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Abstract

Objectives. Any technical system is liable to the occurrence of
faults, where typically a fault in a single component affects the whole
system. The aim of the project is to implement and verify experi-
mentally a new control structure which will be able to reconfigure the
system in response to the occurrence of a severe fault such as breakage
of actuators or loss of sensors.

Method. Control reconfiguration is a change of the control struc-
ture in response to a detected fault process, so that the resulting con-
trol loop is stabilized and reaches acceptable closed loop performance.
Thus, the system is kept in operation. The solution tested for the
actuator faults is the redesign of the control law which have been
calculated using Linear Quadratic Gaussian (LQG) techniques. The
nominal weight matrices can be used to obtain a new controller for
the faulty situation. Sensor faults are solve by designing a bank of ob-
servers which has a nominal observer and as many fault case observers
as faults are considered. This is called Dedicated Observer Scheme.
The fault case observers do not depend on the faulty output.

Results. It has been demonstrated that the redesign of the state
feedback controller and the use of a Dedicated Observer Scheme is a
successful way to reconfigure the control loop, keeping the system con-
trollable and with acceptable performances. Moreover, no predesign
controllers and no manual intervention is necessary. The changes in
the control loop are kept to minimum.
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1 Introduction

This study has been carried out in the Institute for Automation and Com-
puter Control of the Ruhr-Universitdt in Bochum, Germany. It has been
supervised by the assistant teacher Ing. Thomas Steffen and the professor
Dr. Ing. Jan Lunze.

The Institute has developed different approaches to the reconfiguration con-
trol problem including this project and other studies about Hybrid Reconfig-
urable Control [2]. Several experimental applications have been implemented
to verify the theory. This applications include the Flight Model and a Three-
Tank System, both with redundant hardware.

1.1 Problem Description

Any technical system is liable to the occurrence of faults, and a fault in
a single component may affects the operation of the whole system. Severe
faults such as the complete loss of actuators or sensors break the nominal
control loop. To keep the system operational, it is necessary to change the
control algorithm in response to the fault. This is called reconfiguration.

1.2 Present-Day Approaches

There are mainly three approaches to control reconfiguration. The first one
is pointed to systems where there are no structural changes. The consid-
ered faults include degraded actuator performance or increased sensor noise.
Adaptive methods have been used to adjust the controller parameters.

A second approach solves the reconfiguration problem by a redesign of the
controller. Usually, a set of dedicated controllers, one for every fault case,
are manually developed and can be automatically selected in every specific
fault case using an appropriate supervisor logic.

The third option is based on the use of a reconfiguration block which works
as an interface between the plant and the controller, allowing to use the
nominal controller at any case.

11



1.3 Project Aim

The aim of the project is to implement and verify experimentally a new
control structure which will be able to reconfigure the system in response to
the occurrence of a severe fault. The control structure is changed when a
fault happened. The reconfiguration goal is to modify the control loop so that
the resulting one is stabilized and reaches acceptable closed loop performance
keeping it operational.

The reconfiguration task is similar to a compensator design for the faulty
process but there are also two important requirements. Firstly, the reconfig-
uration has to be carried out completely automatically while the system is in
operation. Secondly, a goal of the reconfiguration is to minimize the changes
to the control structure.

In this case, the first reconfiguration approach is not valid due to this study
considers severe faults with imply structural changes. The general idea of the
second approach is followed. However no predesigned controllers are used and
they are automatically designed on-line. On the other hand, the Institute
is already working on the third approach in order to try to minimize the
control structure changes and compare the different reconfiguration approach
performances.

1.4 Plant Overview

The plant selected for experimental verification is a flight model with two
degrees of freedom (shown in figure 1). This system is chosen because it
provides the necessary redundancies for successful reconfiguration. First of
all, it has several actuators which control two main rotors, which can change
their attack angle and the rotor speed, and another two lateral rotors that
work together at the desirable speed. This mean that it is not necessary to
use all actuators to control the system. Secondly, it has four position sensors
to measure the attack angle and the system pitch and orientation angle and
not all of them are necessary to observe the state of the plant.

The actuator faults considered are the blockage of a servo motor that control
the main rotor attack angle and the blockage of the lateral rotors. Due to the
redundancies, it should be possible to control the system after loosing one
of these actuators. However, the breakage of one of the main rotors make

12
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Figure 1: Plant

the system uncontrollable. The loss of sensor signals is also considered. In
this case, the reconfiguration task is to observe the value of the lost sensor.
It should be possible to observe correctly one of the two attack angles, but
other sensors faults lead to an unobservable system.

1.5 Assumptions

e There is a linear model for the nominal process. It is given in state

space form:
XN = ANXN+BNUN+BUV
yvn = Cyxy+Dpyuy+D,w
XN(O) = Xy

13



where u, X,y are the system inputs, states and outputs; A, B, C, D the
system matrices; v, w uncorrelated, normalized white noise; B, D,, the
disturbance weighting matrices.

e A nominal controller exists for the nominal plant. The resulting con-
trol loop consisting of the nominal plant and the nominal controller is
assumed to be stable. Furthermore, it satisfies all requirements con-
cerning disturbance rejection and input tracking.

e The actuator fault detection is already solved by using a fault detection
and isolation module (FDI).

e A linear model of the faulty process is known. It is also given in state
space form and linearized around the same equilibrium as the nominal
process:

XF = AFXF+BFUF+BUV
yr = Cpxp+ Dpur +D,w
xp(0) = xg

where the index F denotes the faulty situation.

e Though some of the actuators or sensor may have lost their function,
the number of inputs, outputs and states has not changed.

e It is assumed that the faulty process is still controllable and observable.
It follows that a stabilizing controller exists.

1.6 Way of Solution
The nominal control loop consists of a state feedback proportional controller

and a state observer. This structure will be called compensator. It is defined
by the equations:

u = K(x5 —X)
X = AX+Bu+L(y — Cx)
The control structure is shown in the figure 2.

14
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Figure 2: Control loop

The occurrence of a fault implies that it is necessary to use a different set
of inputs or outputs for the control task. Thus, a new control configuration
must be selected and new controller parameters have to be found.

Once an actuator fault is detected a new state feedback controller is designed
using the same design approach as for the nominal controller. The controller
is designed using Linear Quadratic Gaussian (LQG) techniques, a stochastic
generalization of the Linear Quadratic Regulator [3|. This approach finds a
feedback state control law that minimize a quadratic cost index depending
on the system states and input signals. Weight matrices are assigned to each
variable. Using this approach, the nominal controller is designed. In case
of an actuator faults the same cost index can be used to calculate the gain
matrix for the faulty situation. Then, the controller is down-load online into
the real time system.

In order to treat sensor faults a bank of observers will be used. It includes a
nominal observer and one more observer for every fault case. The observer
corresponding to a specific fault case does not rely on the sensor affected
by this fault case, so the fault does not affect its state observation. This

15



structure is called Dedicated Observer Scheme. It assumes that it is possible
to observe the variable of the faulty sensor using the remaining sensors and
the inputs. The fault will be detected by evaluating the difference between
the real outputs and the observed ones of each observer. This difference is
called innovation. When the Nominal Observer innovation is higher than a
threshold, a selection logic will detect the fault and select the Fault Case
Observer which has the lower innovation. All observers are designed using
the LQG method. Instead of cost functions, assumptions on the variance of
state and output error are given. Otherwise the observer design is a dual
problem to the state feedback controller design.

The reconfiguration structure used, including both actuator and sensor re-
configuration loops, is shown in the figure 3.

Actuator Fault
Reconfiguration
Loop

y

Reconfiguration Diagnosis
\
|
Reference ;
o——»(+ »| Cottroller U -~ Plant
/
Control
Xhat Loop \%
-
‘I
/
Selecidr | Bank of |
#’ Observers
Sensor Fault
Innovations

Reconfiguration
Loop

Diagnosis [«

Figure 3: Reconfiguration structure

Due to this approach it is not necessary to predesign controllers and no man-
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ual intervention is required for the reconfiguration itself. The system detects
the sensor fault and performs the reconfiguration automatically, thus restor-
ing a stable control loop. Of course a fault detection and isolation module
(FDI) is needed to detect the actuator faults, which is beyond the scope of
this document. The quadratic optimization design ensures a reasonable per-
formance under all fault cases. Finally, the changes to control structure are
restricted to the part affected by the fault: a selection of the best observer
or a recalculation of the control gain matrix using the same weights.

1.7 Design Process

In order to allow the system reconfiguration, it is necessary to perform a
previous study. In a first step a detailed system model is constructed. Then
several experiments are carried out and in order to identify the model pa-
rameters. Once the complete model is implemented, it is linearized and the
state space model is obtained. Finally a nominal control loop is designed.

The reconfiguration task is carried out in three steps. Firstly, the controller
is redesigned so that it can handle actuator fault cases. Secondly, the bank of
observers is designed. Finally, the sensor fault detection logic is implemented.

Both nominal control loop and reconfigured control loop are firstly developed
simulating their behavior using Simulink and then are tested on the plant.

1.8 Document Outline

This paper is structured following the logical order given by the design pro-
cess. Section 2 describes both flight model and real time system in detail.
A plant sketch is presented explaining the system degrees of freedom and its
actuators and sensors. The hardware implementation of the real time system
and the software interface are developed here.

Section 3 depicts the system model, how the experiments which identify the
system parameters are carried out and the subsequent data processing. A
linear model based on a state-space description is built.

The nominal control loop is implemented in section 4. Both controller and

observer are explained in detail and several system simulations are accom-
plished.
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Sections 5 and 6 develop the reconfiguration techniques for both actuator
and sensor faults. The problems caused by the occurrence of these severe
faults are explained and a way of solution is proposed. Practical problems
as the rank deficiency are identified and solved. Finally, several simulations
are carried out and results and conclusions are expounded.

Multiple faults simulations are shown in section 7.

Section 8 explains the tests carried out on the plant. The necessary in-
terface to do them is shown and described. Practical problems relative to
non modeled noise and non linearities are detected and solved. Results and
conclusions are exposed.

A brief summary of the whole project is related in section 9.

Finally, the symbol list description is in the appendix A; the programs codes
are placed in appendix B; the remote control used to accomplished the ex-
periments is explained in appendix C; other useful graphics and tables are
shown in appendices D and E.

The document concludes with several references to relevant literature.

18



2 System Description

2.1 Introduction

In order to verify experimentally the reconfiguration techniques, a plant
which represents an helicopter was chosen. This system was selected due
to it has the necessary redundancies to allow the reconfiguration task. Thus,
despite the loss of an actuator or a sensor, the system remains controllable
and observable, which is essential to perform the reconfiguration task. A
photograph of the plant is shown in the figure 4.

e R 131 ]

I

Y e Vv e e s

Figure 4: Plant
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2.2 Plant Overview

The flight model—shown in the figure 5—has two degrees of freedom given
by two axes such as the first one let the system reach different pitch angles
and the second one can rotate to reach every position in a flat surface parallel
to the floor. The pitch angle is called o and its range is between -45 to 45
degrees. The angle which identifies the rotation is called 3. It is considered
a range between -180 to 180 degrees, although the system is constructed to
turn five turns. There is a rotor at each end of the first axis. These rotors
modify their attack angle turning around the axis in a range between -90
and 90 degrees. These attack angles are called 7; and 7,. There are also
two smaller lateral rotors in the axis which provides the system with more
redundancy.

Figure 5: Plant sketch

The system inputs are the voltage applied to each motor: both servo motors
which control the attack angle (u; and wuy), the lateral rotors (u3) and the
main rotors (us and us). The system sensors are the four potentiometers
which read the angular position of v; and s, 8 and «.

The pitch angle « is already controlled with a proportional controller which
stabilize the system around « equal to zero using the main rotors. Therefore,
inputs u4 and us are considered constant in this study since the pitch angle
« control loop is stable. There are two parameters in this amplifier in order
to set the gain and the operating point (value of o and force applied to

20



the motors). It is also possible to modify this angle using a joystick that is
already connected to the amplifier controlling it manually.

2.3 Orientation

The potentiometers wires are connected such that the [ rotation angle in-
crease from -180° to 180° when it rotates in the counter-clock wise. The ~
rotor attack angle increase their value from -90° (at fifteen minutes) to 90°
(at forty five minutes), being zero degrees when the propeller is horizontal in
the upside.

The motors wires are connected such that a positive u; or us, input decrease
the gammas angle. A positive us propels the helicopter towards a negative

[ angle.

Due to the propeller construction, when a positive input to the attack angle
rotors is applied, although the + angle move towards negative values, the
rotation angle, 3, moves to positive ones.

2.4 Real Time System
2.4.1 Introduction

The plant is digitally controlled. The control configuration is implemented
using system modeling software. Thus, in order to convert the digital control
signals into analog ones and acquire the data from the plant sensors a real-
time system is needed. A hardware configuration and a software interface
were implemented to carry out this task.

2.4.2 Hardware Implementation

The chosen solution is known as a host-target combination. The Math Works
provided a software solution called xPC target [5]. This configuration needs
two computers. The first one, the host PC, is used to create models, imple-
ment the controller code and run simulations in non real-time. The second
one, the target PC, runs the xPC Target real-time kernel which control the
plant in real-time. The connections layout is shown in the figure 6
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The host PC software requirements include an operating system, Matlab
(which provide a command line interface and it is used to develop the con-
troller code), Simulink (to create the interface and controller models), Real-
Time Workshop (which converts the Simulink model into C code), a C lan-
guage compiler (which creates the executable code) and zPC Target (which
down loads the code into the Target PC).

The target PC don’t need even an operating system since it uses a boot disk,
created by xPC Target, which loads and runs the xPC Target kernel. This
kernel runs the down loaded code and converts the computer screen into
an interface between the operator and the plant. That means that there is
a scope which trace the signals and some other windows with information
about the system state: loading parameters, waiting, etc.

The real time card is connected to the board where the wires to the different
actuator amplifiers and the system sensors are connected. The figure 6 shows
the layout connections between the plant and the real time processor.

