[n]=1).
e [31:16], [0]: Reserved

31 16 15 10
RESERVED ICLEAR[15:0] ‘ R‘

Figure 12: Interrupt clear register

Field Definitions:

e [15:1]: Interrupt force (ICLEAR[15:1]) - if written witha‘1’, will clear the corresponding hit(s)
in the interrupt pending register. A read returns zero.

e [31:16], [0]: Reserved

Gaisler Research 27 LEON user’'s manual

5.3 Timer unit

The timer unit implements two 24-bit timers, one 24-bit watchdog and one 10-bit shared
prescaler (figure 13).

timerl reload

prescaler reload timer2 reload

timerl value ——— > irq8

prescaler value

timer2 value ——»irq9

tick

watchdog > WDOG

Figure 13: Timer unit block diagram

5.3.1 Operation

The prescaler is clocked by the system clock and decremented on each clock cycle. When
the prescaler underflows, it is reloaded from the prescaler reload register and atimer tick is
generated for the two timers and watchdog. The effective division rate is therefore equal to
prescaler reload register value + 1.

The operation of thetimersis controlled through the timer control register. A timer isenabled
by setting the enable bit in the control register. Thetimer valueisthen decremented each time
the prescaler generates a timer tick. When a timer underflows, it will automatically be
reloaded with the value of the timer reload register if the reload bit is set, otherwise it will
stop and reset the enable bit. An interrupt will be generated after each underflow.

The timer can be reloaded with the value in the reload register at any time by writing a“‘one’
to the load bit in the control register.

The watchdog operates similar to the timers, with the difference that it is always enabled and
upon underflow asserts the external signal WDOG. This signal can be used to generate a
system reset.

To minimise complexity, the two timers and watchdog share the same decrementer. This
means that the minimum allowed prescaler division factor is 4 (reload register = 3).

Gaisler Research 28

LEON user’'s manual

5.3.2 Registers

Figures 14 to 17 shows the layout of the timer unit registers.

31 24 23

RESERVED TIMER/WATCHDOG VALUE

Figure 14: Timer 1/2 and Watchdog counter registers

31 24 23 0
RESERVED TIMER RELOAD VALUE
Figure 15: Timer 1/2 reload registers
31 3210
RESERVED ‘LD‘RL‘EN‘

Figure 16: Timer 1/2 control registers

» [2]: Load counter (LD) - when written with ‘one’, will load the timer rel oad register into the timer

counter register. Alwaysreadsasa’zero'.

* [1]: Reload counter (RL) - if RL is set, then the counter will automatically be reloaded with the

reload value after each underflow.
* [0Q]: Enable (EN) - enables the timer when set.

31 10 9 0
RESERVED RELOAD VALUE
Figure 17: Prescaler reload register
31 10 9 0
RESERVED COUNTER VALUE

Figure 18: Prescaler counter register

| Gaisler Research 29 LEON user’'s manual

5.4 UARTSs

Two identical UARTSs are provided for serial communications. The UARTS support data
frameswith 8 data bits, one optional parity bit and one stop bit. To generate the bit-rate, each
UART has a programmable 12-bits clock divider. Hardware flow-control is supported
through the RTSN/CTSN hand-shake signals. Figure 19 shows a block diagram of a UART.

<4—FKJ CTSN
Serial port
Baud-rate 8*bitclk Controller ———»K] RTSN
generator
RXD K3}—» Receiver shift register Transmitter shift register ——»KJ TXD
Receiver holding register Transmit. holding register

l Internal I/O Bus T

Figure 19: UART block diagram

5.4.1 Transmitter operation

The transmitter is enabled through the TE bit in the UART control register. When ready to
transmit, data is transferred from the transmitter holding register to the transmitter shift
register and converted to a serial stream on the transmitter serial output pin (TXD). It
automatically sendsa start bit followed by eight data bits, an optional parity bit, and one stop
bits (figure 20). The least significant bit of the datais sent first

Dataframe, no parity: TStart’ DO \ D1 \ D2 \ D3 \ D4 \ D5 \ D6 \ D7 ‘Stop‘

Data frame with parity: ~|start| Do [b1 [b2 [b3 [D4 | 05 | D6 | 07 [Parity|stop

Figure 20: UART data frames

Following the transmission of the stop bit, if anew character isnot availablein the transmitter
holding register, the transmitter serial data output remains high and the transmitter shift
register empty bit (TSRE) will be set inthe UART control register. Transmission resumesand
the TSRE is cleared when anew character isloaded in the transmitter holding register. If the

| Gaisler Research 30 LEON user’'s manual

transmitter is disabled, it will continue operating until the character currently being
transmitted is completely sent out. The transmitter holding register cannot be loaded when
the transmitter is disabled.

If flow control is enabled, the CTSN input must be low in order for the character to be
transmitted. If it is deasserted in the middle of a transmission, the character in the shift
register is transmitted and the transmitter serial output then remains inactive until CTSN is
asserted again. If the CTSN is connected to a receivers RTSN, overrun can effectively be
prevented.

5.4.2 Receiver operation

Thereceiver isenabled for datareception through the receiver enable (RE) bit inthe USART
control register. The receiver looks for a high to low transition of a start bit on the receiver
serial datainput pin. If atransition is detected, the state of the serial input is sampled a half
bit clocks later. If the seria input is sampled high the start bit isinvalid and the search for a
valid start bit continues. If the serial input is still low, a valid start bit is assumed and the
receiver continuesto samplethe serial input at one bit timeintervals (at the theoretical centre
of the bit) until the proper number of databits and the parity bit have been assembled and one
stop bit has been detected. The serial input is sampled three times for each bit and averaged
to filter out noise.

During this processthe least significant bit isreceived first. The dataisthen transferred to the
receiver holding register (RHR) and the data ready (DR) bit is set in the USART status
register. The parity, framing and overrun error bits are set at the received byte boundary, at
the same time as the receiver ready bit is set.

If both receiver holding and shift registers contain an unread character when a new start bit
is detected, then the character held in the receiver shift register will be lost and the overrun

| bit will be set in the UART status register. If flow control is enabled, then the RTSN will be
negated (high) when avalid start bit is detected and the receiver holding register contains an
unread character. When the holding register is read, the RTSN will automatically be
reasserted again.

5.4.3 Baud-rate generation

Each UART contains a 12-bit down-counting scaler to generate the desired baud-rate. The
scaler is clocked by the system clock and generates a UART tick each timeit undeflows. The
scaler isreloaded with the value of the UART scaler reload register after each underflow. The
resulting UART tick frequency should be 8 times the desired baud-rate. If the EC bit is set,
the scaler will be clocked by the PIO[3] input rather than the system clock. In this case, the
frequency of PIO[3] must be less than half the frequency of the system clock.

5.4.4 L oop back mode

If the LB bit inthe UART control register is set, the UART will beinloop back mode. In this
mode, the transmitter output is internally connected to the receiver input and the RTSN is
connected to the CTSN. It is then possible to perform loop back tests to verify operation of
receiver, transmitter and associated software routines. In thismode, the outputsremain in the
inactive state, in order to avoid sending out data.

| Gaisler Research 31 LEON user’'s manual

5.4.5 Interrupt generation

The UART will generate an interrupt under the following conditions: when the transmitter is
enabled, the transmitter interrupt is enabled and the transmitter holding register is empty;
when the receiver is enabled, the receiver interrupt is enabled and the receiver holding
register isfull; when thereceiver isenabled, the receiver interrupt isenabled and either parity,
framing or overrun error bits are set in the UART status register.

5.4.6 UART registers

2 8 76 543210
| RESERVED EC|LB|FL|PE|PS| I |RI | TE|RE

Figure 21: UART control register

* 0: Receiver enable (RE) - if set, enables the receiver.

: Transmitter enable (TE) - if set, enables the transmitter.

: Receiver interrupt enable (RI) - if set, enables generation of receiver interrupt.

: Transmitter interrupt enable (TI) - if set, enables generation of transmitter interrupt.
: Parity select (PS) - selects parity polarity (0 = odd parity, 1 = even parity)

. Parity enable (PE) - if set, enables parity generation and checking.

: Flow control (FL) - if set, enables flow control using CTS/RTS.

: Loop back (LB) - if set, loop back mode will be enabled.

