C. SOLUCIÓN TÉCNICA

La solución técnica del presente proyecto fin de carrera se ha dividido en:

- Utilización de las interfaces:
 - o Adquisiciones con el OSA-155.
 - o Mediciones con el OSA-155.
- Planos de las interfaces.

1. Realizar una adquisición con el OSA-155.

La realización de una adquisición con el analizador de espectros ópticos OSA-155 se divide en tres bloques:

- Preparar el equipo para dicha captura.
- Configurar la captura a realizar.
- Elegir el tipo de captura:
 - o Adquisición simple.
 - o Adquisición continúa.
 - o Adquisición continúa con un número de repeticiones.

1.1. Preparación del equipo antes de la captura

*CLS	'Borramos datos acumulados
AUTOCAL ON	'Activamos la calibración automática
CALIBRATE	'Calibramos el equipo
WAI	'Esperamos a que se terminen de ejecutar los
	'comandos.
RES 0.1	'Establecemos la resolución espectral a 0.1nm (este
	'es el valor por defecto).

1.2. Configuración de la captura

START 185	'Establecemos	el	valor	del	comienzo	de	la
	'adquisición (18	85 T	Hz).				
END 198	'Establecemos	el	valor	de	finalización	de	la
	'adquisición (19	98 T	Hz)				

- 88 -

CENTER 190

'Establecemos el valor del centro de la adquisición (190 THz).

'Los parámetros de START, END y CENTER se han expresado en THz pero de igual 'modo podrían haberse expresados en nm.

1.3. Elección de la captura

1.3.1. Adquisición simple

1.3.2. Adquisición continua

REPEAT	'Realizamos una adquisición continua.
STOP	'Paramos la adquisición,

1.3.3. Adquisición continúa con un número de repeticiones.

TAKECAREMORE ON	'Activamos la adquisición con un número de
	'repeticiones.
TAKECARECOUNT 20	'Establecemos el número de repeticiones a 20 (el
	'rango de este parámetro es entre 10 y100).
	'Realizamos una adquisición continua con 20
	'repeticiones.

2. Mediciones con el OSA-155.

En este punto del proyecto fin de carrera se muestran pequeños programas (conjunto de órdenes) a enviar desde la aplicación (interfaces diseñadas) para obtener los mismos resultados que se han alcanzados al realizar la simulación con el programa Wintrace Viewer.

2.1. Láser

NM	'Pasamos el eje x a nanometros
AUTO ON	'Establecemos la detección de canales a modo
	'automático.
NBCH_FOUND?	'Devuelve el número de canales encontrados (en
	este caso sólo uno).
LAMBA? 1	'Devuelve la longitud de onda del primer canal
	'detectado.

Con esto comprobaremos que se trata de un láser de tercera ventana.

2.2. Condiciones de la captura

Para obtener las condiciones de la captura tendremos que enviar la siguiente sentencia: RES? 'Nos devuelve el valor actual de la resolución 'espectral.

En este caso será de 0.1nm.

2.3. Número de canales en el sistema

'Establecemos el valor de umbral de detección de
'canales a –35dB.
'Establecemos la detección de canales a modo
'automático.
'Devuelve el número de canales encontrados

2.4. Posición de cada canal

Tendremos que repetir las siguiente	s sentencias	tantas	veces	como	número	o de c	anales
hayamos detectamos:							
LAMBA? 1	'Devuelve 1	a long	ritud d	e ond	a del r	orimer	canal

'detectado.	Devuerve	Iu	Iongitud	ue	onua	uer	primer	Callal
	'detectado.							

P? 1 'Devuelve la potencia del primer canal detectado.

2.5. Búsqueda del canal más potente

PEAK?	'Devuelve donde se alcanza los picos de potencia
	'(máximo y mínimo) y la longitud de onda a la que
	'se alcanzan.

2.6. Obtener la relación señal ruido óptico de cada canal

Tendremos que repetir la siguiente sentencia tantas veces como número de canales hayamos detectamos:

MES_SN? 1 'Devuelve la OSNR del primer canal detectado.

2.7. Ver si cumple la recomendación de la ITU-T

En este caso tendremos que cambiar el GRID y comprobar que el espaciado entre canales es de 200 GHz.

GRID ITU 'Establecemos como rejilla la de la ITU-T.

3. PLANOS.

Plano 1 Panel Frontal Interfaz GPIB

Plano 2 Diagrama lectura (activado) GPIB.

Plano 3 Diagrama lectura (sin activar) GPIB.

Planos

Plano 4 Diagrama Escritura (activado) GPIB.

Plano 5 Diagrama Escritura (sin activar) GPIB.

Plano 6 Panel Frontal Interfaz GPIB

Plano 7 Diagrama SERIE.