Since there are three plant inputs and the board provided by National In-
strument (PCI 6025) has only two outputs (although it has 16 inputs) an
additional interface card is needed. The Meilhaus ME-30 provides four ana-
log outputs and three of them are used.

2.4.3 Real-Time Interface

A software interface must be developed to configure the real time processor
ports which allow the communication between the plant and the control
structure.

These ports connect the analog-digital (A/D) and digital-analog (D/A) con-
verters to the signals coming from the sensors and the signals going to the
actuators. The port blocks are found in the Simulink libraries provided with
the real time system. Once the interface is programmed using Simulink, it
is compiled into C and linked using an option situated in the Tools menu,
and then is down loaded into the target PC. Simulink is used to implement
a controller and an observer and down-loading them into the Target PC
controlling the system.

The sample time has to be chosen here. According to the heuristic criterion
of using a sample time faster than 1/20 of the rising time, and since a rising
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Figure 6: Connections layout

time bigger than 0.2 seconds is expected, a sample time of 0.01 second is
chosen. Later, due to the delays introduced while acquiring and processing
the data, the sample time has been reduce to 1 millisecond.

The plant is controlled using an input range between -1 to 1. That means
three constant blocks set at 1 are selected as inputs and then three slider gain
blocks are inserted to modify the values. It is also necessary to connect the
ground block to the free input in order to avoid warnings for unconnected
ports.

Since the D/A inputs are between -10 to 10 volts, three inputs amplifiers
are used to re-scale the range. Besides, since the lateral rotors are not very
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powerful, the input ug is multiplied by another factor of 2.

The A/D output has a range between -10 and 10 volts. Thus, in order to
move this range into a degree scale (-90 to 90 for +; and v, and -180 to
180 for (3) another three amplifiers are used. Moreover, a factor of 2.5 is
introduced to model the fact that the J sensor allows to measure 5 turns.

Due to the sign criterion used for actuators and sensors the input w3 and the
outputs 7; and v.are inverted. The inputs which control the attack angle
are not inverted because when a positive input to the attack angle rotors
is applied, although the gamma angle move towards negative values, the
rotation angle, 3, moves to positive ones.

The result outputs are send to workspace so that they can be processed.

The D/A provide two channels with 8-bit resolution (first and second one)
and another two ones with 12-bit resolution (third and fourth ones). Since
signals u; and wuy are more sensitive, they are connected to the last two ports
and us to the first one.

The A/D outputs are connected in the next order: ~; to channel one, 7,
to channel two and (3 to channel three. The figure 7 shows the interface
developed using Simulink.

—-10to 10 —-10to0 10
s DA 8/ inV
1 -90/10
u3 Slider amp_lat B -90 to 90 degrees
Gain3 B gammai Gammat
] P DA 8/2in V
= PCI-6025E
’Xit;?:g th?)SLH 2|1 90710 —90 to 90 degrees
2
1 o p{ 10 DA 12/1 inV gamma2 Gamma
ut Slider amp anglet
Gaint P-ang
3 180/10%2.5 —-180 to180 degree:
1 [ 0o »{ 10 DA 12/2inV
beta Beta
u2 Slider amp_angle2
Gain2 MES3O driver PCI-6025E

Figure 7: Software interface
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3 Modeling

3.1 Introduction

First of all, the plant is modeled as a linear system [1]. This model is imple-
mented using Simulink [4] and stored in a file which is called flightmodel.mdl
(see figures 8 to 13). The linear model is used to design a nominal controller
and observer. Then, a nonlinear model is also implemented and used in order
to simulate more realistic experiments.

3.2 Selection of Inputs, Outputs and State-space Vari-
ables

The plant is a multiple-input, multiple-output (MIMO) system shown in the
figure 8):

FlightModel

Figure 8: Flight model

The system inputs, u = (uy, us, u3)”, are the voltage applied to the different
subsystems: rotor attack angle 1, rotor attack angle 2 and lateral rotors.
The outputs, y = (3, 7v1,72) are the measured angles, all of them in degrees.
Inputs, outputs and subsystems are shown in detail in the next subsection.

The system has been modeled using seven space-state variables which are
the three measured angles, their angular speed and the force applied by
the lateral rotors. They are ordered as is shown in the state vector x =
(A5 Y25 71, Y2, F1, 3, 3)T. All further considerations apply to this order only.
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3.3 Physical Models

The different servo-motors, rotors and the cinematic chain have been modeled
as subsystems (see figure 9). Each subsystems are explained thoroughly in
the following paragraphs.

Gammat

Gammat
»
Som fSent
Beta

Fault4

*>+.
Gammat

Fault2 RotorAttackAngle2 Inertia Faults

RotorAttackAngle1

Fault1

Momentum -
Gamma2 P fSend
Gamma2
u3 Faulté
Fault3 LateralRotors

Figure 9: Subsystems

Rotor attack angle.  Each servo motor which control the attack angle
of each rotor has been modeled as a first order system. Thus, its behavior
follows the law given by the equation (1).

Ty =ku—vy (1)

The input is the normalized voltage applied to the servo motor, u; or wus
depends on each servo motor, and the output is the rotor speed. Then, the
~1 and 72 angular position are obtained using an integrator. These angles are
the outputs of each subsystem. The whole subsystem is called Rotor Attack
Angle 1 (or 2) and is a second order system which behavior is described in
the equations (2) and (3). Their parameters are the gain (k;) and the time
constant (1) which are supposed to be the same for both subsystems.

I = klul—"h (2)
T1Ye = kiug — 792 (3)
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A dead zone is introduced to account for friction forces in the motor or gear.
It is set to zero for the linear model. It will be used later in a more detailed
simulation model developed to test the control loop. These subsystems are
shown in the figure 10.

/ 1
._> / Gamma 1 Speed g '
u1 Gamma
DeadZo Integrator

ne
RotorAttackAngle

Figure 10: Rotor attack angle

Lateral rotors. The lateral rotors are modeled as a first order system
(see equation (1)). The input ug is the voltage applied to the pair of motors,
normalized to the scale [-1,1]. The output is the force F; applied to the flight
model. The parameters of this subsystem are the gain (k3) and the time
constant (73). The subsystem is called Lateral Rotors. 1t is described by the
equation (4). It also has a dead zone to account for friction, which is set to
zero here. The figure 11 represent this subsystem.

E = kus — F (4)

u3 - Fl
Dead Zo

ne
LateralRotors

Figure 11: Lateral rotors

Momentum.  All the forces modeled above work on the movable part of
the flight model, and they create a momentum around the vertical axis. The
control aim is to reach a certain angle § around the vertical axis. Therefore
this rotational movement has to be carefully modeled.

First of all, the force due to the main rotors is obtained by calculating the
sine of both ~; and v, angles, multiplied by the forces applied by the main
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rotors. These forces are called F; and F, and they are assumed to be equal
and constant. Since these forces are used by a hardware controller to keep
the flight model in a horizontal position, this is an approximation.

The momentum generated by the main rotors is added with the momentum
generated by the lateral rotors. It is necessary to consider the momentum
since the forces are not applied at the same point. The distance to the center
differs and so does the momentum. Therefore, these forces must be divided
by the constants that content the effects of the system mass and the axis
length, called J,, and J; respectively for the main and lateral rotors. This
constant follows the experimental law shown in the equation (5):

F = J3 (5)

Then, all momentum components are sum together and the system angular
acceleration is calculated. This behavior is described in the equation (6) and
modeled in the subsystem Momentum, shown in the figure 12.

1 . . 1
a == [Fisin(y) + Fysin(y)] + —F (6)
Jm Jl
D2R [ sin P F1/m
Gamma 1 b '
egrees to
Radians Mass
D2R [ sin P F2/Jm R2D —p-D
Gamma 2 Degrees to Radians Acceleration
Radians1 Mass2 to Degrees
C 3 ) P 11
Lateral Force
Mass3

Figure 12: Momentum
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Inertia. The momentum is proportional to the angular acceleration,
which has to be integrated twice to obtain the angular position 3. Speed
proportional friction is included in the model to make it more precise. In the
autonomous case it is described by:

B:_ 36

These phenomena are modeled in the Inertia block—shown in the figure 13—
as described by this equation:

s=[ [ (o= Fp)ae (")

The model also contains a dead zone block to account for friction in the
bearings, Fy.

CO—» 4

Acceleration

1 >@D

Angular Speed

BearingFrict Beta
Integrator1 Integrator2
SpeedFriction
Figure 13: Inertia
Faults. Actuator faults are modeled as amplifiers, inserted after each

input, with a nominal value of one. A fault is modeled by changing the
amplification to zero and thus breaking the signal path. Sensor faults are
model in the same way, inserting amplifiers before each output (see figure 9
on page 26)

3.4 Parameters Identification

3.4.1 Introduction

Once the system is modeled, it is necessary to assign values to the parameters
used. Thus, several experiment have been done with the flight model in order
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to determinate these values.

In this first stage the real time system and software provide by DSpace where
used for the experiments. The software to control and acquire data is called
CockPit and Trace (see section C on page 116). The real time system is used
to acquire the data from the subsystems where are sensors — both rotor
attack angle subsystems and the angular position system. Where there are
not sensors —lateral rotors subsystem— an oscilloscope and a force meter
were used to identify the parameters. Once the data was acquired they are
processed using several programs written in order to identify the parameters
of the model.

3.4.2 Data Acquisition and Representation

The function datamatriz.m processes and plot the data stored by Trace, using
as a parameter the name of the file that contains the information. The data
consists of a vector containing the time values and an array that contains the
angle measured (3, vy, or 72) and the input (uy, us or uz). The angular speed
is calculated by differencing consecutive values. However, the result is not
immediately useful because of the high amplification of measurement noise.

After this, two plots are made showing the inputs and the results of the
experiment. A matrix is constructed containing the values of the input, the
angular position and the instant speed at every time. This matrix will be
used by other routines in order to identify the different parameters of each
subsystem.

The program code is shown in the subsection B.1.1 on page 97.

3.4.3 Experiments

Using Cockpit, several excitations have been given to the experiment in order
to identify the parameters of the different subsystems. The data is acquired
using Trace and processed with Matlab functions which are developed in
order to do this task. Some measurements are not possible using the existing
sensors, therefore a force meter and an oscilloscope were used in addition to
the existing sensors.
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Rotors Attack Angle In order to identify the rotor attack angle subsys-
tem parameters, several step functions have been applied to the system (see
graphics in appendix D, paragraph D.1 on page 119 where is shown the at-
tack angle system ~; behavior in response to different inputs). The following
paragraphs detail each subsystem experiment.

The figures 60 and 61 show the reaction to different input values. An input
above 0.1 is necessary to start turning the rotor. A higher value is necessary
to generate a measurable force. There is a saturation level between 0.5 and
0.6 where an increase of the input has no effect on the speed of the rotor.

The figures 63 to 65 show the reaction in the input range from 0.2 to 0.3, from
0.3 to 0.4 and from 0.4 to 0.5. For every range, the differential amplification
of the system is identified.

It is shown here that a positive input decreases the angle of attack, that
means that the gain is negative. However, a negative angle of attack propels
the system with a positive § speed. Therefore, the v sensor values are negated
in the interface block that controls the experiment from the real time system.
Thus, positive amplification can be used in all parts of the model.

The data acquire in these experiments is processed in the next subsection in
order to identify the system parameters.

Lateral Rotors. This subsystem was modeled as a first order system.

Thus, the transfer function for the linear model is shown in the equation (8):
k

GlateralRotors (5) (8)

- 1+ 7s

Since there are no sensors in this subsystem other methods must be used to
identify its parameters. A force meter is used to measure the force applied
in the J direction. When a constant input is applied to the system, the
force can be used to identify the system amplification. The time constant is
identified from the motor current using an oscilloscope.

Gain Identification. The data acquired using the force meter are plot in
the figure 14 (see also the table 4 in section E, on page 126). Thus, the gain
is calculated by dividing the force by the input. This force include the effects
of the speed proportional friction, thus this result is an approximation.
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There is a small dead zone between -0.01 and +0.01 where the rotors do not
move. A saturation is reached at a level of -0.60 and +0.80. Inputs below 0.2
move the propellers but not the system because of friction in the bearings.
The gain of the system shows strong nonlinearity and it is not symmetric.
This is a typical property of a propellers design for efficiency in one direction.
For the linear system model only the positive direction is considered, and the
friction is neglected for now.

The medium amplification value is 2.8, which is chosen for the linear model.
Since with this gain value, the saturation level of 0.8 would give a force
equal to 2.2 N but the actual maximum value is 2.0 N, the saturation is
modeled at a slightly lower value to match the actual maximum value. This
is necessary because the gain is no longer linear near the saturation level.
The new saturation level is 0.7.

The gain of this system is negative, that means a positive voltage turns the
system in the negative way. The orientation is inverted in the interface block
of the real time system. Therefore in the linear model the amplifications are
considered positive to make the controller design easier.

Lateral Rotors Characteristic

Saturation level

0.5

Dead zone

Force (N)

Sat. level

Figure 14: Identification of the lateral rotors gain
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Time Constant Identification. In order to identify the time constant,
the motor current is measured using an oscilloscope. The rotation speed
is proportional to the input voltage. While the voltage shows a first order
system behavior, the current shows the inverted one. The time constant of
both values is identical.

On the plot, 37% of the resulting change are deduced from the final level.
The point at which this lower level (63% of the change) is crossed by the plot
corresponds to the time constant of the system.

The behavior is shown in the graphic 66 (appendix D on page 123). The
calculation goes as follows: the initial voltage once the input is given, at
0.1 seconds, is 0.55 V and the permanent value is 0.1 V. Thus the 37% is
0.17 V and this level occurs at 0.3 seconds. So, the time constant is 0.2
seconds. Therefore, the modeled system has a dead zone between -0.01 and
0.01, a saturation level at 0.7 and the linear transfer function is shown in the
equation (9):
2.8

- 9
1+0.2s ()

GlateralRotrors (S)

Angular Position System. The graphics in the figures 67 and 68 (ap-
pendix D on page 124) show the behavior of the system when an input of 0.4
is given to the lateral rotors and when the main rotors are used with an angle
of 74 = 90°. The flight model starts turning due to the acceleration cause
by the force applied. The constant factor between the force applied and the
resulting angular acceleration—which depends on the mass of system and on
the axis length—is calculated. It corresponds to the angular inertia of the
system.