. External Clock - if set, the UART scaler will be clocked by PIO[3]

L]
0 ~NO O WDN PP

2 765432 10
RESERVED |FE|PE|OVIBRTH| TS| DR

Figure 22: UART status register

o 0: Dataready (DR) - indicates that new datais available in the receiver holding register.

o 1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty.
» 2 Transmitter hold register empty (TH) - indicates that the transmitter hold register is empty.
» 3: Break received (BR) - indicates that a BREAK has been received.

e 4: Overrun (OV) - indicates that one or more character have been lost due to overrun.

o 5: Parity error (PE) - indicates that a parity error was detected.

e 6: Framing error (FE) - indicates that aframing error was detected.

31 12 11 0
RESERVED SCALER RELOAD VALUE

Figure 23: UART scaler reload register

| Gaisler Research 32 LEON user’'s manual

5.5 Paralle 1/0 port

A partially bit-wise programmable 32-bit 1/O port is provided on-chip. The port is split in
two parts - the lower 16-bits are accessible viathe PIO[15:0] signa while the upper 16-bits
uses D[15:0] and can only be used when the memory busisin 8- or 16-bit mode (see “ 8-bit
and 16-bit memory configuration” on page 38).

Thelow 16 1/0 ports can be individually programmed as output or input, while the high 16
I/0 ports only work asinputs. Two registers are associated with the operation of the /O port;
the combined 1/0O input/output register, and 1/O direction register. When read, the input/
output register will return the current value of the I/O port; when written, the value will be
driven on the port signals (if enabled as output). The direction register defines the direction
for each individua port bit (O=input, 1=output).

31 16 15 0
|ODIR[15:0]

Figure 24: Memory bus address layout

* |ODIRnN - /O port direction. The value of thisfield defines the direction of 1/0 ports 0 - 15. If bit
n is set the corresponding 1/0O port becomes an output, otherwise it is an input.

| The parallel 1/0 port can also be used as interrupt inputs from external devices. A total of
four interrupts can be generated, corresponding to interrupt levels 4, 5, 6 and 7. The 1/0O port
interrupt configuration register (figure 25) defines which port should generate each interrupt
and how it should be filtered.

31 30 29 28 24 23 22 21 20 16 15 14 13 12 8 7 6 5 4 0
‘EN‘LE‘ PL‘ ISEL3 ‘EN‘LE‘PL‘ ISEL2 ‘EN‘LE‘PL‘ ISEL1 ‘EN‘LE‘PL‘ ISELO

Figure 25: 1/0O port interrupt configuration register

* ISELN - I/O port select. The value of this field defines which 1/O port (O - 31) should generate
paralel 1/0 port interrupt n.

» PL - Polarity. If set, the corresponding interrupt will be active high (or edge-triggered on positive
edge). Otherwise, it will be active low (or edge-triggered on negative edge).

e LE- Level/edge triggered. If set, the interrupt will be edge-triggered, otherwise level sensitive.

* EN - Enable. If set, the corresponding interrupt will be enabled, otherwise it will be masked.

Gaisler Research 33 LEON user’'s manual

5.6

To save pins, I/O pins are shared with other functions according to the table below:

I/O port Function Type | Description Enabling condition
PIO[15] TXD1 Output | UART1 transmitter data UART1 transmitter enabled
PIO[14] RXD1 Input UART1 receiver data -

PIO[13] RTS1 Output | UART1 request-to-send UART1 flow-control enabled
PIO[12] CTS1 Input UART1 clear-to-send -

PIO[1]] TXD2 Output | UART2 transmitter data UART?2 transmitter enabled
PIO[10] RXD2 Input UART?2 receiver data -

PIO[9] RTS2 Output | UART2 request-to-send UART?2 flow-control enabled
PIO[8] CTS2 Input UART?2 clear-to-send -

PIO[4] Boot select Input Internal or external boot prom -

PIO[3] UART clock Input Use as alternative UART clock -

PIO[1:0] Prom width Input Defines prom width at boot time | -

Table 8: UART/IO port usage

L EON configuration register

Since LEON is synthesised from a extensively configurable VHDL model, the LEON
configuration register (read-only) is used to indicate which options were enabled during
synthesis. For each option present, the corresponding register bit is hardwired to ‘1’. Figure
26 shows the layout of the register.

3130 20 28 27 26 25 24 2019 17161514 1211109 8 7 6 5 4 3 2 1 0
L] | | | | ~winoows | icsz |wsz| besz [pisz| | | | | | | |

UDIV/SDIV inst.
UMAC/SMAC inst. —— SMUL/UMUL ingt.
Watchdog present
Memory status reg.
FPU

PCI core

Write protection

Figure 26: LEON configuration register

e [25]: UMAC/SMAC instruction implemented

e [24:20]: Number of register windows. The implemented number of SPARC register windows -1.

 [19:17]: Instruction cache size. The size (in Kbytes) of the instruction cache. Cache size = 2!C%2,
« [16:15]: Instruction cache line size.The line size (in 32-bit words) of each line. Line size = 2'-52,
o [14:12]: Datacache size. The size (in kbytes) of the data cache. Cache size = 2PCS2,

e [11:10]: Data cache line size. The line size (in 32-bit words) of each line. Linesize = 2bLSZ,

e [9]: UDIV/SDIV instruction implemented

e [8]: UMUL/SMUL instruction implemented

« [6]: Memory status and failing address register present

e [5:4]: FPU type (00 = none, 01=Meiko)

e [3:2]: PCI coretype (00=none, 01=InSilicon, 10=ESA, 11=cther)

e [1:0]: Write protection type (00=none, 01=standard)

| Gaisler Research 34 LEON user’'s manual

5.7 Power-down

The processor can be powered-down by writing (an arbitrary) value to the power-down
register. Power-down mode will be entered on the next load or store instruction. To enter
power-down mode immediately, two consecutive stores to the power-down register should
be performed. During power-down mode, the integer unit will effectively be halted. The
power-down mode will be terminated (and the integer unit re-enabled) when an unmasked
interrupt with higher level than the current processor interrupt level (PIL) becomes pending.
All other functions and peripherals operate as nominal during the power-down mode.

| Gaisler Research

35

LEON user’'s manual

6 External memory access

6.1 Memory interface

The memory bus provides a direct interface to PROM, static RAM and memory mapped 1/0
devices. Chip-select decoding is done for two PROM banks, one 1/0O bank and four RAM
banks. Figure 27 shows how the connection to the different device typesis made.

ROMSN[1:0]

OEN
WRITEN

IOSN

LEON

RAMSN([3:0]

RAMOEN[3:0]

RWEN([3:0]

A[27:0]

D[31:0]

A
cs —
o PROM %
WE D |
cs —
L Jee 1wo 2
WE D [|
A[27:2]
cs A
oe SRAM
WE D =)y
=p)

Figure 27: Memory deviceinterface

6.2 Memory controller

The external memory busis controlled by aprogrammable memory controller. The controller
acts as a dave on the AHB bus. The function of the memory controller is programmed
through memory configuration registers 1 & 2 (MCR1 & MCR2) through the APB bus. The
memory bus supports three types of devices. prom, ram and local 1/0O. The memory bus can
also be configured in 8-bit mode for applications with low memory and performance
demands. The controller can decode a 2 Gbyte address space, divided according to table

table 9:

Addressrange Size Mapping
0x00000000 - Ox1FFFFFFF 512 M Prom
0x20000000 - Ox3FFFFFFF 512M 1/0
0x40000000 -0x7FFFFFFF 1G RAM

Table 9: AS map

| Gaisler Research 36 LEON user’'s manual

6.3 RAM access

The RAM area can be up to 1 Gbyte, divided on four RAM banks. The size of each bank is
programmed in the RAM bank-size field (MCR2[12:9]) and can be set in binary steps from
8 Kbyteto 256 Mbyte. A read accessto static RAM consists of an optional lead-in cycle, two
data cycles and between zero and three waitstates. On non-consecutive accesses, a lead-out
cycle is added after a read cycle to prevent bus contention due to slow turn-off time of
memories or 1/O devices. Figure 28 shows the basic read cycle waveform (zero waitstate).

datal data2 lead-out
ck /o \ \ \ \ \ \
A Al
RAMSN
RAMOEN \
0 =

Figure 28: Satic ramread cycle

For read accesses, a separate output enable signa (RAMOEN([N]) is provided for each RAM
bank, and only asserted when that bank is selected. If you use memory modules with several
banks but acommon output enable, use the OEN signal instead which is asserted on any read
cycle. A write accessis similar to the read access but has takes a minimum of three cycles:

leag-in data lead-out
ck /o \ \ \ \ \
A — AL
RAMSN
RWEN /
D D1

Figure 29: Satic ramwrite cycle

Through afeed-back loop from the write strobes, the data bus is guaranteed to be driven until
the write strobes are de-asserted. Each byte lane has an individual write strobe to allow
efficient byte and half-word writes. If you memory used a common write strobe for the full
16- or 32-bit data, set the read-modify-write bit MCR2 which will enable read-modify-write
cycles for sub-word writes.