There is a friction in the axis that prevent the system from moving unless the
momentum applied is higher than a threshold. It is observed that at least
an attack angle of 7° is needed in one of the main rotors or an input of 0.2
to the lateral rotors to start moving the plant in the  direction. Hence, by
calculating the corresponding force a dead zone can be set up to model this
friction in the bearing.

These data are processed in the next subsection in order to calculate the
momentum constant value.
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Pitch System. The flight model contains an automatic proportional
controller for the main rotor speed. This controller keeps the system in a
horizontal position. The gain is fixed to 3. The operation point is set to 7.3
for the first control, so that the system stays horizontally (o« = 0). The offset
is set to 7.0, resulting in a force produced by the main rotors of 1.3 N each.
To enhance the system dynamics, this value was later increased to 8.0, which
results in a force of 3.6 N.

3.4.4 Data Processing

In the following paragraphs, the data acquired in the previous experiments
is processed. This is done using different Matlab functions developed for this
purpose.

Rotor Attack Angle Subsystem. The function identify.m calculates
the parameters of a second order system — the gain (k) and the constant
time (7) — given by the linear transfer function shown in the equation (10).

k

=S+ (10

GrotorAttack:Angle (8)

The function input is the data provided by the previously shown function
datamatriz.m and the outputs are the parameters which characterize the
system.

The sensor range is -90° to 90°, but there are significant errors near the end
of the range (see figures 60 and 62 show on page 119). These problems can
be avoided when the speed is calculated in the same turn and the measured
angles are far enough from the end of the range.

The experiment must contain exactly one jump in the input. Initial and final
average speeds are calculated in the previous and next turns. The step must
be given at the beginning of the middle turn, allowing the system to reach
the nominal speed before being measured. One turn is required before the
measurement of the initial speed.

Thus the speed in each interval will be calculated as shown in the next

equation
= It) = 0(t2) (11)
1 —ty
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where 1 and 2 mean two different measures during the same turn. Repeating
this calculation before and after the jump allows to calculate the gain factor

using this equation:
O(ty) —0(t
k ( 1) ( 2)

u(ty) — u(t)

To calculate the time constant, the system trajectory is approximated by two
lines: one before the jump and the second after the jump, according to the
next equation

(12)

0(t) = wt + b, (13)

Their slopes are the speeds previously measured. New angles are measured
to identify 6y in both cases. The interval between the jump time and the line
intersection time is the time constant of the system.

The dead zone is calculated by finding out the relation between input and
speed shown in the next equation

w = ku+ wy (14)

and then extrapolating the input that corresponds to an angular speed of
Zero: w
d=-=2 15
. (15)
The program code used to identify the rotor attack angle subsystem param-

eters is shown in the appendix B, subsection B.1.2on page 98.

Three different experiments are performed to identify the parameters: for the
first one the input starts at 0.2 and a step is given to 0.3, the second one from
0.3 to 0.4 and the last one from 0.4 to 0.5. These jumps were used because
they cover the range between the dead zone at 0.1 and the saturation level,
between 0.5 and 0.6, without getting to close to the nonlinear regions.

Table 3 (appendix E, page 126) shows the data of the first of these exper-
iments. Note the amount of noise present in the raw data. The results of
tdentify.m are shown in the table 1.

The gain decreases slightly with increasing input levels. The gain is negative
because a positive u; input leads to a decrease of y,angle. Mean values are
chosen for the process model: a gain of 450 and time constant 7 equal to 0.12
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ug € [0.2,0.3] | uz € 0.3,0.4] | ug € [0.4,0.5] | Media
Gain k -462 -454 -433 -450
Time constant 7 (s) 0.14 0.11 0.12 0.12
Dead zone 0.086 0.082 0.067 0.078
Initial speed w;(°s™1) -53 -99 -144 —
Final speed (°s™!) -99 -144 -188 —

Table 1: Identification results

seconds. As with the lateral rotors subsystem identification, the gain is not
constant near the saturation level. Using a mean gain value, the saturation
level would give an angular speed which would exceed the maximum real
one. Thus, the saturation is modeled at a slightly lower value to match the
actual maximum value. The new saturation level is 0.45. Hence, it is ensured
that the angular speed in the model does not exceed 200, which is about the
highest value seen in the experiment.

The dead zone values differ significantly between the three experiments. Val-
ues of 0.09 for the main rotor 1 and 0.07 for the main rotor 2 were measured
experimentally, which are reasonably close to the values seen here. These
values are therefore taken for the model.

The resulting linear model is described by equation (16) and the detailed
nonlinear model includes a saturation level of 0.45 and a dead zone of 0.09
or 0.07 depend on the rotor.

450

~ s(1+0.12s) (16)

GrotarAttackAngle (5)

Angular Position System. The script momentum.m is used to calculate
the constant J between force and angular acceleration using the data from
the /3 experiments (see subsection 3.4.3 on page 33). The force was already
calculated in the lateral rotors and pitch experiments (see subsections 3.4.3
—on page 31— and 3.4.3 —on page 34) and it had a value 1.4 N and 1.3 N
respectively.

To calculate the inertia, it is essential to know when the acceleration begins.
Analyzing the graphics on figures 67 and 68 on page 124, it is concluded that
the movement starts at 1.7 seconds for the first experiment (while the control
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input was given at 1.27 seconds) and at 0.8 seconds for the second one. With
this data the results are J; = 10.9Ns?/° in the first case and J,, = 6.1Ns%/°
in the second one. A difference is to be expected, since the constant includes
the length of the lever. The longer the lever, the lower is the constant.

It is observed that a positive input given to the servo motors turns them in
the negative way but then the system is propelled in positive direction.

The script is listed in the subsection B.1.3 on page 100.

Now it is possible to calculate the bearing friction, Fjy, and its effect on the
two different actuators:

F = u3mink3 = 0.7TN
F,, = Fsinvy,, = 016N

where Vi =7°, Usmin = 0.25. Since a single block models the friction, both
values have to be converted into a momentum. The result is:

£, 180

— = 0.36°7?
Jl m iy
F,,, 180
—— = 04°7°
Iy T §

Both values are reasonable close, and the second value Fj, = 0.4°s72 is used
for the model.

3.4.5 Final Note

The parameter identification of this system is rather difficult for two unre-
lated reasons. Firstly, the angles are measured with standard potentiometers.
They show only moderate precision, a significant amount of noise and strong
nonlinearities at the end of the measurement range (see figures 60 and 62
on page 119). These problems could be solved by replacing the potentiome-
ters by digital encoders with a high resolution (at the cost of introducing a
quantization). The second problem is that the friction effects are not repro-
ducible. The connection wires can take different positions leading to very
different friction forces. The friction in the bearing was also changing from
experiment to experiment.
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3.5 Linear Model

Once the plant is modeled and all its parameters are identified, the next step
is to linearize the model for the controller design. For this purpose a Matlab
script has been developed. The script is called modeling.m (shown in the
subsection B.2.1 on page 101 in the appendix B).

First it loads the parameter of the linear system which have been previously
identified for the flightmodel. mdl model-—the time constants, the gain, the
force applied by the main rotors, the effect of the mass and length of the
axis and the speed proportional friction. At this point, dead zones and the
saturation levels of each subsystem are not used, neither the friction in the
bearings.

The next step is to identify each state and associate them with the different
integrators. This is quite important since Simulink assigns the integrators
to the different state variable in a random order and it is necessary to know
this order to control the system. By calling the Simulink file, Matlab returns
some information about the model. This includes the number of the system
inputs, outputs and states and the order of the integrators. Comparing the
obtained list with the names of the different integrators, it is possible to
calculate a transformation matrix, T, to bring states into a standard order.
The transformation is carried out using the next equations:

A = T'AT
B = T 'B
C = CT

Then, the model is linearized and the state-space representation is obtained,
given by the matrix A, B, C and D (equations (17) and (18)). For this
purpose, it was used the function linmod.m provided with Matlab. The
operating point is set at zero for all the state-space variables. That means
the state-space variables stay within the surroundings of the operating point.

The states of the model are reordered using the transformation matrix previ-
ously calculated. The resulting model has a known order of states. This order
is the following one: 1, Y2, 71, V2, F1, ﬁ and (. All further consideration
apply to this transformed model only.
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x = Ax+Bu (17)

y = Cx+Du (18)
with
-83 0 0 0 0 0 0
3750 =83 0 0 0 0 0
0 0 0 0 0 0 0
A = 0 370 0 0 0 0 0 (19)
0 o 0 0 5 0 0
0 0 06 06 736 —02 0
0 0 0 0 0 1 0
1 00
010
000
B =1000 (20)
001
000
000
000O0O0OO01
c=0010000 (21)
0001000
D =0 (22)

Before carrying out the linearisation the nonlinear effects were set to zero. In
order to perform more realistic simulations, the real values are now loaded.
This includes the dead zone and the saturation levels of each subsystem
and the friction in the bearings. The design of both the controller and the
observer is done using the linear model. The simulation are carried out using
the more realistic scheme that includes nonlinear effects and also processing
delays.
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4 Nominal Control Loop

4.1 Introduction

A standard compensator design is used to control the nominal process. It
consists of a state observer and a linear state feedback controller. Both
observer and controller are designed using the Linear Quadratic Gaussian
(LQG) method [3]. This approach is chosen because it provides good perfor-
mance in the closed loop and because the design process is mainly automatic.
The control law and the observer are built from basic blocks in a Simulink
model called flightmodelcl.mdl. This model is also used to simulate the con-
troller performance as part of the design cycle, and it is used for verification
before trying to control the real system.

The control structure is shown in the figure 15. The controller generates the
plant input. The controller input is the difference between the reference and
the observed state-space variables. The state observation comes from the
state observer.

Reference

ControlLaw
u FlightModel

Observer

Figure 15: Control structure

4.2 System Blocks

Apart from the observer and the controller, the simulation model includes
some other blocks necessaries to care for input limits and to simulate effects
of the real system. The complete structure is shown in the figure 16.

40



0 Limui r ,

Limiter Delay

Reference

ControlLaw
FlightModel

Observer

Figure 16: Compensator

Reference. The reference is the desired state of the system. For the ex-
periments, only (3 is used. All the other state-space variable references are
equal to zero. Other values are not used because they are not compatible
with a stationary state of the system.

Controller. The controller output is a linear combination of the state
deviation. The control law is given by the linear state feedback:

u= K(Xreference - )A() (23)

Limiter. The next block in the control chain is a limiter. It cuts input
values to the range that can be realized by the system. While this block has
no influence on the process or its model, it does increase the accuracy of the
observer by avoiding unreasonably high input values (figure 17).

Delay. A delay block is used to model the time needed to evaluate the
control law in the real time system. Since the sensor data is read by the real
time system and then processed, it takes at least one sample time before the
signal reaches process inputs. Due to filters and other blocks in the data
acquisition chain the real delay can be slightly higher than one sampling
period.

Plant. The next block is the plant mode. The system model used is
the detailed nonlinear model described in the last section (see section 3 on
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Figure 17: Limiter

page 25, figures 8 to 13). However, the controller and the observer are de-
signed using the linear model given by:

XN = ANXN+BNHN—|—BUV
yn = Cyxy+ Dyuy+D,w

XN(O) = Xp

where u, x,y are the system inputs, states and outputs; A, B, C, D the sys-
tem matrices; v, w uncorrelated, normalized white noise; B, D,, the distur-
bance weighting matrices.

Observer. The observer block follows the state observation law:
x = Ax +Bu + L(y — Cx) (24)

This law is based on the system model adding a feedback proportional to the
innovation (the difference between the measured output and the observed
one). The block model is shown in the figure 18.

4.3 Controller Design

The LQG method is used for the controller design because it is effective
and well studied in modern control theory. LQG stands of Linear Quadratic
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Figure 18: Observer

Gaussian. This technique allows to design the controller automatically and
there is no need to find out desirable locations for the system roots. The
design finds the optimal control law for minimizing the performance index
given by the next equation:

J* =minE {/OOO (XTQX + uTRu) dt] (25)

where the matrix Q. is the state costs and R, the inputs costs. In this work,
Q. and R, are diagonal and their diagonal terms describe the importance
of a state-space variable deviations and the costs of having a high input
respectively.

The design technique is implemented in the Matlab function lgr.m that can
be found in the control system tool box. This function works as follows:

1. Because of a proportional feedback state controller is used, the system
can be expressed as

z=Ax - BKx

2. Thus, the performance index is

T = % /0 “x"(Q + K"RK) xdt (26)
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3. Assuming that exists a constant matrix, P such that

d rp. o7 T
TR Px = —x (Q+K RK)X (27)

4. the performance index can be written as
* 1 T
J" = §x(0) Px(0)

5. Then, selecting the following gain matrix

K =R,'B'P, (28)

6. the equation 27 leads to the Algebraic Ricatti Equation (ARE)

A"P.+P.A+Q.-P.BR,'B'P. =0

7. The function lgr.m solves this equation for P.and calculates the solu-
tion for the optimal control problem given by the equation 28.

Starting with identity matrices, different values for Q. and R, are tried until
an acceptable behavior is found. The simulation involves moving the system
in 3 by 45°. Problematic effects include too fast motion of the system, high
frequency swings, high overshoots or saturated input signals for extended
periods of time. They are avoided by modifying the cost matrices accordingly.
This process is repeated several times until a reasonable behavior is obtained.

A Matlab script called controller.m was written (see appendix B, subsec-
tion B.2.2 on page 104) which implements the controller design.

4.4 Observer Design

The observer design problem is dual to the controller design, therefore the
same approach can be used to calculated the observer feedback gain, L.
To construct the dual problem it is necessary to replace the matrix B by
the transposed C matrix and to transpose A. The equivalent cost matrices,
called Q, and R,, measure the disturbance to the system states and outputs.

44



The solution is obtained by solving the next Algebraic Ricatti Equation for
P,

AP, +P,AT +Q,-P,C'R;'CP, =0

where the cost matrices depends on the disturbance weighting matrices as

Qo = B’UBZ‘
R, = D,D}

thus, the optimal observer gain is given by
L=P,C'R;!

The rest of the design process is similar to the controller design. However,
the simulation of the resulting observer is difficult because no good model
of state and output disturbances exists. Therefore several experiments were
necessary to find a good observer.

The Matlab script observer.m (see appendix B, subsection B.2.3 on page 106)
implements the observer design.

4.5 Simulations

In order to design both the controller and the observer, it is necessary to
simulate the behavior of the resulting control loop. The faultless case is
considered, this means that all fault gains are set to '1’. The cost functions
are modified in response to the simulation results till satisfactory system
behavior has been reached. Their initial value is set to one.

At first nonlinear effects (friction and dead zones) are not activated. The
simulation experiments consists of a reference jump in 3 by 45° at instant 1
second (see figure 19). The initial state and all other reference elements are
set to zero.

It can be seen in the simulation that the inputs have too many oscillations,
reaching both saturations levels several times (see figure 20). The ~ values
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Figure 19: Reference

are low enough, so that mainly linear system behavior can be expected.
High values of v render the system unstable, because they render the pitch
controller for the angle o (which is not modeled here) ineffective. Here too
oscillation are present. The reference value is reached in less than 10 seconds,
which is acceptable.

To solve the oscillation problem the controller amplification is reduced by
increased the values of all inputs costs by a factor of 100. The oscillations have
disappear (figure 21), and the inputs go into saturation for a short period of
time only. The state [ shows good performance with no noticeable overshoot.
The rising time is less than 5 seconds, which is very fast. The gammas states
reach a maximum of less than 20°, which is a reasonable value. To further
reduce the input energy, the cost for uz was increased again. However, this
lead to a slower system response and to slight oscillations around the reference
position due to difficulties to precisely control the system via the main rotors.

In a second step, the system is simulated including all nonlinear effects like
dead zones, friction and saturation levels. As it is shown in the figure 22 the
plant behavior is slightly different with a small overshoot in 3 (about 3°) and
it has a steady state error of 1.5 °. These problems can only be solve using a
different control approach, therefore no further changes are made to the cost
functions. The resulting performance is acceptable.

Finally, reasonable observer cost functions are chosen. As the graphics (fig-
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ures 22 and 23) show, the behavior of the space state variables and their
observed value (figure 24) is very similar. It can be concluded that the ob-
server is working correctly and there is no need to modify the costs. This
is due to the lack of noise in the simulation model. Therefore, some of the
observer cost functions will be modified after testing the real behavior.
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4.6 Results

A nominal control loop, including a proportional state feedback controller
and a state observer, have been implemented.

As a result of the design process, the matrices K and L are calculated. They
are used in the nominal control configuration. These matrices are show in
the equations (29) and (30).

20.61 0.322 0.103 0.0025 0.680 0.058 0.041

K = | 0322 2061 0.0025 0.103 0.680 0.058 0.041 | (29)
0.680 0.680 0.0053 0.0053 1.481 0.122 0.082
—0.0001 0.825 0
—0.000l 0  0.825
0.0019 7868 0

L = | 00019 0  78.68 (30)
0.113 0 0
12.11 0591 0.591
5.020 0.0019 0.0019

Only the controller input cost matrix have been modified. This matrix is
shown in the equation (31). The controller state cost matrix and both ob-
server cost matrices are the identity matrix.

100 0 0
R=| 0 100 0 (31)
0 0 100

4.7 Conclusions

Using the LQG design method, the controller and observer gain matrices
have been obtained. They stabilize the system and provide a good reference
tracking behavior for the nominal process model. Some of the elements of
the controller cost matrices could be modified when testing the plant due to
deviations from the linear behavior.

There was no need to modify the observer cost matrices due to the simulation
uses the same model for both the plant and the observer. As it is shown in
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the L matrix, the trust in the sensors 7; and 7, to calculate the respective
states is high. Therefore, the system behavior could be more or less affected
depending on the sensor noise. This fact will be considered later. Whether
it is necessary, the cost functions for 7; and -, (now set to one) will be
increased.
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5 Reconfiguration After an Actuator Fault De-
tection

5.1 Introduction

The main part of this project is to test a control structure that can be
changed in response to a fault in the process. The idea is to stabilize the
system and to achieve reference tracking with the best possible performance
even after the loss of an actuator. Thus, the system is kept in operation
despite the fault. It is assumed that the relevant states of the faulty system
are still controllable, because otherwise reconfiguration is impossible. This
means that faults on main rotor actuators are not considered. Because the
reconfiguration must be automatically, the same method used for the original
controller design is also used for the fault cases, keeping the cost index.

Once the plant is modeled and both the controller and observer are designed,
the faulty system behavior can be simulated. The actuator faults are simu-
lated by inserting in each input an amplifier. The nominal gain value is ’1’
at it changes into 0’ when a fault happens. Thus, it breaks the signal path.

Several Matlab routines have been written to deal with faults and to perform
the steps of the reconfiguration. The system behavior has been simulated
for several fault scenarios including different actuator blockages. These sim-
ulations are used for verification before trying to control the real system in
faulty cases.

The control structure used is the one shown in the figure 16 on page 41.

5.2 Problem Description
An actuator fault affects the process input matrix, B, causing a zero column.
All other matrices are unchanged:

Ar = Ay=A

Br # By
Cr = Cy .

After the fault has occurred, a new control structure has to be found in
response to the new situation. The goal is to keep the plant in operation

52



despite loosing an actuator. Since a state observer/state feedback structure
is used for the nominal controller, the state feedback gain matrix has to be
recalculated.

5.3 Way of Solution

The idea of the control reconfiguration is to recalculate the state feedback
matrix. The same method will be used as for the nominal controller design,
which was a Linear Quadratic Gaussian (LQG). Using this design method
is simple and effective: the LQG design finds the optimal controller for the
new situation. Same weights can be used as in the nominal case, allowing the
design process to be completely automatic. Due to the separation principle,
there is no need to change the observer.

Once a fault is detected, the system is remodeled calling modeling.m. Then,
the controller is redesigned and the new feedback gain is down-loaded on line
into the target PC.

5.4 Rank Deficiency

Unfortunately, the implementation of LQG design in Matlab fails because
of singularities in the process model introduced by the fault. The column
in B corresponding to the faulty input is equal to zero, because the input
has no effect on the state-space variables. Due to this rank deficiency, which
causes numerical problems, the LQG method does not work reliably. More-
over, some states are not input connected in the fault case and therefore not
controllable. It is possible that some other states depend only on those which
are no longer input connected (such as 4; on ~;). Hence, they are also non
controllable.

To solve this problem, a reduction of input and state space is necessary.
The reduction eliminates the non-controllable states and the broken inputs.
Then, the LQG design can be applied to the reduced process model to obtain
the feedback matrix K’. Finally, this matrix has to be expanded so that it
can be applied to the actual faulty process. Thus, the rows and columns of
K not present in the reduced design will be filled with zero elements.

In the first step, a transformation matrix T, is calculated. It eliminates the
non-controllable states. This will be done by the function ReduceX.m (see
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appendix B, subsection B.3.1on page 110). It calculates the controllabil-
ity matrix and looks for zero rows that point out the non-controllable states.
Then, the matrix which eliminates the corresponding rows in the A matrix is

found and returned. The controllability matrix, CO = [B, AB, A’B...A"="'B],
is calculated calling the Matlab function ctrb.m.

In the second step, the transformation matrix T, is calculated. It reduces
the B matrix eliminating the columns of unconnected inputs. This will be
done by the function ReduceU.m (see appendix B, subsection B.3.2 on page
111). It looks for zero columns that point out the faulty actuators, calculates
the matrix which eliminates the corresponding columns in the B matrix and
returns it.

The rows and columns of A and B are then reduced according to the following
equations:

A" = TTAT, (32)
B = T!BT, (33)

The next step is to reduce the cost matrices Q. and R, accordingly:

Q. = T,QT, (34)
RC/ - TZRCTU (35)

This completes the transformation. Then, the Matlab function lgr.m is called
to solve the reduced and well defined controller design problem. It calculates
the reduced gain matrix ,K’.

Finally, it is expanded up to the system dimensions, according to this equa-
tion:

K= |(z0z.)  Z! "k (z'z,) 'zt (36)

5.5 Reconfiguration Algorithm

The actuator fault case reconfiguration algorithm follows the following steps:
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1. The actuator fault has to be detected and identified (this is assumed
to be done by a FDI module).

2. The plant model is updated including unconnected inputs (calling mod-
eling.m, see subsection B.2.1 on page 101).

3. The new model is linearized (done also by modeling.m).

4. The system matrices are reduced eliminating uncontrollable states and
unconnected inputs (calling ReduceX.m and ReduceU.m, see subsec-
tions B.3.1 and B.3.2).

5. A new controller is design according to LQG techniques (calling con-
troller.m, see subsection B.2.2).

6. The controller matrix is expanded up to the system dimensions.

7. The new control law is down-loaded into the real time system control-
ling the plant.

All steps of the process are done online, while the plant is in operation. After
the completion of the algorithm, a reconfigured controller is in effect. The
redesigned control loop stabilizes the plant despite the fault.

5.6 Simulations

The approach shown above is applied to the flight model. The following fault
cases are considered.

Case 1: Actuator u; Failed. The first plot (figure 25) shows the system
step response when the actuator u; fails but no reconfiguration is performed.
By coincidence the system is still stable, but there is a significant overshoot.
The second plot (figure 26) shows the behavior after the reconfiguration, and
obviously the behavior is improved. The controller knows that the actuator
uy is not working and does not use it. The system remains operational and
the performance is almost as good as in the nominal case. There is very little
overshoot (less than 1°) and a small steady state error (0.5°). It is nearly
as fast as it was in the nominal case. The remaining actuators are working
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slightly harder and longer to stand in for the faulty actuator, but they still
remain within reasonable limits and the maximum rotor attack angle is below
20°.
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Figure 25: Actuator u; failed, nominal controller
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Case 2: Actuator us Failed. The system behavior before the reconfig-
uration is shown in the first graphic (figure 27) and afterwards in the second
one (figure 28). It is obvious that the unreconfigured system shows heavy
oscillations even in the simulation, which means that the experiment on the
real system will probably fail.

The reconfigured control loop on the other hand shows a significantly im-
proved performance. The main rotors have to be turned for a longer period
of time (figure 27) than in nominal case to compensate for the loss of actuator
us. The angle of attack reaches a maximum of 28°, which is still acceptable
but close to the end of reasonable linear system behavior. This fault affects
the system operation much more than the fault in the actuator u;. It is
possible to see this effects in the simulations because a detailed nonlinear
model including limits and friction is used. The friction is the reason for
the oscillation observed in [, before it reaches its final value just above the
reference.
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Actuator u3 fails, fault non detected
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Figure 28: Actuator us failed, reconfigured controller
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5.7 Results

A reconfiguration algorithm has been developed. It update the system model
and linearize it. Then, it calculates the new controller gain and down loads
it into the Target PC. The functions which reduce the order of the system
matrices and expand the gain matrix have been implemented. This results
allow to reconfigure the plant after an actuator fault on line.

5.8 Conclusions

It has been shown how the redesign of the state feedback controller can be
used to reconfigure the compensator in case of a fault in a system actuator.

It has been demonstrated that the LQG method used for the design of the
nominal controller can also be applied to the fault cases. This allows to
reconfigure the system without manual intervention once a fault is detected.
The cost functions of the nominal controller design can be used for the fault
cases. Rank deficiency problems that occur during the re-design process
have been solved. Thus, the reconfigured system is stable and shows good to
moderate performance depending on the fault case.
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6 Reconfiguration After a Sensor Fault

6.1 Introduction

As in the actuator fault case, the main task after the loss of a sensor is to
stabilize the system and to achieve reference tracking with the best possible
performance. Thus, the system is kept operational despite a sensor fault.
The faulty system must be still observable in order to reconfigure it. This
implies that faults on o and [ sensors are not considered.

Sensor faults are also modeled with amplifiers, this time before the outputs.
The value is 1’ when the sensor works properly and 0’ if it is at fault.

6.2 Problem Description

When a sensor is at fault, the observer gets wrong output values from the
plant. The error spreads through the controller into other parts of the system.
System stability can be affected, therefore this fault can render the plant in-
operational.

The faulty process model is identical to the nominal model with the exception
of the process output matrix, C; in this case, the fault causes a zero row:

Ar = Ay=A
Br = By=B
Cr # Cuy

6.3 Way of Solution

The sensor reconfiguration idea is to use a different observer for every fault
case and switch between these observers. Therefore, a bank of dedicated
observers is designed, one for every sensor fault case plus a standard observer
for the nominal case which is used when all sensor works correctly. This
approach is known as “dedicated observer scheme”. When a fault is detected,
the corresponding observer is used to supply the state observation. This
approach assumes that in every fault case the plant is fully observable. In
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case of multiple sensor faults or if the (3 sensor is at fault, the system is no
longer observable and therefore this case is not considered.

Each fault case observer uses all plant inputs and all outputs apart from
the output at fault in the corresponding fault case. This way at least one
observer is unaffected by the fault and can be used to supply the state obser-
vation necessary for the state feedback controller. Because of this observer
produces a valid observation with and without the fault, its state is valid at
any time. Thus, the plant can be controlled even after a sensor fault. This
is implemented in the Observer Bank block (see figure 29) which is included
in the reconfiguration model (see figure 30).