Gaisler Research 37 LEON user’'s manual

6.4 PROM access

Accesses to prom have the same timing as RAM accesses, the differences being that PROM
cycles can have up to 15 waitstates.

datal data2 lead-out
ck /[\ \ \ \ \ \
A Al
ROMSN
OEN \ /
0 oD

Figure 30: Promread cycle

Two PROM chip-select signals are provided, ROM SN[1:0]. ROM SN[0] is asserted when the
lower half (0 - 0x10000000) of the PROM area as addressed while ROM SN[1] isasserted for
the upper half (0x10000000 - 0x20000000). When the VHDL model is configured to boot
from internal prom (see“Boot configuration” on page 50), ROMSN[Q] is never asserted and
all accesses between 0 - 0x10000000 are mapped on the internal prom. When the model is
configured to support both external and internal boot prom, the PIO[4] input isused to enable
the internal prom.

6.5 Memory mapped I/O

Accesses to I/0 have similar timing to ROM/RAM accesses, the differences being that a
additional waitstates can be inserted by de-asserting the BRDY N signal. A lead-in cycleis
always added to provide stable address before IOSN is asserted.

lead-in datal data2 |ead-out
ck /o \ \ \ \ \ \
A —_— Al
IOSN
OEN
0 (D)
BRDYN __/

Figure 31: I/Oread cycle

| Gaisler Research 38 LEON user’'s manual

6.6

6.7

Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be
performed in burst mode. Burst transfers will be generated when the memory controller is
accessed using an AHB burst request. These includes instruction cache-line fills, double
loads and double stores. The timing of a burst cycle is identical to the programmed basic
cycle, with the exception that alead-out cycle will only occurs after the last transfer.

8-bit and 16-bit memory configuration

To support applications with low memory and performance requirements efficiently, it is not
necessary to aways have full 32-bit memory banks. The RAM and PROM areas can be
individually configured for 8- or 16-bit operation by programming the ROM and RAM size
fields in the memory configuration registers. Since access to memory is aways done on 32-
bit word basis, read access to 8-bit memory will be transformed in aburst of four read cycles
while accessto 16-bit memory will generate aburst of two 16-bitsreads. During writes, only
the necessary bytes will be writen. Figure 32 shows an interface example with 8-bit PROM
and 8-bit RAM. Figure 33 shows an example of a 16-bit memory interface.

8-bit PROM

A D
ROMSN[0] cs orom A AlZr0
OEN OE D[31:24]
WRITEN WE D 4-“- =)
LEON
8-bit RAM
A[27:0
RAMSNIO] cs A
RAMOEN(Q] oe SRAM D[31:24]
RWEN[0] RWEOL we D =
A[27:0] >
D[31:24] |« =

Figure 32: 8-bit memory interface example

Gaisler Research 39 LEON user’'s manual

16-bit PROM i b
ROV . o A[27:1]
OEN OE :
WRITEN WE D 42%- =)
LEON
16-bit RAM
A[27:1
RAMSN[0] cs A
RAMOEN(Q] —]oe SRAM D[3L:16]
RWEN[0:1] RWEILO] g D =
A[27:0] >
D[31:16] |« =

Figure 33: 16-bit memory interface example

6.7.1 Memory configuration register 1

Memory configuration register 1 isused to program the timing of rom and local 1/O accesses.

31 29 28 27 26 25 24 23 20 19 18 17 12 11 10 9 8 7 4 3 0
‘ Reserved ‘ ‘ ‘ ‘ ‘I/O Waitstat&s‘ ‘ ‘ Reserved ‘ ‘ ‘ ‘Prom Writews‘ Prom read WS‘
1/0 width 1/0O enable J
1/0 ready enable External alatch
BEXCN enable Prom write enable
Prom width

Figure 34: Memory configuration register 1

[3:0]: Prom read waitstates. Defines the number of waitstates during prom read cycles (0000 =0,
“0001"=1,... “1111"=15).

[7:4]: Prom write waitstates. Defines the number of waitstates during prom write cycles
(“0000”=0, “0001"=1,... “1111"=15).

[9:8]: Prom with. Defines the data with of the prom area (“00”=8, “10"=32).

[10]: Reserved

[11]: Prom write enable. If set, enables write cycles to the prom area.

[17:12): Reserved

[18]: External address latch enable. If set, the address is sent out unlatched and must be latched
by external address latches.

[19]: 1/O enable. If set, the access to the memory bus 1/O area are enabled.

| Gaisler Research 40 LEON user’'s manual

6.8

[23:20]: I/O waitstates. Defines the number of waitstates during I/O accesses (“0000” =0,
“0001"=1, “0010"=2,..., “1111"=15).

[25]: Buserror (BEXCN) enable.

[26]:Bus ready (BRDY N) enable.

[28:27]: 1/0 bus width. Defines the data with of the 1/0 area (*00"=8, “01"=16, “10"=32).

During power-up, the prom width (bits[9:8]) are set with value on PIO[1:0] inputs. The prom
waitstates fields are set to 15 (maximum). External bus error and bus ready are disabled. All
other fields are undefined.

6.7.2 Memory configuration register 2

Memory configuration register 2 is used to control the timing of static ram accesses.

31 13 12 987 6543210
| Not used [Baksze | [| [| |

Read-modify-write J

Ram width

Figure 35: Memory configuration register 2 Write waitstates
Read waitstates

[1:0]: Ram read waitstates. Defines the number of waitstates during ram read cycles (“00"=0,

“01"=1, “10"=2, “11"=3).

e [3:2]: Ram write waitstates. Defines the number of waitstates during ram write cycles (“00"=0,
“01"=1, “10"=2, “11"=3).

* [5:4]: Ram with. Defines the data with of the ram area (00" =8, “10"=32, “1X" = 32).

» [6]: Read-modify-write. Enable read-modify-write cycles on sub-word writes to 16- and 32-bit
areas with common write strobe (no byte write strobe).

» [8:6]: Reserved

* [12:9]: Ram bank size. Defines the size of each ram bank (“0000" =8 Kbyte, “0001"=16 Kbyte...

“1111"=256 Mbyte).

Write protection

Write protection is provided to protect the memory and 1/0O areas against accidental over-
writing. It isimplemented as two block protect units capable of disabling or enabling write
access to a binary aligned memory block in the range of 32 Kbyte - 1 Mbyte. Each block
protect unit is controlled through a control register (figure 36). The units operate as follows:
on each write accessto RAM, address bits (29:15) are xored with the tag field in the control
register, and anded with the mask field. A write protection error is generated if the result is
not equal to zero, the corresponding unit is enabled and the block protect bit (BP) is set, or

| Gaisler Research 41 LEON user’'s manual

if the BP bit is cleared and the result is equal to zero. If awrite protection error is detected,
the write cycle is aborted and a memory access error is generated.

31 30 29 15 14 0
‘ EN‘ BP‘ TAG[14:0] ‘ MASK[14:0]

Figure 36: Write protection register 1 & 2

[14:0] Address mask (MASK) - thisfield contains the address mask
[29:15] Addresstag (TAG) - thisfield is compared against address(29:15)
[30] Block protect (BP) - if set, selects block protect mode

[31] Enable (EN) - if set, enables the write protect unit

The ROM area can be write protected by clearing the write enable bit MCRL.

| Gaisler Research 42 LEON user’'s manual

7 Signals

All input signals are latched on therising edge of CLK. All outputs are clocked on therising
edge of CLK.