In order to design the Fault Case Observers, a fault is introduced in the C
matrix by changing the corresponding '1” into ’0’. Thus, the matrices C; and
C, are obtained.

In this case, there is no need to change the controller.
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6.4 Fault Detection

It seems reasonable that the bank of observer design used for the reconfigu-
ration task can be used for fault detection, too. The fault detection relies on
the innovation of each observer. The observer that does not use the faulty
sensor should have the best state observation. Thus, a diagnosis logic will
detect and isolate the fault and select the best observer (see figure 30). This
logic has three main blocks, shown in the figure 31 and explain in detail in
the following paragraphs.

Signal Processing.  This block (figure 32) filters the innovation signals
and calculates their absolute values. The low pass filters reduce the sensitive
to noise or short disturbances. The cut frequency is selected to be 10 Hz, a
value which ensure that the filter can follow the real signal but prevents that
short signal disturbances affect the further FDI logic.

The filtered nominal innovation vector is then summed up, resulting the
scalar deviation measure. The [ measure is not take into account. Since the
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considered sensor faults are restricted to both angle attack potentiometers,
there is no reason to include the § measure. On the other hand, it could
affect the selection logic.

Detection Logic.  This logic detects and isolates the fault, providing the
signal which switch into the correct observer (figure 33).

rel3
@ >
>
In1
fault
_|—>x
Threshold .
1 jProduct
ActFault
> AND
@
Enable
—> < | Gammat fails
In2
1] <N
@& j > > @D
In3 ——p Gamma2 fails Combinatorial — |
Logic SelectSwitch

Figure 33: Detection logic

The measure from the nominal observer is compared to a threshold. This
comparison is used to detect a fault in the process and to activate the iden-
tification logic. The threshold was found experimentally. Since in a nominal
case the sum is around 0.25 and in a faulty case it is between 0.8 and 1.2, a
threshold of 0.5 is selected.

The nominal innovation is the norm of the deviation vector. This vector has
two components: the v; and v, deviations. When a servo-motor actuator
fault happens, one of the components is zero. Therefore, the nominal in-
novation falls. In this case, a sensor fault could be non detected. Thus, a
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Inputl | Input2 ‘ Output ‘ Comment

0 0 1 No fault, selects the Nominal Observer

0 1 3 v- fails, selects the Fault Observer 2

1 0 2 ~1 fails, selects the Fault Observer 1

1 1 1 ~1 and 7, fail, selects the Nominal Observer

Table 2: Truth table

logic has been implemented to solve this problem. If one of the servo-motor
inputs fails, the threshold is divided by two. This is done automatically once
the fault is detected. The function UpdateModel.m changes the value of the
block ActFault (see appendix B).

The others two innovations, coming from the two fault case observers, are
compared with each other. The lower innovation indicates the better observer
and therefore the most probably fault case. The truth table, used only if the
first innovation is bigger than the threshold, is shown in the table 2.

If the nominal observer fails and so does one of the others, for instance, the
fault observer 1, that means that -, is wrong, so the logic selects the fault
observer 2.

If there is more than one faulty sensor it selects the nominal observer because
neither observer is adequate for this case.

Non Return Logic. Because the innovation may vary over time, the
fault case is not changed any more after it has been identified once. This is
implemented by a non-return logic (figure 34).

This logic has three switches. The main switch choose between the current
output of the selection logic and the previous state of the non return logic.
It starts selecting the selection output and changes when the input changes.
This is done using a comparison between the output of the previous logic and
'1’. When the input is different from ’1’, the non-equal block output changes
into '1’, the secondary switch changes an select an input which is always
one, which ensure that the main switch will select from now on the previous
output. Thus, once a fault is detected, the system remains using the faulty
case actuator. Several memory blocks have be introduced in order to avoid
algebraic loops that cannot be simulated in Simulink. Their initial values
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are '0” except from the last one which is ’1’ to start selecting the nominal
observer.

A reset input is included. Then, the secondary switch input which is usually
"1’ could be changed into '0’ using the reset switch. Thus, the Non Return
Logic is reseted.

—3

ResetSwitch

Memory1 Memory3

- N\ N\

> — = Selector
SecSwitch MainSwitch

Memory2

[7:) uy)
[0]
g. - g
= o
=

Figure 34: Non return logic

Other controls Two control have been included in the main model (see
figure 30). The enable button displays a dialog where is possible to choose
between enable the detection logic or not. If it is disable, the nominal ob-
server is used in every case. The reset button resets the non-return logic by
double clicking. Both are implemented as masked subsystems. Besides, a
reset function is opened by clicking the reset button (see appendix B, sub-
section B.3.3on page 112).

6.5 Rank Deficiency

Like in the actuator fault reconfiguration, there is a problem—when calcu-
lating the feedback gain—in dealing with the singularities introduce by the
fault occurs. It is again solved reducing the process model.

First, the output matrices C; and C, have to be reduced to matrices of full
rank, called C| or C, depending on the fault case. The reduced matrix is
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calculated by multiplying C; (C;) with a transformation matrix Ty, (T)2)
which has as many rows as C and as many columns as remaining sensors.
This matrix is calculated using the function ReduceU.m. Since this function
was developed to eliminates zero columns, the C; (Cs) matrix is transposed
before calling it. Then, the transformation is applied:

C,1 = TZlcl (37)
C, = T,C, (38)

Thus, the elements corresponding to the faulty sensor have been eliminated.
To solve the observer design problem it is also necessary to reduce the output
cost matrix R, accordingly:

/01 = T;}FlRoTyl (39)
R, = TZzRoT?ﬂ (40)

Finally, the lgr.m function is called and observer design problem is solved.
It returns the optimal gain matrix L; (Lg) for the observer.

6.6 Reconfiguration algorithm

The following algorithm has been used for the reconfiguration of sensors
faults. Note that the first three steps are performed off-line at design time,
while the last two steps are carried out online while the plant is operating.

1. A nominal observer is designed (by calling observer.m, see subsec-
tion B.2.3).

2. Fault case observers are design using a reduction of the nominal ob-
server design problem (by calling ReduceU.m).

3. A sensor fault diagnosis logic is implemented (see figure 33).

4. A sensor fault is detected and identified by the diagnosis logic.
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5. The corresponding fault case observer is selected to produce the state
estimate used by the state feedback controller (see figure 30).

The result of this algorithm is a reconfigured control structure that stabilized
the plant despite the detected sensor fault.

6.7 Simulations

Sensor ~; Failed. These simulations are shown in the figures 35 and
36. The first one shows the system behavior before the selection logic was
implemented (only the nominal observer is used). In the second plot the
selection logic switches to the correct fault case observer.

The first graphic shows that ~; reads zero during the whole experiment.
This leads to heavy oscillations and it takes about 10 seconds to reach the
reference values.

The performance is clearly improved in the second simulation. The symmetry
of the process is broken, so that actuator u; and us and the variables v, and 75
are no longer identical. The observation is a bit problematic, leading to some
oscillations and high actuator usage. However, the system behavior is still
acceptable. The attack angle values do not exceed 20°. [ has a significant
overshoot of 10° and a steady error of 6°.

In the figure 37, it is shown how the fault detection unit changes the fault
case value once the fault is detected. The differences between the nominal
and the fault case observer are clear, they mainly differ in the faulty sensor
variable and its derivative.

The innovation of each observer is shown in the figure 38. Thus, the inno-
vation of the nominal observer is bigger than the threshold. Besides, the
innovation of the Fault Observer 1 is lower than the one coming from the
Fault Observer 2. Therefore, the Fault Observer 1 is selected.
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6.8 Results

A bank of dedicated observers and a fault detection and isolation logic have
been developed. The fault observers gain matrices have been obtained using
the LQG design method, once the range deficiency problem was solved. The
final gain matrix L; — Lo is analogous — is shown in the equation (41).
Obviously, this matrix don’t have to be expanded since it is used in a observer
with less inputs (but the same outputs). In this case, there is no need to
down load the feedback matrices on line since the whole bank of observers is
running at any time.

0.0562 0
—0.0001 0.8252
42471 0.0383
L, = | 00027 786751 (41)
0.0337 0
75.8540  0.5973
12.3575  0.0027

6.9 Conclusions

The use of an observer is a natural and successful way to reconfigure sensors
faults. It has been shown how the bank of observers can be used to reconfigure
the compensator in case of a fault in a system sensor.

On the other hand, the approach known as “dedicated observer scheme” can
also be used for fault detection. This allows to reconfigure the system without
manual intervention even in the fault detection process. The reconfigured
system is stable and shows moderate performance.

However, the fault is only detected when the system is in motion since a
stationary situation does not provides enough information.

Finally, it must be notice that these are simulation results. As it is shown
in the L; matrix, the dependency of v, in the sensor 3 has been increased
visibly. Hence, in a fault case, noise in 3 sensor may affect visibly the system
behavior. This fact will be considered later increasing, in case it is necessary,
[ cost function.
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7 Multiple faults

7.1 Introduction

Without a detailed theoretical foundation a few simulations with multiple
and combined actuator and sensor fault were tried to explore the system
reconfiguration possibilities in difficult cases. As it is shown in the figures 39
to 42, even multiple fault cases are reconfigured correctly.

7.2 Simulations

Case 1: Actuators u; and u, Failed In this case, both main rotors are
not used. The reconfiguration of the remaining actuator allow to achieve a
performance really closed to the nominal case (see figure 39)

Actuator u1 & u2 fail

06l F\ u3
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02F ‘

Inputs
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Time (seconds)

Figure 39: Actuator u; and uy failed

Case 2: Actuators u; and us Failed In this case the actuator us is
over-used and causes that 7, reaches values quite high (40°). The system
is much more sensitive to the loss of the actuator us. Using only the main
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rotors implies higher changes in the system dynamic which cause a slight
overshoot. Nevertheless, the performance is good enough and the plant reach
the reference in about 12 seconds (see figure 40).
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Figure 40: Actuator u; and us failed

Case 3: Actuators u; and Sensor v, Failed This case is more problem-
atic since the actuator u; is not used and wus is used based on the observation
of 75, which sensor has also failed. Although the system is stable, it shows
moderate performances with and overshoot of 15° and a steady-state error
of 5° (see figure 41).
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Figure 41: Actuator u; and sensor 7, failed

Case 4: Actuator u; and Sensor v, Failed In this case the system shows
the worst behavior. The system sensibility on the actuator w3 and using the
actuator u, when the sensor v, has failed leads to slight oscillations. The
systems needs 30 seconds to stabilize itself (see figure 42).
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Figure 42: Actuator uz and sensor v, failed

7.3 Simulation Environment

A Matlab script flightmod.m is set up as a front-end for reconfiguration ex-
periments. It calls the scripts modeling.m, controller.m and observer.m in
the right order and loads the selection logic parameters (filter cut frequency
and selector threshold). It also changes the simulation model (faulty ampli-
fiers values) to the appropriate fault case. Then, it shows a menu that allows
to simulate both actuator and sensor faults and to trigger the actuator fault
reconfiguration (because actuator faults cannot be detected automatically at
the moment). Each time an actuator amplifier value is modified, it is neces-
sary to recall modeling.m, since the B matrix changes, and controller.m to
recalculate the K matrix. The code is in the appendix B, subsection B.2.4
on page 107 and the menu is shown in the figure 43.

7.4 Conclusions

It has been demonstrated how the redesign of the state feedback controller
can be used to reconfigure the compensator in case of a fault in a system
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Figure 43: Simulation menu

actuator. The LQG method used for the design of the nominal controller
can also be applied to the fault cases, using the same cost functions.

On the other hand, the use of dedicated observers is a natural and successful
way to reconfigure sensors faults. The observers can also be used for fault
detection at the same time.

This allows to reconfigure the system without manual intervention. The
developed algorithm are efficient and automatic. The reconfigured system is
stable and shows good to moderate performance depending on the fault case.
Rank deficiency problems which occur during the redesign have been solved.
The system changes are kept to minimum, reloading the controller gain in
case of an actuator fault and selected the best observer in case of a sensor
fault automatically.

The system can be reconfigured even in case of multiple or combined faults.
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8 Plant Experiments

8.1 Introduction

Once the reconfigurable control loop have been simulated successfully, it
must be tested on the plant. For this purpose, a new Simulink file has been
developed. This model includes the reconfigurable control loop previously
developed and the necessary interface to control and acquire data from the
experiment (see figure 44). There are several changes in the control loop in
order to improve the plant real behavior. Deviations between the simulated
behavior and the real one appear due to unmodeled noise and non-linearities.
Finally, an interface plant-operator has been developed to make the test
process easier (see subsection 8.4).

The test is based on a step function which jumps from 5 = 0° to 45°. Thus,
all sensor and actuators are concerned.

8.2 Blocks
8.2.1 Control Loop

The compensator and diagnosis logic blocks are used without any further
changes (see section 4 on page 40 and subsection 6.4 on page 63 respectively).
However, to avoid deviations from the desired behavior due to non linearities,
some new blocks have been implemented. These blocks are commented in the
next two paragraphs. On the other hand, the delay block has been removed
since it was modeling a plant behavior.

Dead Zones This block simulates the actuators behavior. It is included
before the observer bank so that its inputs are more accurate. This subsystem
is shown in the figure 45.

Anti-Loose A potentiometer is used to read the main rotors attack angle.
It works engaging a toothed wheel with another gear which is fixed to the
rotor axis. There is a loose between the potentiometer teeth. When the gear
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Figure 44: Plant

changes the movement direction, the sensor is reading the same position dur-
ing a short time. This fact causes an oscillation around the desired position.
The block shown in the figure 46 is implemented in order to avoid this effect.
It has a anti-loose system for both servo-motor actuators. They are shown
in detail in the figure 47. Both of them, divide the input signal into high
frequency and low frequency paths. The cut frequency is set experimentally
at 1 Hz. Then, a backlash block process both signals. It works as follows:
the signal is kept slightly lower than the input; when the input change its
sense, the processed signal is kept unchanged until the input pass through a
dead-band width. Obviously, an steady state error is introduced. The low
frequency path is implemented to minimize this fact. Its dead-band width
is lower that the high frequency path one. Thus, when the system is around
the final position, the oscillations become lower and the steady state error is
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Figure 46: Anti-Loose block

reduced. The high frequency dead-band width is 0.2. Since both main rotors
behave differently, so are the low frequency path dead-band width. They are
set at 0.1 and 0.12 respectively.