7.1 Memory bussignals

Name Type Function Active
A[30:0] Output | Memory address High
BEXCN Input Bus exception Low
BRDYN Input Bus ready strobe Low
D[31:0] Bidir Memory data High
IOSN Output | Local 1/0 select Low
OEN Output | Output enable Low
RAMOEN[3:0] Output | RAM output enable Low
RAMSN[3:0] Output | RAM chip-select Low
READ Output | Read strobe High
ROMSNJ1:0] Output | PROM chip-select Low
RWEN[3:0] Output | RAM write enable Low
WRITEN Output | Write strobe Low

Table 10: Memory bus signals

7.2 System interface signals

Name Type Function Active
CLK Input System clock High
ERRORN Open-drain | System error Low
PIO[15:0] Bidir Paralel 1/0 port High
RESETN Input System reset Low
WDOGN Open-drain | Watchdog output Low

Table 11: Systeminterface signals

| Gaisler Research 43 LEON user’'s manual

7.3 Signal description

A[30:0] - Address bus (output)

These active high outputs carry the address during accesses on the memory bus. When no
access is performed, the address of the last accessis driven (also interna cycles).

BEXCN - Bus exception (input)

Thisactivelow input is sampled simultaneously with the data during accesses on the memory
bus. If asserted, a memory error will be generated.

BRDYN - Busready (input)

This active low input indicates that the access to a memory mapped 1/O area can be
terminated on the next rising clock edge.

D[31:0] - Data bus (bi-directional)

D[31:0] carries the data during transfers on the memory bus. The processor only drives the
bus during write cycles. During accesses to 8-hit areas, only D[31:24] are used.

IOSN - 1/0 select (output)

This active low output is the chip-select signal for the memory mapped 1/O area.

OEN - Output enable (output)

This active low output is asserted during read cycles on the memory bus.

ROM SN[1:0] - PROM chip-select (output)

These active low outputs provide the chip-select signal for the PROM area. ROMSNI0] is
asserted when the lower half of the PROM area is accessed (0 - 0x10000000), while
ROMSN[1] is asserted for the upper half.

RAMOEN]3:0] - RAM output enable (output)

These active low signals provide an individual output enable for each RAM bank.

RAMSN[3:0] - RAM chip-select (output)

These active low outputs provide the chip-select signals for each RAM bank.

| Gaisler Research 44 LEON user’'s manual

READ - Read cycle

This active high output is asserted during read cycles on the memory bus.

RWEN [3:0] - RAM write enable (output)

These active low outputs provide individual write strobes for each byte lane. RWEN[Q]
controls D[31:24], RWEN[1] controls D[23:16], etc.

WRITEN - Write enable (output)

This active low output provides a write strobe during write cycles on the memory bus.

CLK - Processor clock (input)

This active high input provides the main processor clock.

ERROR - Processor error (open-drain output)

This active low output is asserted when the processor has entered error state and is halted.
This happens when traps are disabled and an synchronous (un-maskable) trap occurs.

PIO[15:0] - Parallel 1/0 port (bi-directional)

These bi-directional signals can be used as inputs or outputs to control external devices.

RESETN - Processor reset (input)

When asserted, this active low input will reset the processor and all on-chip peripherals.

WDOGN - Watchdog time-out (open-drain output)

This active low output is asserted when the watchdog times-out.

Gaisler Research

45

LEON user’'s manual

8.1 Mode hierarchy

8 VHDL moded architecture

The LEON VHDL model hierarchy can be seen in table 12 below.

Entity/Package File name Function
LEON leon.vhd LEON top level entity
LEON_PCI leon_pci.vhd LEON/PCI top level entity
LEON/MCORE mcore.vhd Main core
LEON/MCORE/CLKGEN clkgen.vhd Clock generator
LEON/MCORE/RSTGEN rstgen.vhd Reset generator
LEON/MCORE/AHBARB ahbarb.vhd AMBA/AHB controller
LEON/MCORE/APBMST apbmst.vhd AMBA/APB controller
LEON/MCORE/MCTRL mctrl.vhd Memory controller
LEON/MCORE/MCTRL/BPROM bprom.vhd Internal boot prom
LEON/MCORE/PROC proc.vhd Processor core
LEON/MCORE/PROC/CACHE cache.vhd Cache module
LEON/MCORE/PROC/CACHE/CACHEMEM cachemem.vhd | Cacheram
LEON/MCORE/PROC/CACHE/DCACHE dcache.vhd Data cache controller
LEON/M CORE/PROC/CACHE/ICACHE icache.vhd Instruction cache controller
LEON/MCORE/PROC/CACHE/ACACHE acache.vhd AHB/cache interface module
LEON/MCORE/PROC/IU iu.vhd Processor integer unit
LEON/MCORE/PROC/MUL mul.vhd Multiplier state machined
LEON/MCORE/PROC/DIV div.vhd radix-2 divider
LEON/M CORE/PROC/FP1EU fpleu.vhd paralel FPU interface
LEON/MCORE/PROC/REGFILE regfile.vhd Processor register file
LEON/MCORE/IRQCTRL irgctrl.vhd Interrupt controller
LEON/MCORE/IOPORT ioport.vhd Parallel 1/0 port
LEON/MCORE/TIMERS timers.vhd Timers and watchdog
LEON/MCORE/UART uart.vhd UARTs
LEON/MCORE/LCONF Iconf.vhd LEON configuration register
LEON/MCORE/AHBSTAT ahbstat.vhd AHB status register

Table 12: LEON model hierarchy
Table 13 shows the packages used in the LEON model.
Package Filename Function

TARGET target.vhd Pre-defined configurations for various targets
DEVICE device.vhd Current configuration
CONFIG config.vhd Generation of various constants for processor and caches
SPARCV8 sparcv8.vhd SPARCV 8 opcode definitions
IFACE iface.vhd Type declarations for module interface signals

Table 13: LEON packages

Gaisler Research 46 LEON user’s manual

Package Filename Function

MACRO macro.vhd Various utility functions

AMBA ambavhd Type definitions for the AMBA buses

AMBACOMP ambacomp.vhd AMBA component declarations

MULTLIB multlib.vhd Multiplier modules

FPULIB fpu.vhd FPU interface package

DEBUG debug.vhd Debug package with SPARC disassembler

TECH_GENERIC tech_generic.vhd Generic regfile and pad models

TECH_ATC25 tech_atc25.vhd Atmel ATC25 specific regfile, ram and pad generators

TECH_ATC35 tech_atc35.vhd Atmel ATC35 specific regfile, ram and pad generators

TECH_MAP tech_map.vhd Maps mega-cells according to selected target

8.2

8.3

Table 13: LEON packages

Model coding style

The LEON VHDL model is designed to be used for both synthesis and board-level
simulation. It is therefore written using rather high-level VHDL constructs, mostly using
sequential statements. Typically, each module only contains two processes, one
combinational process describing all functionality and one process implementing registers.
Records are used extensively to group signals according their functionality. In particular,
signals between modules are passed in records.

Clocking scheme

The model implementstwo clocking schemes: a continuous clock and the use of multiplexers
to enable loading of pipe-line registers, or a gated clock which is stopped during pipe-line
stalls. While a continuous clock provides easier timing analysis, gated clocks usually cost
less area and power. The selection of clock scheme is done by setting the configuration
element GATEDCLK to true or false.

| Gaisler Research 47 LEON user’'s manual

9

9.1

Model Configuration

The modé is configurable to alow different cache sizes, multiplier performance, clock
generation, synthesis tools and synthesis libraries. Several configurations are defined as
constant records in the TARGET package while the active configuration record is selected in
the DEVICE package. The model is configured from a master configuration record,
containing a number of sub-records which each configure a specific modul e/function:

-- conplete configuration record type
type config_type is record
synthesis: syn_config_type;
iu . iu_config_type
fpu : fpu_config_type
cp : cp_config_type
cache: cache_config_type
ahb : ahb_config_ type
apb : apb_config_type;
nctrl: nctrl_config_type
boot : boot_config_type
debug: debug_config_type
pci : pci_config_type
peri : peri_config_ type
end record,;

Synthesis configur ation

The synthesis configuration sub-record is used to adapt the model to various synthesis tools
and target libraries:

type targettechs is (gen, virtex, atc35, atc25);
-- synthesis configuration
type syn_config_type is record

targettech: targettechs

infer_ram: bool ean;-- infer cache ramautomatically
infer_regf : boolean;-- infer regfile automatically
infer_rom bool ean;-- infer boot prom autonatically

i nfer_pads: bool ean;-- infer pads autonmatically
infer_nmult: boolean;-- infer nmultiplier automatically
gatedcl k : bool ean;-- select clocking strategy

rfsyncrd : bool ean; -- synchronous register-file read port

end record;

Depending on synthesis tool and target technology, the technology dependant mega-cells
(ram, rom, pads) can either be automatically inferred or directly instantiated. Three types of
target technologies are currently supported: Xilinx Virtex (FPGA), Atmel ATC35 (0.35 um
CMOS) and any technology that is supported by synthesis tools capable of automatic
inference of mega-cells (Synplify and Leonardo). When using tool s with inference capability
targeting Xilinx Virtex, a choice can be made to either infer the mega-cells automatically or
to use direct instantiation. The choice is done by setting the parameters infer_ram,
infer_regf and infer_rom accordingly. When automatic inference of mega-blocks is
disabled, the setting for the synthesis tool has no impact (this is the case when using

Synopsys tools).

The rfsyncrd option has impact on target techologies which are capable of providing a
register file with both asynchronous and synchronous read ports. Currently, thisisonly used
wheninfer_regf istrue and the synthesistool inferstheregister file. Infer_mult selects how
the multiplier is generated, for details see section 9.2 below.

| Gaisler Research 48 LEON user’'s manual

9.2 Integer unit configuration

The integer unit configuration record is used to control the implementation of the integer
unit:

-- integer unit configuration

type multypes is (none, iterative, nB2x8, ml6x16, nB2x16, nB2x32);
type divtypes is (none, radix2)

type iu_config_type is record

nw ndows: integer;-- # register windows (2 - 32)

mul tiplier: nultypes;-- nultiplier type

di vi der : divtypes;-- divider type

nmac : bool ean;-- mltiply/accumul ate

f puen : integer range 0 to 1;-- FPU enable

cpen . bool ean; -- co-processor enable

fastjunp : bool ean; -- enable fast junp address generation
i cchol d . bool ean; -- enable fast branch | ogic

| ddel ay: integer range 1 to 2; -- # |oad delay cycles (1-2)
fastdecode : bool ean; -- optinmise instruction decoding (FPGA only)
i mpl . integer range 0 to 15; -- IU inplenentation ID
version: integer range 0 to 15; -- IU version ID

end record,;

nwi ndows Set the number of register windows; the SPARC standard allows 2 - 32 windows,
but to be compatible with the window overflow/underflow handlersin the LECCS compiler,
8 windows should be used.

The multiplier option selects how the multiply instructions are implemented The table
below show the possible configurations:

Configurati latency approx. area
on (clocks) (Kgates)
iterative 35 1000
m16x16 4 6,000
m32x8 4 5,000
m32x16 2 9,000
mx32x32 1 15,000

Table 14: Multiplier configurations

If infer_mult in the synthesis configuration record (see above) is false, the multipliers are
implemented using the module generatorsin multlib.vhd. If infer_mult istrue, the synthesis
tool will infer a multiplier. For FPGA implementations, set infer_mult to true and select
m16x16. ASIC implementations (using synopsys DC) should set infer_mult to false since
the provided multiplier macros are faster than the synopsys equivalents.

The divider field select how the UDIV/SDIV instructions are implemented. Currently, only
aradix-2 divider isavailable.

The mac option enables the SMAC/UMAC instructions. Requires the multiplier to use the
m16x16 configuration.

If an FPU will be attached, f puen should be set to 1. If a co-processor will be attached, cpen
should be set to true.

| Gaisler Research 49 LEON user’'s manual

9.3

94

95

To speed up branch address generation, fastjump can be set to implement a separate branch
address adder.

The pipeline can be configured to have either one or two load delay cycles using the lddelay
option. One cycle gives higher performance (lower CPIl) but may result in Slower timing in
ASIC implementations.

In FPGA implementations, setting i cchol d will improve timing by adding a pipeline hold
cycle if a branch instruction is preceded by an icc-modifying instruction. Similarly,
f ast decode will improve timing by adding parallel logic for register file address generation.

Thei npl and ver si on fields are used to set the fixed fields in the %psr register.

Cache configuration

The cache is configured through the cache configuration record:

type cache_config type is record

i cachesi ze: integer;-- size of |-cache in Kbytes
ilinesize: integer;-- # words per |-cache |ine
dcachesi ze: integer;-- size of D-cache in Kbytes

dli nesize: integer;-- # words per D-cache line

boot cache : bool ean;-- boot from cache (Xilinx only)

end record;

Valid settings for the cache size are 1 - 64 (Kbyte), while the line size may be 2 - 4. The
instruction and data caches may be configured independantly.

Memory controller configuration

The memory controller is configured through the memory controller configuration record:

type nctrl_config_type is record

bus8en . bool ean;-- enable 8-bit bus operation
busl16en : bool ean; -- enable 16-bit bus operation
rawaddr : bool ean; -- enabl e unl atched address option

end record,;

The 8- and 16-bit memory interface features are optional; if set to false the associated
function will be disabled, resulting in a smaller design. The rawaddr fields enables the raw
(unlatched) address output option in the memory controller. If enabled, timing analysis of the
address bus might be difficult since the bus outputs can be driven both by registers
(synchronous) and combinational logic (asynchronous).

Debug configuration

Various debug features are controlled through the debug configuration record:

type debug_config_type is record

enabl e . bool ean; -- enabl e debug port

uart : bool ean; -- enable fast uart data to console

iureg : bool ean; -- enable tracing of iu register wites

f pureg : bool ean;-- enable tracing of fpu register wites
nohal t . bool ean;-- dont halt on error

pcl ow : integer;-- set to 2 for synthesis, O for debug
end record,;

| Gaisler Research 50 LEON user’'s manual

9.6

9.7

The enabl e field has to be true to enable the built-in disassembler (it does not affect
synthesis). Setting uar t to true will tiethe UART transmitter ready bit permanently high for
simulation (does not affect synthesis) and output any sent characters on the simulator console
(line buffered). The UART output (TX) will not simulate properly in this mode. Setting
i ureg will trace al IU register writes to the console. Setting f pur eg will trace all FPU
register writes to the console.

Setting nohal t will cause the processor to take a reset trap and continue execution when
error mode (trap in atrap) is encountered. Do NOT set this bit for synthesis since it will
violate the SPARC standard and will make it impossible to halt the processor.

Since SPARC instructions are always word-aligned, all internal program counter registers
only have 30 bits (A[31:2]), making them difficult to trace in waveforms. If pcl owis set to
0, the program counters will be made 32-bit to aid debugging. Only use pcl ow=2 for
synthesis.

Peripheral configuration

Enabling of some periphera function is controlled through the periphera configuration
record:

type peri_config type is record

cfgreg : bool ean; -- enabl e LEON configuration register
ahbstat : bool ean;-- enable AHB status register

wprot : bool ean;-- enable RAMwite-protection unit
wdog . bool ean; -- enabl e wat chdog

end record,;

If not enabled, the corresponding function will be suppressed resulting in a smaller design.

Boot configuration

Apart from that standard boot procedure of booting from address 0 in the external memory,
LEON can be configured to boot from an internal prom . The boot options are defined on the
boot configuration record as defined in the TARGET package:

type boottype is (nenory, prom dual);
type boot _config type is record

boot : boottype; -- select boot source

ranr ws : integer range 0 to 3;-- ramread waitstates
r amms . integer range 0 to 3;-- ramwite waitstates
syscl k . integer;-- cpu clock

baud . positive;-- UART baud rate

extbaud : bool ean;-- use external baud rate setting
pabits . positive;-- internal boot-prom address bits

end record;

9.7.1 Booting from internal prom

If the boot option is set to ‘prom’, an internal prom will be inferred. When booting from
internal prom, the UART baud generator, timer 1 scaler, and memory configuration register
2 are preset to the values cal culated from the boot configuration record. The UART scaler is
preset to generate the desired baud rate, taking the system clock frequency into account. The
timer 1 scaler is preset to generate a 1 MHz tick to the timers. The ram read and write
walitstate are set directly from to the boot configuration record. If the extbaud variable is set

| Gaisler Research 51 LEON user’'s manual

in the boot configuration record, the UART scalers will instead be initialised with the value
on 1/0O port [7:0] (the top 4 bits of the scalers will be cleared). Using external straps or
assigning the port as pull-up/pull-down, the desired baud rate can be set regardless of clock
frequency and without having to regenerate the prom or re-synthesise. If a different boot
program is desired, use the utility in the pmon directory to generate a new prom file. When
the dual boottype is configured, the boot source is defined by PIO[4]. If PIO[4] is asserted
(=1), the internal prom will be enabled, otherwise the external prom will be used.