8.2.2 Plant

The plant block shown in the figure 48 is the interface which connect the
Target PC ports to the plant. The model is similar to the one developed
to carry out the parameters identification (see subsection 2.4). It has been
adapted to an automatic control removing manual inputs and slider gains.
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8.2.3 Manual control

There was introduce a block to move manually the actuators in order to reach
the operating point before starting a test (see figure 49). This block works in
a similar way as the interface we seen in the figure 7, on section 2. A manual
switch (shown in the figure 44) choose between the manual control and the
automatic one.

ut Slider
Gaint

- Manuallnputs
u2 Slider

Gain2

1 | o

u3 Slider
Gain3

Figure 49: Manual control
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8.3 Experiments

Nominal case The controlled plant is tested using as reference a function
which jumps from § = 0° to 45°.

The first test was done without simulating any fault. The anti-loose block
wasn’t designed yet. The controller and observer parameters where the ones
obtained after the simulations. Thus, it is possible to analyze the real behav-
ior of the nominal control loop designed using Stmulink. Due to noise and
others non-modeled factors, the system behavior differs from the simulated
one. Besides, heavy oscillations around the dead zone appear in the attack
angle subsystems.

In order to improve the plant performance, several changes were introduced.
These modifications are related in the following paragraphs:

e The matrix K and L were explored. The conclusions were that:

1. the dependency of 4; and 4, on actuators u; and usy respectively were a
bit high (20.61). Thus, both subsystem are quite sensitive. The plant
behavior could be greatly modified due to the non-linearities which
are non considered during the controller design process. To solve this
inconvenient, the cost function for these two inputs were increased 100
from to 300.

2. The dependency of 47 and 4, on sensors ; and 7, respectively were very
high (78.67). This means the trust on these sensors is quite important
and the result behavior may depend on noise too much. In order to
reduce the reliable of both sensors, the cost function for these two
output were increased from 1 to 100.

3. The dependency of 41 (%2) on (3 in a fault case was too high (424.75).
Therefore, the noise could affect the plant behavior considerably. Thus,
the cost function for 5 output was increased from 1 to 10.

e Considering that the gain of F; due to us is quite low, to make the
system faster the cost function of this actuator was decreased from 100
to 50.
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e The real nominal innovation value is higher than the simulated one,
mainly due to the system noise. To avoid false fault detections, the
sensor fault detection threshold was increased up to 2.

e Finally, the anti-loose block, as is shown in subsection 8.2.1, was de-
signed an its parameters calculated experimentally.

As a result of these changes, the swings have disappeared. The system per-
formances are acceptable. The rising time is about 4 seconds, it has a very
little overshoot of 1° and the steady state error is 5°. Both attack angles
remain lower than 20° during the whole movement. The test is shown in the
figure 50.
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Figure 50: Non-faulty situation
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Actuator fault cases As in the previous simulations, a fault in actuator
uy (figure 51), and actuator us (figure 52) were tested.

Case 1: Actuator u; Failed. The figure 51 shows the plant behavior
after the fault has happened and detected. The system remains operational
and the performance is almost as good as in the nominal case and only slightly
slower. There is very little overshoot (less than 1°) and a steady state error
(5°). This error occurs because a linear controller is used to control a non-
linear system. This behavior was predicted during the simulations with the
detailed model and is now magnified. The remaining actuators are working
slightly harder and longer to stand in for the faulty actuator, but they still
remain within reasonable limits and the maximum rotor attack angle is below
20°.

Actuator u1 failed
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Figure 51: Actuator u; failed

Case 2: Actuator us Failed. In this case, the system is strongly affected
as it happened during the simulations. The main rotors have to be turned
for a longer period of time (figure 52) than in nominal case to compensate for
the loss of actuator uz. The angle of attack reaches a maximum of 32°, which
is close to the end of reasonable linear system behavior. In addiction, both
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servo-motor actuators show an oscillating behavior which persists during a
longer period of time. This is mainly caused by the looses between the gear
teeth. Thus, when the plant depends exclusively on the main rotors, this
behavior is amplified.

Actuator u3 failed

ul-&u2

7l h Al
Sl i

Outputs

Time (seconds)

Figure 52: Actuator ug failed

Sensor fault case A fault in sensor +; (figure 53) was tested. The system
behavior after an v, sensor fault is analog. Other possible faults, like the loss
of sensor (3 or o are not tested since they render the system unobservable.

The fault is detected during the movement. Thus, there is a little ’confusion’
while the transition is being done. This fact leads to some oscillations and
high actuator usage. However, the system behavior is acceptable. The attack
angle values do not exceed 20°. ( has a little overshoot and steady state error,
smaller that in the actuator fault cases.

The ~; signal, once the fault happened, derive to a final value around 10°
(see the second plot).

As is shown in the third plot, the nominal observer innovation surpass the
threshold. Both fault observer innovations are compared. Since the second
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Figure 53: Sensor v, failed

one is the lowest, the Fault Observer 2 is selected. The whole process is carry
out at the very beginning of the movement.
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Multiple actuator fault cases As in the simulations, faults on two ac-
tuators at the same time were tested exploring the system reconfiguration
possibilities in difficult cases. As it is shown in the figures 54 and 55, even
multiple fault cases are reconfigured correctly which means the system is
stable and in operation. However, its performance is obviously reduced.

Case 1: Actuators u; and u, Failed The figure 54 shows the system
behavior after faults on actuator u; and u,. Thus, both main rotors are not
use. The reconfiguration of the remaining actuator allow to achieve a per-
formance closed to the nominal case, considering the steady state error and
the overshoot, but obviously not as fast as it (see figure 54). The remaining
actuator is working harder and longer.
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Figure 54: Actuators u; and us failed

Case 2: Actuators u; and us Failed In this case the actuator u, is over-
used. Therefore, v, reaches values quite high (over 40°) during a short time.
Nevertheless, the pitch angle, o, was fully controllable during the experiment.
The system is much more sensitive to the loss of the actuator us. The teeth
loose effect and the higher changes in the system dynamic which implies the
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used of only a main rotor cause an important steady state error (more than
10°) and a slight overshoot. The experiment is shown in the figure 55.
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Figure 55: Actuators u; and ug failed

Combined actuator-sensor fault cases Simultaneous faults on an actu-
ator and a sensor were tested. These are the most problematic cases since the
remaining actuators are used based on the observation of the faulty sensor.

Case 1: Actuators u; and Sensor v; Failed In this case, the actuator
U9 is not, used and w4 is used based on the observation of 7,, which sensor has
also failed. However, the system is stable, showing even better performances
than in the simulation. It has a very slight overshoot and steady-state er-
ror, although the signal swings for a short time around the reference. The
experiment is shown in the the figure 56.

The ~; signal, once the fault happened, derive to a final value around 10°.
72 is fixed at 0° since the associated actuator, us, is at fault (see the second
plot). As is shown in the third plot, the threshold is reduced, due to one of
the servo-motor actuators has failed. Thus, the fault is detected.
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Figure 56: Sensor 7; and Actuator us failed

Case 2: Actuator u; and Sensor 7, Failed In this case the system
shows an oscillating behavior in both remaining actuators. This is caused
due to the system sensibility on the actuator uz and the used of us when 5
has failed. However this behavior do not appear in the system output, (3,
since the oscillation amplitude is not enough high to affect the whole system.
Therefore, (3 reaches the reference with a reasonable low overshoot and steady
state error in less than 4 seconds. The figure 57 shows the experiment.
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Figure 57: Sensor 7, and Actuator ug failed

8.4 Test environment

Several buttons and switches have been added to main Simulink file to make
the whole testing process easier (see figure 44 on page 79).

The actuator and sensor faults can be caused by disconnecting the wire
in question. The sensor fault diagnosis logic detects and isolate the fault.
However, it is necessary to detect the actuator faults since the associated
FDI module is not implemented. A masked subsystem allows, by double
clicking, to do this task. Thus, once an actuator fault is caused, the require
menu option must be selected. This information is used by other functions
to reconfigure the control loop.

The LoadParameter button opens the system file model, loads all the sys-
tem parameters and modifies the fault amplifier values and the detection
threshold in case it is necessary. This process is done on line by the function
loadparameters.m which is called once the button is double clicked.

The buttons Beta=0deg and Beta=45deg modifies on line the system refer-
ence.

The buttons UpdateModel, UpdateController and UpdateObserver remodel
the system, recalculate the controller and the observer and down load the
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new parameters into the target PC on line. They are also mask subsystem
which call the related functions when the button in question is double clicked.

The function codes is place in the subsection B.4, on page 112.

8.5 Results

The control loop has been modified improving its behavior. There were
implemented an anti-loose block and a dead zones block. There was also
implemented a manual control for both rotor attack angle. A basic operator
interface has been developed.

The cost functions have been adjusted to a real case where noise and non
linearities are present. The equations 42, 43 and 44 show the final values of
the controller and nominal and fault observer gain matrices.

14.31 0.224 0.059 0.001 0.278 0.024 0.018
K = 0.234 14.31 0.001 0.059 0.278 0.024 0.018 (42)
1.669 1.669 0.011 0.011 2.110 0.180 0.128

—0.001 0.055 0
—0.001 0  0.055
0.146 2029 0
L = | 0146 0 20.29 (43)
0.016 0 0
4522 0.589 0.589
3.023 0.015 0.015

0.008 0
0  0.055
138.5 0.008
L, = | 0.155 20.29 (44)
0.006 0
35.62 0.593
8.446 0.016

The fault detection threshold has been also modified due to the noise which
makes the innovation values higher. Its final value is set at 2. In case of a
servo-motor actuator fault, this value is reduced to 1.
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Experiments for all possible fault cases have been carried out. Multiple and
combined fault cases which implies two actuators or one actuator and one
sensor have been also tested.

8.6 Conclusions

The tests show that the redesign of the state feedback controller and the use
of a Dedicated Observer Scheme is a successful way to reconfigure the control
loop. This approach keeps the system controllable and with acceptable per-
formances even in multiple an combined fault cases. Thus, no predesigned
controllers and no manual intervention is necessary — although, since fault
detection was not a key focus of this project, an FDI module for the actuator
fault cases has not been implemented —. The changes in the control loop are
kept to minimum.
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9 Summary and outlook

The first part of this project was the plant modeling and identification. Once
a linear model was implemented, its parameters were identified during several
experiments with the real system. A linear state-space model was derived and
used to design the controller. In addition, nonlinear effects like saturation
and friction have been identified to refine the simulation model.

The next step was to implement a nominal control structure and calculate a
proportional feedback controller and an observer. The technique used to find
the controller values was the well known LQG method. The controller was
calculated by trying different weights and simulating the system behavior. A
detailed nonlinear model has been used for the simulations. It includes the
delay introduced by the digital /analog interface.

After this, an algorithm for the reconfiguration of this control structure was
implemented. Several routines were programmed to deal with the singular-
ities of the fault case model, because they break the implementation of the
controller design methods.

A bank of observer was designed, each one dedicated to a fault case. A
selection logic was build that switches to the correct observer depending on
the actual fault case. Simulations were done in order to ensure that the
observer and the fault detection logic work properly.

Once the design process was finished and the simulations of both nominal
and reconfigured control loop showed acceptable performance, several ex-
periments were carry out on the plant in order to verify experimentally the
design. The control loop has been modified in order to accomplish the test
successfully. A basic operator interface has been implemented.

In conclusion, the approach was shown to be successful. The system is kept
in operation which reasonable performance for every fault case tested. The
whole process of observer selection and controller redesign is carried out
completely automatically. Rank deficiency problems which occur during the
redesign have been solved. The changes in the control loop are kept to
minimum. They are restricted to the part affected by the fault: a selection of
the best observer or a recalculation of the control gain matrix using the same
weights. Practical problems due to looses, noise and other non linearities
have been solve successfully. Fault detection was not a key focus of this
project, but a simple sensor fault detection was implemented.
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The study on this subject can be extended to cover different control struc-
tures. This includes a reconfiguration approach where the control structure
is changed even less than in this project. The aim would be to extend the
control loop including a reconfiguration block. This block would work as an
interface between the process and the controller. Thus, the behavior would
be as closed as possible to the nominal one, allowing to keep the nominal
controller in case of fault.

The control of the selected plant can be improve modeling the behavior of
the main rotors and their controller system. Thus, it would be possible to
control the whole system, reaching different pitch angles. In that case, the
system could be controlled and reconfigured modifying the main rotor speed.
However, neither the the main rotor actuators, u; or us, nor the pitch angle
sensor, «, could fail since, in this case, the system wouldn’t be controllable or
observable respectively. The implementation of the FDI module for actuator
fault cases would complete the control structure.