Which content is placed in the boot-prom is decided by theinfer_prom and the pabits settings
in the configuration record. If infer_prom istrue, the contents is generated from bprom.vhd,
which by default contains PMON (see below). If infer_prom is false, only Xilinx Virtex
devices can be targetted and the prom is directly instantiated. Depending on the value of
pabits, either aprom with 1, 2, 4 or 8 kbyte isinstantiated. The xilinx sub-directory contains
two templates, virtex_prom256 (1 kbyte) and virtex_prom2048 (8 kbyte). The
virtex_prom256 contains PMON, while virtex_prom2048 contains a prom version of
rdbmon from LECCS-1.1.1. The pre-defined configuration virtex 2klk rdbmon in
device.vhd will instantiate the virtex_prom2048 prom.

9.7.2 PMON S-record loader

Pmon isasimple monitor that can be placed in an on-chip boot prom, external prom or cache
memories (using the boot-cache configuration). Two versions are provided, one to be used
for on-chip prom or caches (bprom.c) and one for external proms (eprom.c).

On reset, the monitor scans all ram-banks and configures the memory control register 2
accordingly. The monitor can detect if 8-, 16- or 32-bit memory is attached, if read-modify-
write sub-word write cycles are needed and the size of each ram bank. It will also set the stack
pointer to the top of ram. The monitor writes a boot message on UART1 transmitter
describing the detected memory configuration and then waitsfor S-recordsto be downloaded
on UART 1 receiver. It recognises two types of S-records. memory contents and start address.
A memory content S-record is saved to the specified addressin memory, while a start address
record will cause the monitor to jump to the indicated address. Applications compiled with
LECCS can be converted to a suitable S-record stream with:

sparc-rtems-objcopy -O srec app app.srec

See the README files in the pmon directory for more details. After successful boot, the
monitor will write a message similar to:

LEON-1: 2*2048K 32-bit menory
>

9.7.3 Rdbmon

A promable version of rdbmon is provided in pmon/Imon.o. It can be put in the boot-prom if
infer_prom is false and pabits = 11. Note that rdbmon needs to be re-compiled for each
specific target hardware, it does not automatically detect the memory configuration. To do
this, change the makefile in the pmon directory so that the mkprom settings will reflect your
hardware. Then, do a‘make’ which will produce avirtex_prom2048.mif file. Use the Xilinx
Coregen to produce a syncronous ram from the .mif file, and put the resulting edif file
(virtex_prom2048.edn) in the syn directory so that the Xilinx place&route tools will find it

| Gaisler Research 52 LEON user’'s manual

9.8

during design expansion. The file virtex_prom2048.xco contains a suitable project file for
coregen. LECCS-1.1.1 or higher is needed to build rdomon for the boot-prom. Rdbmon
consumes 16 blockrams, so at least an XCV800 device is needed to fit both the boot prom
and ram for the caches and register file.

AMBA configuration

The AMBA buses are the main way of adding new functional units. The LEON model
provides aflexible configuration method to add and map new AHB/APB compliant modul es.
The full AMBA configuration is defined through two configuration sub-records, one for the
AHB bus and one for APB:
type ahb_config_type is record

masters: integer range 1 to AHB_MST_MAX;

defnst : integer range 0 to AHB MST_MAX-1

split : bool ean;-- add support for SPLIT reponse

slvtable : ahb_slv_config_vector(0 to AHB_SLV_MAX-1);

cachetable : ahb_cache config vector(0 to AHB CACHE MAX-1);
end record;

type apb_config_type is record

tabl e : apb_slv_config_vector(0 to APB_SLV_MAX-1);
end record;

9.8.1 AHB master configuration

The number of attached masters is defined by the nast er s field in the AHB configuration
record. The masters are connected to the ahbni / ahbmo buses in the MCORE module. AHB
master should be connected to index O - (mast er s-1) of the ahbmi / ahbro buses. The defmst
field indicates which master is granted by default if no other master is requesting the bus.

9.8.2 AHB slave configuration

The number of AHB slaves and their address range is defined through the AHB dave table.
The default table has only two slaves: the memory controller and the APB bridge:

- standard sl ave config

constant ahbslvcfg_std : ahb_slv_config_vector(0 to AHB_SLV_MAX-1) := (
- first last index split enable function HADDR[31: 28]
("oo000", "O111", O, fal se, true), -- menory controller, 0x0- 0Ox7
("1000", "1000", 1, false, true), -- APB bridge, 128 MB 0x8- 0x8

others => ahb_slv_config_void);

The table also indicates if the slave is capable of returning a SPLIT response; if so, the split
element should be set to true, thereby generating the necessary split support logicinthe AHB
arbiter. To add or remove an AHB slave, edit the configuration table and the AHB bus
decoder/multiplexer and will automatically be reconfigured. The AHB slaves should be
connected to the ahbsi / ahbso buses. Thei ndex field in the table indicates which busindex
the slave should connect to.

9.8.3 AHB cachability configuration

The AHB controller controls which areas contains cachable data. This is defined through a
table in the AHB configuration record:

| Gaisler Research 53 LEON user’'s manual

type ahb_cache_config_type is record
firstaddr: ahb_cache_addr_type
| ast addr: ahb_cache_addr _type;
end record,;
type ahb_cache_config_vector is array (Natural Range <>) of ahb_cache_config_type;
constant ahb_cache_config_void : ahb_cache_config_type : =
((others =>'0"), (others =>"'0"));

The standard configuration is to mark the PROM and RAM areas of the memory controller
as cachable while the remaining AHB address space is non-cachable:

-- standard cachability config

const ant ahbcachecfg_std : ahb_cache_config_vector(0 to AHB CACHE MAX-1) := (
-- first | ast function HADDR[31: 29]

("o00", "000"), -- PROM area 0x0- 0xO0

("o10", "O011"), -- RAM area 0x2- 0x3

ot hers => ahb_cache_confi g_voi d);

9.8.4 APB configuration

The number of APB slaves and their address range is defined through the APB slave tablein
the TARGET package. The default table has 10 slaves.

constant APB_SLV_MAX : integer := 16; -- maxi num APB sl aves
constant APB _SLV _ADDR BITS : integer := 10; -- address bits to decode APB sl aves
subt ype apb_range_addr_type is std_| ogi c_vector(APB_SLV_ADDR BI TS-1 downto 0);
type apb_slv_config_type is record

firstaddr: apb_range_addr_type

| ast addr: apb_range_addr _type;

i ndex : integer;

enabl e: bool ean
end record,;
type apb_slv_config vector is array (Natural Range <>) of apb_slv_config_type
constant apb_slv_config_void : apb_slv_config_ type :=

((others =>'0"), (others =>"'0"), 0, false);

-- standard config

constant apbslvcfg_std : apb_slv_config_vector(0 to APB_SLV_NMAX-1) := (
-- first | ast i ndex enable function PADDR[9: 0]
"0000000000", "0000001000", O, true), -- menory controller, 0x00 - 0x08
("o0000001100", "0000010000", 1, true), -- AHB status reg., 0x0C - 0x10
("0000010100", "O0O000011000", 2, true), -- cache controller, 0x14 - 0x18
("0000011100", "O0000100000", 3, true), -- wite protection, 0x1C - 0x20
("o000100100", "OO0O100100", 4, true), -- config register, 0x24 - 0x24
("o001000000", "0001101100", 5, true), -- timers, 0x40 - 0x6C
("oo01110000", "o00OO01111100", 6, true), -- uartl, 0x70 - 0x7C
("o0010000000", "0010001100", 7, true), -- uart2, 0x80 - 0x8C
("0010010000", "0010011100", 8, true), -- interrupt ctrl 0x90 - 0x9C
("0010100000", "0010101100", 9, true), -- 1/0 port OxAO0 - OxAC
others => apb_slv_config_void);

type apb_config_type is record
tabl e : apb_slv_config vector(0 to APB_SLV_MAX-1);
end record,;

constant apb_std : apb_config_type := (table => apbslvcfg_std);

Thetable is used to automatically configure the AHB/APB bridge. To add APB slaves, edit
the slave configuration table and add your modules in MCORE. The APB slaves should be
connected to theapbi / apbo buses. Thei ndex field in the table indicates which busindex the
slave should connect to.

Gaisler Research 54 LEON user’'s manual

10 Simulation

10.1 Un-packing thetar-file

The model is distributed as a gzipped tar-file; leon-2.2.tar.gz. On unix systems, use the
command ‘gunzip -c leon-2.2.tar.gz | tar xf -’ to unpack the model in the current directory.
The LEON model has the following directory structure:

leon top directory

leon/Makefile top-level makefile

leon/leon/ LEON vhdl model
leon/modelsim/ Modelsim simulator support files
leon/pmon Boot-monitor

leon/syn Synthesis support files
leon/tbench LEON VHDL test bench
leon/tsource LEON test bench (C source)

10.2 Compilation of model

On unix systems (or M S-windows with cygwin installed), the LEON VHDL model and test
bench can be built using ‘make’ in the top directory. Doing make without a target (or ‘ make
all’) will build the model and test benches using the modeltech compiler. Doing a‘ make vss
will build the model with Synopsys VSS.

To use an other simulator, the makefiles in the leon and tbench sub-directories have to be
modified to reflect the simulator commands. On non-unix systems (e.g. windows), the
compile.bat filein the leon and thench directories can be used to compile the model in correct
order.

10.3 Generic test bench

A generic test bench is provided in tbench/tbgen.vhd. This test bench allows to generate a
model of a LEON system with various memory sizes and configuration, by setting the
appropriate generics. A default configuration of the test bench, TBDEF is in tbench/
tbdef.vhd. The file tbench/tbleon.vhd contains a number of alternative configuration using
the generic test bench.

Once the LEON model have been compiled, one of the test benches (e.g. TBDEF) can be
simulated to verify the behaviour of the model. Smulation should be started in the top
directory. The output from the simulation should be as follows:

*** Starting LEON systemtest ***

Menory interface test

Cache nenory

Register file

Interrupt controller

Tinmers, watchdog and power-down

Parallel 1/0O port

UARTs

Test conpleted OK halting with failure

** Failure: TEST COVWPLETED CK, ending with FAl LURE

Simulation is halted by generating afailure.

| Gaisler Research 55 LEON user’'s manual

10.4 Disassembler

A SPARC disassembler is provided in the DEBUG package. It is used by the test bench to
disassemble the executed instructions and print them to stdout (if enabled). Test bench
configurations with namesendingina‘_d have disassembly enabled.

10.5 Test suite

The supplied test suite which is run by the test bench and only tests on-chip peripherals and
interfaces, compliance to the SPARC standard has been tested with proprietary test vectors,
not supplied with the model. To re-compile the test program, the LEON/ERC32 GNU Cross-
Compiler System (LECCYS) provided by Gaisler Research (www.gaisler.com) needs to be
installed. The test programs are in the tsource directory and are built by executing ‘make
tests' in thetop directory or in the tsource directory. The makefile will build the program and
generate prom and ram images for the test bench. Pre-compiled images are supplied so that
the test suite can be run without installing the compiler.

The test programs probes the LEON configuration register to determine which options are
enabled in the particular configuration, and only tests those. E.g., if no FPU is present, the
test program will not attempt to perform FPU testing.

10.6 Simulator specific support
10.6.1 Modelsim

The file modelsm/wave.do is a macro file for modelsim to display some useful interna
LEON signals. A modelsim init file (modelsim.ini) is present in the top directory and in the
leon and tbench directory to provide proper library mapping.

10.6.2 Synopsys VSS
A .synopsys_vss.setup fileis present in the top directory and in the leon and tbench directory
to provide proper library mapping.

10.7 Post-synthesis simulation

The supplied test-benches can be used to simulate the synthesised netlist. Use the following
procedure:

» Compilethe complete model (i.e. do a‘make’ at thetop level). It isessential that you use
the same configuration as during synthesis! This step is necessary because the test bench
uses the target, config and device packages.

* Inthetop directory, compilethe simulation libraries for you ASIC/FPGA technology, and
then your VHDL netlist.

» Cd to tbench, and do ‘make clean al’. Thiswill rebuild the test bench, ‘linking’ it with
your netlist.

» Cd back to the top directory and simulate you test bench as usual.

Gaisler Research 56 LEON user’'s manual

11 Synthesis

11.1 General

The model is written with synthesis in mind and has been tested with Synopsys DC,
Synopsys FPGA-Compiler (FPGA-Express), Exemplar Leonardo and Synplicity Synplify
synthesis tools. Technology specific cells are used to implement the IU/FPU register files,
cacheramsand pads. These cells can be automatically inferred (Synplify and Leonardo only)
or directly instantiated from the target library (Synopsys).

Non-synthesisable code is enclosed in a set of embedded pragmas as shown below:

- pragma transl ate_off
non- synt hesi sabl e code. ..
- pragma translate_on

This works with most synthesisers, athough in Synopsys requires the
hdlin_translate off skip_text variable be set to “ true’ .

11.2 Synthesis procedure

Synthesis should be done from the ‘syn’ directory. It includes scripts/project-files for
Synplify, Synopsys-DC, Synopsys-FC2 and Leonardo. The source files are read from the
leon directory, so it isessential that the configuration inthe TARGET and DEV I CE packages
is correct. To simplify the synthesis procedure, a number of pre-defined configuration are
provided in the TARGET package. The selection of the active configuration is done in the
DEVICE package. The following table shows the characteristics of some of the pre-defined
configurations:

Configuration cache regfile mul/div rom pads target syntool
fpga_2k2k inferred | inferred none none inferred any synp, leo
fpga_2k2k_softprom inferred | inferred none inferred inferred any synp, leo
fpga 2k2k v8 softprom inferred | inferred | inferred inferred inferred any synp, leo
virtex_2k2k_blockprom inferred | instance none instance inferred virtex any
virtex_2k2k _v8 blockprom | inferred | instance | inferred instance inferred virtex any
gen_atc25 instance | instance | instance none instance | ATC25 any
gen_atc35 instance | instance | instance none instance | ATC35 any

Table 15: Pre-defined synthesis configurations
Note:

» 8/16-bit memory support is optional, make sure that you enable the option(s) if needed.

» Make sure that the selected configuration in the DEVICE package correctly reflects your
synthesis tools and target technol ogy!

| Gaisler Research 57 LEON user’'s manual

11.2.1 Synplify

To synthesise LEON using Synplify, start synplify in the syn directory and open leon.prj. A
synthesis run takes about 15 minutes on a650 MHz Pentium-11 PC (128 MB ram necessary).
The table below shows some obtained synthesis results (post-layout timing):

e | oete | ratte | puice | ma | a
2 2 EAB EPF10K200E-1 20 5800LC
8 4 blockRam XCV300E-8 45 5,000 LUT
8 8 RAM16X1 | XCV400E-8 48 6,300 LUT

Table 16: Synplify project files

If you use synplify-6.11 or earlier versions, the FSM complier must be switched off or the
UART receiver will not be correctly synthesised due to synplify bugs.

11.2.2 Synopsys-DC

To synthesise LEON using Synopsys DC, start synopsysin the syn directory and execute the
script ‘leon.dcsh’. Before executing the script, edit the beginning of the script to insure that
the library search paths reflects your synopsysinstallation and that the timing constraints are
appropriate:

/***/

/* Script to conpile leon with synopsys DC */
/* Jiri Gaisler, Gaisler Research, 2001 */

/***/

/* List paths to your sources, target, and link libraries below */
i ncl ude atc35setup. dcsh
/* constraints - tailor to your own technol ogy. */

frequency = 62.5
cl ock_skew = 0. 25
i nput_setup = 2.0
out put _delay = 5.0

/* don’t touch anything from here unless you know what you are doing */

The top-level constraints are used to generate the appropriate Ssynopsys constraints
commands.