Finally, the plant hardware can be improve in different ways. The poten-
tiometers used to measure the angles can be substituted by digital encoders.
This change would solve many problems caused due to the moderate preci-
sion, the significant amount of noise, the strong nonlinearities at the end of
the measurement range and the loose introduced by the current sensors. The
main rotors wires can be replaced with brushes. Thus, the friction forces,
which change from experiment to experiment depending on the wire posi-
tions, would be reduced. To avoid using different software interfaces and
connection boards for both inputs and outputs, a panel with five outputs
and four inputs is required.
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A Symbol List

‘ Symbol ‘ Description Symbol Description
«a pitch angle u system input vector
16} rotation angle X system state vector
~y generic rotor attack angle X system observed state vector
71,72 specific rotor attack angles y system output vector
0 generic angle A generic state-state matrix
T generic time constant A’ reduced state-state matrix
T, T2 attack angle subsystem time constant Ap fault case state-state matrix
T3 lateral rotor time constant Ay nominal case state-state matrix
w generic angular speed B generic input-state matrix
a system angular acceleration B’ reduced input-state matrix
d generic dead zone Br fault case input-state matrix
F generic force By nominal input-state matrix
R, F force applied by the main rotors C generic state-output matrix
F force applied by the lateral rotors C,Cy reduced state-output matrices
J generic momentum constant Cr fault case state-output matrix
Im main rotor momentum constant Cn nominal state-output matrix
J lateral rotor momentum constant D generic input-output matrix
Ey bearing friction K controller feed back gain
F, speed proportional friction K’ reduced controller feed back gain
k generic gain L observer feed back gain
k1 ko attack angle subsystem gain L’ reduced observer feed back gain
ks lateral rotor gain Q. controller state costs
t time Q. observer states variance
U generic actuator input R. controller input costs
U1, U servo motor inputs R, observer output variance
us lateral rotor inputs T, input transformation matrix
Y generic system output T, state transformation matrix
v, W normalized white noise Ty1,Ty2 | output transformation matrices
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B Program Code

B.1 Parameters Identification

In order to identify the system parameters, there where created the functions
Datamatriz.m. Identify.m and Momentum.m. The first one, form a matrix
which contain the data from the experiments made with DSpace. These data
are the instant time, the input voltage and the angle position. It represent
also these data graphically. The second one, identify the parameters of a
second order system such as the gain and the time constant working together
Datamatriz.m. The last one, working also together with the first function,
identify the constant J which contains the information about the system
mass and the axis length.

B.1.1 Datamatrix.m
function [datal] = datamatrix (filename)

#Form a matrix with the input voltage, the angle position and

%  speed at each time in order to identify the parameters of a
%  first-order system and represents graphically the data.
KSintaxis: [datal = datamatrix (filename)

%Inputs: name of the .mat file generated by Trace.

%0utput: the matrix.

load (filename);

time = trace_x; % time

timeInc = time (2) - time (1); % time between samples

teta = trace_y (1, :); % angle

rTeta = round (tetax10) / 10; % eliminates lower decimals

input = trace_y (2, :); 7’ input
omega = diff (rTeta) / timelnc; ’% instant speed

data = [time; input; rTeta; O omegal;
% introduced zero to equiparate lenghts
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h = figure;

subplot (2, 1, 1);

plot (time, teta, ’r’),
title (filename),

Y%set (h, ’XTickLabel’,{}); % switch x axis off
ylabel (’Angle (degrees)’)
grid

subplot (2, 1, 2)

plot (time, input, ’g’),
xlabel (’Time (seconds)’)
ylabel (’Input’)

grid

zoom

B.1.2 Identify.m
function [gain, tau, deadzone]= identify (data)

%Identify the parameters of a second-order system

% Sintaxis: [gain, tau, deadzone]= identify (data)

%Input: data is the array which contain the information of the
%  experiment.

%0utputs: gain, time constant and dead zone of the system.
%Functions called: none.

timeInc = data (1,2) - data (1, 1); % time between samples
time = length (data (1,:) ); % time of the experiment:
% (time - 1) * timelInc

% Searching when changes are (between -90° and 90°)
nTurns = 0;

for i = 2 : time - 1
if (data (3, i) > 10 & data (3, i - 1) < 10)
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% 10° due to the sensor non linearities near -90°
nTurns = nTurns + 1;
turnTime (nTurns) = data (1, 1i);
end
end

% Find when the step is given

i=1;
input (1) = data (2, 1); % value of the input

while ((data (2, i) == input (1)) & (i < time))
i=1i+1;

end

stepTime = data (1, 1i);

input (2) = data (2, i);

k =1;

while (turnTime (k) < stepTime)
k=k+ 1;

end

% Identification of the gain

timell = turnTime (k - 2);

timel2 = turnTime (k-1) - (turnTime (k-1) - turnTime (k-2)) / 10;
% security margin due to the non-linearities

time21 = turnTime (k);

time22 = turnTime (k + 1) - (turnTime (k + 1) - turnTime (k))/10;

tetall = data (3, round (timell / timeInc) + 1);
tetal2 = data (3, round (timel2 / timeInc) + 1);
teta2l = data (3, round (time21 / timeInc) + 1);
teta22 = data (3, round (time22 / timeInc) + 1);

omegal = (tetal2 - tetall) / (timel2 - timell); % average speed
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omega2 = (teta22 - teta2l) / (time22 - time21);

gain = (omega2 - omegal) / (input (2) - input (1));

% Identification of the time constant

timel = turnTime (k - 1);

time2 = turnTime (k) - (turnTime (k) - turnTime (k - 1)) / 10;
tetal = data (3, round (timel / timeInc) + 1);
teta2 = data (3, round (time2 / timeInc) + 1);

tetal0 = tetal - omegal * timel; % teta = speed*time + tetal
teta20 = teta2 - omega2 * time2;

intTime = (teta20-tetalld) / (omegal-omega2); % intersection point
tau = intTime - stepTime;

% Identification of the deadzone

omegal = omegal - gain * input(1); % omega = gaink*input + omegal
deadzone = -omegal / gain; 7% limit input with no speed

% Results

gain,tau,deadzone, omegal, omega?2

B.1.3 Momentum.m
%MOMENTUM
%

hScript that calculates the effects os the axis mass and length
#Functions called: none

timeInc = data (1,2)- data(1,1);
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i = round (timel/timelnc);
time2 = data (1, i + 200);
betal = data (3, i);

beta2 = data (3, i + 200);

J = abs (Force * 180/pi * (time2-timel1)~2/2 / (beta2 - betal))

B.2 Control Loop Design

The following scripts are used to control the plant. Modeling.m loads the
system parameters, locates the variables associated with each integrator and
extract the linear space-state model. Afterwards, it reorders the space-state
variables getting the order with use in the design and loads the non-linear
parameters. Controller.m calculates the linear feed back controller using the
desired weights for each input and state. It also deals with actuator faults
working together with ReduceU.m, ReduceX.m and Compress.m. Observer.m
calculates the observer using the design costs for each output and state. It
calculates also the faulty case observer working together with Compress.m.
The script Flightmod.m show a menu from where you can simulate every
sensor and actuator fault and view the simulations. It uses the three previous
scripts.

B.2.1 Modeling.m

JMODELLING

h

%Script which loads the value of the different

% system parameters, locates the state-space variables,
% reorder them and linerise the model.

% Functions called: linmod.m

% Model used: flightmodel.mdl

=

»  LINEAL PARAMETERS

101



% Rotors angle attack

k1l = 450; % gain

taul = 0.12; % time constant

sdl = 0; edl = 0; % dead zone (0 for the linearisation)

satl = 1; % saturation level (0 for the linearisation)

% Lateral rotors

k3 = 2.8; % gain

tau3 = 0.2; % time constant

sd3 = 0; ed3 = 0; % dead zone (0 for the linearisation)
sat3 = 1;

% System

Jn = 6.1; 7% mass and axis length effects, main rotor

J1 = 10.9; % lateral rotors.

F1 = 3.6; F2 = 3.6; % force aplied by the motors %control 7:1.3
eFriction = 0; % static friction (0 for the linearisation)
dFriction = 0.2; % dynamic friction

% IDENTIFICATION

[sizes, x0, xs] = flightmodel;
% sizes: vector (# integr, , # outputs, # inputs...)
% x0: state vector
% xs: name of each state variable (integrator)

ns = sizes (1); % number od states

no = sizes (3); % number of outputs

ni = sizes (4); % numer of inputs

iul = 1; iu2 = 2; iu3 = 3; % input position

% ul (gammal), u2 (gamma2), u3 (lateral rotors)
jbeta = 1; jgammal = 2; jgamma2 = 3; % output position

% Locates the states in the vector
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pos = 1:ns; ) vector to calculate the position of each state
kgammalspeed = pos * strcmp (xs,
’flightmodel/FlightModel/RotorAttackAnglel/RotorAttackAngle’);
kgamma2speed = pos *strcmp (xs,
>flightmodel/FlightModel/RotorAttackAngle2/RotorAttackAngle’) ;
kgammal = pos * strcmp (xs,
>flightmodel/FlightModel/RotorAttackAnglel/Integrator’);
kgamma2 = pos * strcmp (xs,
>flightmodel/FlightModel/RotorAttackAngle2/Integrator’);
kforcel = pos * strcmp (xs,
>flightmodel/FlightModel/LateralRotors/LateralRotors’);
kbetaspeed = pos * strcmp (xs,
>flightmodel/FlightModel/Inertia/Integratorl’);
kbeta = pos * strcmp(xs,
’flightmodel/FlightModel/Inertia/Integrator2’);

==

4 T transforms standard order of states into observer order

= zeros(7,7);
(kgammalspeed,1) = 1;
(kgamma2speed,2) = 1;

(kgammal,3) = 1;
(kgamma2,4) = 1;
(kforcel,b) 1;
(kbetaspeed,6) = 1;
(kbeta,7) = 1;

o e I B T B B |

% LINEARISATION
% Operating point for Linearisation
betad = 0 * pi / 180;

gammal0 = 0 * pi / 180;
gamma20 = 0 * pi / 180;

% Linearisation
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x0 = zeros (1, ns);
x0 (kbeta) = betal;
x0 (kgammal) = gammalO;
x0 (kgamma2) = gamma20;

[A,B,C,D] = linmod (’flightmodel’, x0, [1);
% plant: X° = A*X + B*U, Y = CxX

% Change the order into the one we use
B

C
A

inv (T) * B;
C x T,;
inv (T) * A x T;

1;
2;

kgammalspeed
kgamma2speed
kgammal = 3;
kgamma2 = 4;
kforcel = 5;
kbetaspeed
kbeta = 7;

[

6;

% NON-LINEAR PARAMETERS

sdl = -0.1; edl = 0.1; % dead zone for the angle attack motors.

satl = 0.45; % saturation limit

sd3 = -0.01; ed3 = 0.01; % dead zone for the lateral rotors.
sat3 = 0.7; % saturation limit

eFriction = 0.4; % static friction

B.2.2 Controller.m
% CONTROLLER
%

% Script that calculates a linear state feedback controller
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% dealing with actuator faults.
% Functions called: ReduceU.m, ReduceX.m

% Eliminate singularities (non-affected states: row and column)

Zx = ReduceX (A, B); % transformation matrix
F =17x’ * A ¥ Zx;

% Eliminate faulty columns (unconnected inputs)

Zu = ReduceU (B); % transformation matrix
G = Zx’ x* B * Zu;

% state costs
Qc = zeros (1, ns);

Qc (kgammal) = 1; %1%2

Qc (kgamma2) = 1; %1%2

Qc (kgammalspeed) = 1;

Qc (kgamma2speed) = 1;

Qc (kforcel) = 1;

Qc (kbetaspeed) = 1; %1%10
Qc (kbeta) = 1;

Qc
Qc

diag (Qc);
Zx’ *x Qc * Zx;

% control costs: ul, u2, u3

R = zeros (1, ni);

R (iul) = 100; %100%1000;
R (iu2) = 100; %100%1000;
R (iu3) = 100; %100

R = diag (R);
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R = Zu’*Rx*Zu;

% optimal gain matrix: state feed-back law U = -K*X
K = 1gr (F, G, Qc, R);
K = pinv (Zu)’ * K * pinv (Zx);

B.2.3 Observer.m

%0BSERVER

h

hScript that calculates a standard observer and as faulty ones
% as possible sensor faults using LQR method.

#Functions called: 1lqr.m.

% state costs
Qe = zeros(1, ns);

Qe (kgammalspeed) =
Qe (kgamma2speed)
Qe (kgammal) = 1;
Qe (kgamma2) = 1;
Qe(kforcel) = 1
Qe (kbetaspeed)

Qe(kbeta) = 1;

1] |
_
.. we

| -

1;

Qe = diag (Qe);

% output costs: beta, gammal and gamma 2

S = zeros(1, no);

S (jbeta) = 1; %1; %10 % first values for simulations

S (jgammal) = 1; %1; %100 % second ones for real plant
S (jgamma2) = 1; %1; %100
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Sn = diag (S);
% optimal gain matrix: prediction law (X~)° = AX~ + BU +L(Y-HX")

L = (1qr (A’, C’, Qe, Sn))’;

% Gamma 1 fault case observer

H1 = C;
H1 (jgammal, kgammal) = O;

Zyl = ReduceU (H1’); % transformation matrix
H1 = Zy1’ * Hi; % eliminate the faulty row (faulty sensor)
Sf1 = Zy1’> * Sn * Zyl; Y reduced output costs

Lf1

(1qr (A’, H1’, Qe, Sf1))’; 7% optimal gain matrix

% Gamma 2 fault case observer

H2 = C;
H2 (jgamma2, kgamma2) = 0;

Zy2 = ReduceU (H2’); % transformation matrix
H2 = Zy2’ * H2; % eliminate the faulty row (faulty sensor)
Sf2 = Zy2’ * Sn * Zy2; 7’ reduced output costs

Lf2

(1qr (A, H2’, Qe, Sf2))’; 7 optimal gain matrix

B.2.4 Flightmod.m

FLIGHTMODEL

b

%Script that model the plant and calculates both the controller

% and the estimator for nominal and faulty situation. It shows a menu
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% from were it is possible to simulate faults and see the simulations
%Scripts called: modelling, controller, estimator

flightfault

fActl = 1; % zero when loose an actuator
fAct2 = 1;

fAct3 = 1;

fSenl = 1; % zero when loose a sensor

fSen2 = 1;

fSen3 = 1;

modelling

controller

estimator

f = 10; % filter cut frequency

fault = 0.5; % threshold for the estimator selection
done = 0 ;

while done == 0,

tit = ’RECONFIGURATION CONTROL’;

ol = ?Actuator ul Fails s
02 = ?Actuator u2 Fails 7
03 = ?Actuator u3 Fails 7
04 = ’Sensor Gammal Fails 7
05 = ’Sensor Gamma2 Fails 7
06 = ’Actuator ul fails, fault detected’;
o7 = ?Actuator u2 fails, fault detected’;
08 = ?Actuator u3 fails, fault detected’;
09 = ’Nominal behaviour 7,
010 = ’View simulations s
oll = ’Quit’;

choice = menu (tit, ol, 02, 03, o4, o5, 06, o7, 08, 09, 010, oll);
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if choice == |
done = 1 ;

elseif choice ==
fActl = 0;
modelling;

elseif choice ==
fAct2 = 0;
modelling;

elseif choice ==
fAct3 = 0;
modelling;

elseif choice ==
fSen2 = 0;

elseif choice ==
fSen3 = 0;

elseif choice ==
fActl = 0;
modelling;
controller;

elseif choice ==
fAct2 = 0;
modelling;
controller;

elseif choice ==
fAct3 = 0;
modelling;
controller;

elseif choice ==
fActl = 1;

choice == 11
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fAct2 = 1;
fAct3 = 1;
fSenl = 1;
fSen2 = 1;
fSen3 = 1;
modelling
controller
elseif choice == 10

disp(’Write "return" to return to digraph editor’) ;
keyboard ;

end
%set_param (’plant/Control Law’, ’Gain’, ’K’)

end

B.3 Reconfiguration After Fault Detection

There were implemented three functions to deal with the problems which
appear when a fault happens. The first one, ReduceX.m calculates a trans-
formation matrix to eliminate non controllable states from matrices A and
B when an actuator fault occurs. On the other hand, ReduceU.m calculates
the transformation matrix which eliminates zero columns from the matrix B.
Finally, ResetFunction.m, working together with the Reset block, provides a
impulse which reset the Diagnosis Logic.