11.2.3 Synopsys-FC2 and Synopsys-FE

To synthesise LEON using Synopsys-FC2/FE, start fc2_shell (fe2_shell) in the syn directory
and execute the script ‘leon.fc2’. The script will analyse al source files and create a ‘leon’
project. Compilation and optimisation is left to the user. Note: FC2/FE do NOT support
automatic inference of ram cells, rams have to be directly instantiated from the target library.
Currently, only the Xilinx VIRTEX technology is supported through the TECH_VIRTEX
package.

| Gaisler Research 58 LEON user’'s manual

11.2.4 Leonardo

Use the following steps to synthesise LEON using Exemplar L eonardo:

» Start Leonardo, and select target technology and device

* Read the technology library

» Set working directory to leon/syn

* Runthe ‘leon.tcl’ script which will analyse and elaborate the design

Compilation and optimisation is left to the user. It is essential that the source files are read
with the -dont_elaborate switch, or Leonardo will not be able to properly resolve certain
generate statements. Note: only L eonardo version 2001.1a or later can be used, the earlier
2000.x versions have bugs in type resolution functions and will fail during analysis of the
model. Leonardo is capable of automatically inferring the necessary ram cellsfor register file
and caches.

| Gaisler Research 59 LEON user’'s manual

12 Porting to a new technology or synthesistool

12.1 General

LEON uses three types of technology dependant cells; rams for the cache memories, 3-port
register file for the IU/FPU registers, and pads. These cells can either be inferred by the
synthesis tool or directly instantiated from a target specific library. For each technology or
instantiation method, a specific package is provided. The selection of instantiation method
and target library is done through the configuration record in the TARGET package. The
following technology dependant packages are provided:

package Function Instantiation method
TECH_GENERIC Behavioural models inferred
TECH_VIRTEX Generators for Xilinx VIRTEX direct instantiated
TECH_ATC25 Generators for Atmel ATC25 direct instantiated
TECH_ATC35 Generators for Atmel ATC35 direct instantiated
TECH_MAP Selects mega-cells depending on configuration

Table 17: Register-file connections

The technology dependant packages can be seen awrappers around the mega cells provided
by the target technology or synthesis tool. The wrappers are then called from TECH_MAP,
where the selection is done depending on the configured synthesis method and target
technology. To port to a new tool or target library, a technology dependant package should
be added, exporting the proper cell generators. Inthe TARGET package, the targettechstype
should be updated to include the new technology or synthesis tool, while the TECH_MAP
package should be edited to call the exported cell generators for the appropriate
configuration.

12.2 Target specific mega-cells
12.2.1 Register-file

The register-file should have one synchronous write port and two synchronous or
asynchronous read ports. The data width is 32-bits while the number of registers depend on
the configured number of register windows. The standard configuration of 8 windows
requires 136 registers, numbered O - 135. Note that register 128 is not used and will never be
written (corresponds to SPARC register %g0). If the register file has synchronous read ports,
the RFSY NCRD field should be set to true in the processor configuration record.

If the Meiko FPU is enabled using the direct interface, the register file should have 32 extra
registers to store the FPU registers (i.e 168 registers for 8 register windows + FPU). For all
target technologies (FPGA and ASIC), the register file is currently implemented as two
parallel dual-port rams, each one with one read port and one write port.

For register file implementations using asynchronous read ports, bypass logic must be
inserted to bypass write data in case of read/write contention (read and write to the same
address). The timing and behaviour of the read ports during read/write contention can then

| Gaisler Research 60 LEON user’'s manual

be ignored. For synchronous register files, reading and writing is done on the falling edge of
the clock, and the standard bypass logic is sufficient to bypass read/write conflicts. Also in
this case, the timing and behaviour of the read port during read/write contention can be
ignored. The TECH_ATC25 contains an example on a register file with asynchronous read
ports, while TECH_ATC35 uses synchronous read ports.

12.2.2 Cacheram memory cells

Synchronous single-port ram cells are used for both tag and data in the cache. The width and
depth depends on the configuration as defined in the configuration record. The table below
shows the ram size for certain cache configurations:

Cachesize Wordg/line tag ram dataram
1 kbyte 8 32x30 256x32
1 kbyte 4 64x26 256x32
2 kbyte 8 64x29 512x32
2 kbyte 4 128x25 512x32
4 kbyte 8 128x28 1024x32
4 kbyte 4 256x24 1024x32
8 kbyte 8 256x27 2048x32
8 kbyte 4 512x23 2048x32
16 kbyte 8 512x26 4096x32
16 kbyte 4 1024x22 4096x32

Table 18: Cacheram cell sizes

The cache controllers are designed such that the used ram cells do NOT have to support
write-through (simultaneous read of written data).

12.2.3 Pads

Technology specific pads are usually automatically inferred by the synthesis tool targeting
FPGA technologies. For ASIC technologies, generate statements are used to instantiate
technology dependant pads. The selection of padsisdonein TECH_MAP.

12.2.4 Adding a new technology or synthesistool

Adding support for anew target library or synthesis tool is done as follows:

1. Create a package similar to tech_*.vhd, containing the specific rams, regfile, and pads.
2. Edit target.vhd to include your technology or synthesistool in targettechs.

3. Edit tech_map.vhd to instantiate the cells when the technology is selected.

4. Define and select a configuration using the new technology (target.vhd/device.vhd).

5. Submit your changesto jiri@gaisler.com for inclusion in future version of LEON!

	1 Overview
	1.1 News in LEON-1 version 2.3.1
	1.2 News in LEON-1 version 2.3
	1.3 License
	1.4 Functional overview
	1.4.1 Integer unit
	1.4.2 Floating-point unit and co-processor
	1.4.3 Cache sub-system
	1.4.4 Memory interface
	1.4.5 Timers
	1.4.6 Watchdog
	1.4.7 UARTs
	1.4.8 Interrupt controller
	1.4.9 Parallel I/O port
	1.4.10 AMBA on-chip buses
	1.4.11 Boot loader

	2 LEON integer unit
	2.1 Overview
	2.2 Instruction pipeline
	2.3 Multiply instructions
	2.4 Multiply and accumulate instructions
	2.5 Divide instructions
	2.6 ASI assignment
	2.7 Exceptions
	2.8 Processor reset operation
	2.9 Performance
	2.10 Co-processor interface
	2.11 FPU interface

	3 Cache sub-system
	3.1 Instruction cache
	3.1.1 Operation
	3.1.2 Instruction cache flushing
	3.1.3 Diagnostic cache access
	3.1.4 Instruction cache tag

	3.2 Data cache
	3.2.1 Operation
	3.2.2 Write buffer
	3.2.3 Data cache flushing
	3.2.4 Diagnostic cache access
	3.2.5 Cache bypass
	3.2.6 Data cache tag

	3.3 Cache Control Register

	4 AMBA on-chip buses
	4.1 AHB bus
	4.2 APB bus
	4.3 AHB status register
	4.4 AHB cache aspects

	5 On-chip peripherals
	5.1 On-chip registers
	5.2 Interrupt controller
	5.2.1 Operation
	5.2.2 Interrupt assignment
	5.2.3 Control registers

	5.3 Timer unit
	5.3.1 Operation
	5.3.2 Registers

	5.4 UARTs
	5.4.1 Transmitter operation
	5.4.2 Receiver operation
	5.4.3 Baud-rate generation
	5.4.4 Loop back mode
	5.4.5 Interrupt generation
	5.4.6 UART registers

	5.5 Parallel I/O port
	5.6 LEON configuration register
	5.7 Power-down

	6 External memory access
	6.1 Memory interface
	6.2 Memory controller
	6.3 RAM access
	6.4 PROM access
	6.5 Memory mapped I/O
	6.6 Burst cycles
	6.7 8-bit and 16-bit memory configuration
	6.7.1 Memory configuration register 1
	6.7.2 Memory configuration register 2

	6.8 Write protection

	7 Signals
	7.1 Memory bus signals
	7.2 System interface signals
	7.3 Signal description

	8 VHDL model architecture
	8.1 Model hierarchy
	8.2 Model coding style
	8.3 Clocking scheme

	9 Model Configuration
	9.1 Synthesis configuration
	9.2 Integer unit configuration
	9.3 Cache configuration
	9.4 Memory controller configuration
	9.5 Debug configuration
	9.6 Peripheral configuration
	9.7 Boot configuration
	9.7.1 Booting from internal prom
	9.7.2 PMON S-record loader
	9.7.3 Rdbmon

	9.8 AMBA configuration
	9.8.1 AHB master configuration
	9.8.2 AHB slave configuration
	9.8.3 AHB cachability configuration
	9.8.4 APB configuration

	10 Simulation
	10.1 Un-packing the tar-file
	10.2 Compilation of model
	10.3 Generic test bench
	10.4 Disassembler
	10.5 Test suite
	10.6 Simulator specific support
	10.6.1 Modelsim
	10.6.2 Synopsys VSS

	10.7 Post-synthesis simulation

	11 Synthesis
	11.1 General
	11.2 Synthesis procedure
	11.2.1 Synplify
	11.2.2 Synopsys-DC
	11.2.3 Synopsys-FC2 and Synopsys-FE
	11.2.4 Leonardo

	12 Porting to a new technology or synthesis tool
	12.1 General
	12.2 Target specific mega-cells
	12.2.1 Register-file
	12.2.2 Cache ram memory cells
	12.2.3 Pads
	12.2.4 Adding a new technology or synthesis tool