B.3.1 ReduceX.m

function Zx = ReduceX (A, B)

%Calculates a transformation matrix to eliminate non controlable
%  states. Thus, Areduced = Zx’ * A *x Zx, Breduced = Zx * B
%Sintaxis: Zx = ReduceX (A, B)

%Inputs: the matrices to transform, A, B
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%0utputs: the transformation matrix, Zx

Y%Funtion called: none

sum (ctrb (A,B)’) ==
sum (Sings);

Sings
nsing

[ns, ns] size (A);

k =1;
Zx = zeros (ns, ns - nsing);
for i 1:ns
if (Sings (i)
Zx (i, k)=
k=k +1;
end
end

1;

B.3.2 ReduceU.m

function Zu = ReduceU (B)

%Calculates a transformation matrix to eliminate zero columns

% Thus, Breduced = B * Zu;
%Sintaxis: Zu = ReduceU (B)

% number of singularities

% number of states

% tranformation matrix

% where there is no fault
% keep the column

%Inputs: the matrix to transform, B
%0utputs: the transformation matrix, Zu

%Funtions called: none

Faults = (sum (B) == 0);
nf = sum (Faults);

[ns, ni] = size (B);
k=1;

Zu = zeros (ni, ni - nf);

for i = 1:ni

h
h
h

.

vector,
number of faults
number of states and outputs

tranformation matrix
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if (Faults (i) == 0) % where there is no fault
Zu (i, k)= 1; % keep the column
k=k +1;
end
end

B.3.3 ResetFunction.m
function [] = ResetFunc ()

t0 = clock;

set_param (’plant/Reset/Reset’, ’Value’, ’1°)
while (etime(clock,t0) < 1)

end

clock;

set_param (’plant/Reset/Reset’, ’Value’, ’0°)

B.4 Test interface

The next functions are implemented to work on line. They modify the system
parameters and down load the results into the Target PC while the system

1s in motion.

B.4.1 LoadParameters.m

nfault = 0;
flightmodel

status = get_param (’plant/ActuatorStatus’,’fActl’);
if (strcmp (status, ’on’))
set_param (’flightmodel/FlightModel/Faultl’,’Gain’,
else
set_param (’flightmodel/FlightModel/Faultl’,’Gain’,
nfault = nfault + 1;
end
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status = get_param (’plant/ActuatorStatus’,’fAct2’);
if (strcmp (status, ’on’))
set_param (’flightmodel/FlightModel/Fault2’,’Gain’, ’1°)
else
set_param (’flightmodel/FlightModel/Fault2’,’Gain’, ’0°)
nfault = nfault + 1;
end

status = get_param (’plant/ActuatorStatus’,’fAct3’);
if (strcmp (status, ’on’))

set_param (’flightmodel/FlightModel/Fault3’,’Gain’, ’17)
else

set_param (’flightmodel/FlightModel/Fault3’,’Gain’, ’07)
end

Modelling
Controller
Observer
if (nfault == 0)

set_param (’plant/SensorFaultDiagnosis/DetectionLogic/ActFault’,’Value’, ’17)
else

set_param (’plant/SensorFaultDiagnosis/DetectionLogic/ActFault’,’Value’, ’27)
end

B.4.2 Reference call-backs

set_param ('Plant/Reference’, "After’, ’[0 0 0 0 0 0 0]’)
set_param ('Plant/Reference’, "After’, ’[0 0 0 0 0 0 45]’)

B.4.3 UpdateModel.m

nfault 0;
status = get_param (’plant/ActuatorStatus’,’fActl’);
if (strcmp (status, ’on’))
set_param (’flightmodel/FlightModel/Faultl’,’Gain’, ’1°)
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else
set_param (’flightmodel/FlightModel/Faultl’,’Gain’,
nfault = nfault + 1;

end

status = get_param (’plant/ActuatorStatus’,’fAct2’);
if (strcmp (status, ’on’))
set_param (’flightmodel/FlightModel/Fault2’,’Gain’,
else
set_param (’flightmodel/FlightModel/Fault2’,’Gain’,
nfault = nfault +1;
end

status = get_param (’plant/ActuatorStatus’,’fAct3’);
if (strcmp (status, ’on’))

set_param (’flightmodel/FlightModel/Fault3’,’Gain’,
else

set_param (’flightmodel/FlightModel/Fault3’,’Gain’,
end

Modelling
if (nfault == 0)

JO))

11))

JO))

312)

JOJ)

set_param (’plant/SensorFaultDiagnosis/DetectionLogic/ActFault’,’Value’, ’17)

else

set_param (’plant/SensorFaultDiagnosis/DetectionLogic/ActFault’,’Value’,

end

B.4.4 Update controller call-backs

controller

set_param ('Plant/ControlLaw’, ’Gain’, 'K’)

B.4.5 UpdateObserver.m

observer

set_param (’plant/ObserverBank/NominalObserver/L’, ’Gain’, ’L’)
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set_param (’plant/0ObserverBank/FaultObserverl/L’, ’Gain’, ’Lf1’)
set_param (’plant/ObserverBank/FaultObserver2/L’, ’Gain’, ’Lf2’)
set_param (’plant/SensorFaultDiagnosis/DetectionLogic/Threshold’,’Value’,’fault’)
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C Remote Control

C.1 Introduction

To control the system manually, in order to make the experiments which
identified the system parameters, there were used a real time card and the
software provided by DSPACE. There are mainly two programs for the con-
trol and data acquisition. The first one, called Cockpit, is used to develop
a control panel from where it is possible to modify the control orders and
to read the data from the sensors. The second one, called Trace, is used to
acquired data, represent them in a graphic window and stored them in Mat-
lab format so that it is also possible to process them. It is also necessary to
implement an interface which communicate the software with the real time
system. This interface is programmed using Simulink, as a .mdl file. The
blocks which represents the analog / digital and digital / analog converters
which are in the real time system are selected from the software libraries pro-
vided with the real time system. The real time system ports are connected
to the wires coming from the sensors and the wires going to the actuators.
This .mdl file has to be compiled in order to down load the program into the
real time system. It is built using an option situated in the Tools menu. The
code is down loaded in the real time processor and run. When the Simulink
interface is compiled, it is generated a .trc file which is necessary for the
Cockpit and Trace programs in order to control and acquire data from the
experiment.

C.2 Manual Control: CockPit

There are several controls stored in the program libraries for both input and
output. It is also possible to select special controls in order to put up a
background image or to write a text poster. There were selected one slider,
one incremental input and one on / off buttons for each input, u;, us, us,
which control the attack angle of the rotor one and two and the voltage
applied to the lateral rotors. The range is set from -1 to 1 and scaled later in
the interface. There are also one display and one slider for each sensor: vy,
~v2 and (3. The panel control is shown in the figure 58.
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Figure 58: Control panel

C.3 Data Acquisition: Trace

As it is shown in the figure 59, there are two Trace windows. The upper one
is the control panel for data acquisition where the experiment time length
is chosen, and there is set when the experiment starts, the file in which
you could store the information, the name of the experiment, the variables
affected (model root has to be opened and the required variables selected
in order to trace them), how and when the information will be shown and
some other parameters. All the parameters selected can be stored in an
experiment file. The lowest one is the graphic window where the signals are
drawn. There are also some utilities in order to measure values, differences
between signal, times, zooms and so on. The variables traced can be stored
in a template file.
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Figure 59: Trace

C.4 Interface: Simulink

The interface was implemented using Simulink. It was a similar design as the
one in the figure 7 but, of course, the blocks which contain the port informa-
tion were different since the real time system card was the one provided by
DSpace. Therefore, there were only minor differences.
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D Graphics

D.1 Rotor Attack Angle Identification

The figure 60 shows the system reaction to step functions from 0 to 0.1
and from 0.1 to 0.2. According to the plot, the dead zone upper limit is
between 0.1 and 0.2. The plot shows a strong nonlinearity at the end of the
measurement range. A zero degrees measure is read while changing from -90°
to 90°.

Gamma 1, input: 0 to 0.2
100 ;

Potenciometer failure

Angle (deg)
o
T
Il

50 4

-100

Dead zone

Input
o
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- (%] n
T T T
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0 I I I I I
0 1 2 3 4 5 6

Time (seconds)

Figure 60: Rotors attack angle identification, experiment 1

The figure 61 shows the plant behavior when step functions from 0.4 to 0.5
and from 0.5 to 0.6 are given. According to the plot, the saturation level
appears between 0.5 and 0.6.

The figure 62 shows the system behavior inside the dynamic range. Step
functions from 0.2 to 0.3 and from 0.3 to 0.4 are used to show the reaction.
Nonlinearities appears at the end of the measurement range. The sensor
reads —90° for several instance while the system is moving a measure of 0°is
read before getting the initial range position of 90°.
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Figure 61: Rotors attack angle identification, experiment 2
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Figure 62: Rotors attack angle identification, experiment 3
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The experiments shown in the figures 63, 64 and 65 are the ones used to
identify the rotor attack angle subsystem parameters. The first plot shows
the system behavior after an input jump from 0.2 to 0.3. The second one
shows the transition from an input of 0.3 to another of 0.4. The last plot
shows the reaction after a step function from an input of 0.4 to 0.5. The
identified parameters differ slightly along the dynamic range. Mean values
are taken as system parameters.
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Figure 63: Rotors attack angle identification, experiment 4
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Figure 64: Rotors attack angle identification, experiment 5
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Figure 65: Rotors attack angle identification, experiment 6
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D.2 Lateral Rotors Identification

The figure 66 shows the oscilloscope plot used to measure the lateral rotor
current. A jump is given to the input in order to identify the time constant.

Figure 66: Identification of the lateral rotors time constant
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D.3 Angular Position System Identification

The momentum constant relative to the lateral rotors is identified using the
experiment shown in the figure 67.

Input

Beta, input: lateral rotors 0 to 0.4

0.5

1.5

I
2 25
Time (seconds)

3 3.5 4 4.5 5

Figure 67: Identification of the momentum constant, experiment 1

The momentum constant relative to the main rotors is identified using the
experiment shown in the figure 68.
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Beta, input: motor 1, gamma = 90°
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60 I I I I I I I I I
0

Figure 68: Identification of the momentum constant, experiment 2

E Tables

E.1 Datamatrix

The table 3 shows and example of the data acquired in the previous experi-
ments and processed using the datamatriz.m function.
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Time (s) | Input | Angle (°) | Instant speed (°s™1)
0.00 0.20 -12.3 0
0.01 0.20 -12.7 -40
0.02 0.20 -13.4 -70
0.03 0.20 -13.9 -50
0.04 0.20 -14.6 -70
0.05 0.20 -15.0 -40
0.06 0.20 -15.7 -70
0.07 0.20 -16.2 -50
0.08 0.20 -16.7 -50
0.09 0.20 -17.3 -60
0.10 0.20 -17.9 -60
0.11 0.20 -18.3 -40
0.12 0.20 -18.9 -60
0.13 0.20 -19.3 -40
0.14 0.20 -19.8 -50
0.15 0.20 -20.1 -30
0.16 0.20 -20.8 -70
0.17 0.20 -21.2 -40
0.18 0.20 -21.9 -70
0.19 0.20 -22.3 -40

Table 3: Experimental Data

E.2 Lateral Rotors Identification

The data relative to the lateral rotor gain identification are related in the
table 4. It shows the input given in each experiment, the forces applied
by the rotors due to these inputs and the calculated gain. It also shows
saturation levels, and dead zones due to the system friction and to the motor
friction. The mean value of the gain is taken as a subsystem parameter.

Extremes values are not taken in consideration.
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Input | Force (N) Comment Gain
-0.70 +1.0 Saturated

-0.60 +1.0 -14
-0.50 + 0.9 -1.7
-0.40 +0.7 -1.8
-0.30 +0.4 -1.3
-0.20 0.0 System is not moving

-0.10 0.0 System is not moving

-0.01 0.0 Rotors are not moving

+0.01 0.0 Rotors are not moving

+0.10 0.0 System is not moving

+0.20 -0.3 -1.5
+0.30 -0.9 -3.0
+0.40 -14 -3.5
+0.50 -1.7 -3.4
+0.60 -1.8 -3.0
+0.70 -1.9 -2.7
+0.80 -2.0 -2.5
+0.9 -2.0 Saturated

Table 4: Identification of the lateral rotors gain
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