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1. INTRODUCTION 

 

 

 

 

1.1. ARTIFICIAL INTELLIGENCE AND MEDICINE2-1 
 
Medicine is a field in which computer help is critically needed. Our increasing 

expectations of the highest quality health care and the rapid growth of ever more 

detailed medical knowledge leave the physician without adequate time to devote to 

each case and struggling to keep up with the newest developments in his field. For 

lack of time, most medical decisions must be based on rapid judgments of the case 

relying on the physician's unaided memory. Only in rare situations can a literature 

search or other extended investigation be undertaken to assure the doctor (and the 

patient) that the latest knowledge is brought to bear on any particular case. Continued 

training procedures encourage the physician to keep more of the relevant information 

constantly in mind, but fundamental limitations of human memory and recall coupled 

with the growth of knowledge assure that most of what is known cannot be known by 

most individuals. This is the opportunity for new computer tools: to help organize, 

store, and retrieve appropriate medical knowledge needed by the practitioner in 

dealing with each difficult case, and to suggest appropriate diagnostic and therapeutic 

decisions and decision making techniques.  

 

In a 1970 review article, Schwartz speaks of the possibility that the computer as 

an intellectual tool could reshape the system of health care, fundamentally alter the 

role of the physician, and profoundly change the nature of medical manpower 

recruitment and medical education.  

 

The key technical developments leading to this reshaping will almost certainly 

involve exploitation of the computer as an 'intellectual' and 'deductive' instrument, a 

consultant that is built into the very structure of the medical care1-1. 
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Artificial Intelligence in Medicine (AIM) is now slowly taking up the challenge of 

creating and distributing the necessary tools to accomplish the above mentioned tasks. 

One introductory textbook defines artificial intelligence (AI) as “the study of ideas 

which enable computers to do the things that make people seem intelligent ... The 

central goals of Artificial Intelligence are to make computers more useful and to 

understand the principles which make intelligence possible”1-2.  

 

 

AI in Medicine (AIM) is AI specialized to medical applications. Researchers in 

AIM employ human-like reasoning methods in the programs, justifying that choice 

either as a commitment to a human-computer equivalence sought by some or as a 

good engineering technique for capturing the best understood source of existing 

expertise on medicine, which is the practice of human experts. Most researchers adopt 

the latter view. 

 

Relying on the knowledge of human experts to build expert computer programs is 

actually helpful for several additional reasons: First, the decisions and 

recommendations of a program can be explained to its users and evaluators in terms 

that are familiar to the experts. Second, because we hope to duplicate the expertise of 

human specialists, we can measure the extent to which our goal is achieved by a direct 

comparison of the program's behaviour to that of the experts. Finally, within the 

collaborative group of computer scientists and physicians engaged in AIM research, 

basing the logic of the programs on human models supports each of the three 

somewhat disparate goals that the researchers may hold: 

 

• To develop expert computer programs for clinical use, making possible the 

inexpensive dissemination of the best medical expertise to geographical 

regions where that expertise is lacking, and making consultation help available 

to non-specialists who are not within easy reach of expert human consultants.  
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• To formalize medical expertise, to enable physicians to understand better what 

they know and to give them a systematic structure for teaching their expertise 

to medical students.  

 

• To test AI theories in a "real world" domain and to use that domain to suggest 

novel problems for further AI research. 
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1.2. MOTIVATIONS AND OBJETIVES  
 

The motivations for this project, as previously mentioned above, are mainly due to 

the complication of the diagnostic process, since it requires integration of information 

about a patient’s anatomy, physiology and medical history. The process of diagnosis 

begins with a physical exam and patient history. In many cases, this step is 

inconclusive and some form of medical imaging is required to confirm or exclude a 

diagnosis. Using medical imaging, physicians are able to have qualitative and 

quantitative information about the anatomy and physiology of the patient. It allows 

physicians to determine the location and extent of potential abnormalities. With these 

advantages, medical imaging has become central to medical diagnosis. 

Combining digital imaging and computer processing capabilities, it has become 

possible to approach the problem of automating diagnosis in medical imaging, which 

will be the main objective of the current project. From this point of view, diagnosis 

can be thought of as a series of detection and classification tasks. First, an abnormality 

must be detected. Next, the abnormality must be localized and, finally, the 

abnormality must be classified and any physical properties must be quantified. 

This research focuses on the development of an artificial intelligence tool to assist 

physicians in the interpretation of CT lung scans, for the diagnosis of abnormalities in 

the lung tissue. The detection of unhealthy regions from CT scans is approached in 

two steps. First, texture analysis is performed on the lung images, and a subset of 

textural features extracted. Second, an artificial neural network is trained for 

predicting the presence or absence of disease based on the textural parameters 

extracted in the first step. Therefore, the main goal of this project is to prove that there 

is a relationship between the texture characteristic of CT lung scans and the presence 

of disease. 

This research is organized as follows. The first two chapters provide background 

information. Chapter 2 focuses on texture analysis, reviewing the literature about 

texture models and texture analysis problems, as well as its applications in medical 

image processing, and specifically in the detection of lung diseases. Chapter 3 

outlines the normal lung function and structure, and the clinical problems of lung 
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diseases and their diagnosis, narrowing the focus to emphysema and fibrosis, which 

will be the most interesting ones for this investigation. Chapter 4 introduces the 

program developed for the automatic detection of unhealthy tissues, and the chosen 

language and environment. Chapter 5 provides the techniques used for the feature 

selection and attempts to validate them in some CT samples images of 

emphysematous and fibrous lungs. Here we divide the textural features into four 

categories: statistical, co-occurrence matrix, Fourier, and binary features. In Chapter 

6, artificial intelligence techniques (neural networks) are reviewed and applied to the 

diagnosis of unhealthy lungs, and they are combined with texture analysis to develop 

the final tool for automatic diagnosis. Chapter 7 explores an approach to a 3D 

diagnosis on whole data-sets of lung CT scans, comparing the new results with the 

previous ones in 2D, and discussing the advantages and disadvantages of both of 

them. Finally, Chapter 8 summarizes the conclusions reached in the dissertation, as 

well as suggesting future directions of research. 
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2. TEXTURE ANALYSIS1-3, 1-4, 2-2 

 

 

 

 

2.1. INTRODUCTION 
 

Texture is an important characteristic for the analysis and processing of various 

types of images, including natural scenes, remotely sensed data and biomedical 

modalities. It is believed that the texture plays an important role in the visual systems 

for recognition and interpretation of data. Texture analysis is a significant research 

field in computer vision, image processing and pattern recognition. A number of 

techniques have been developed for texture feature extraction, segmentation, 

classification and synthesis1-5. 

 

Texture analysis is also relevant in the characterization of images that do not 

exhibit a clear boundary between different objects within the images. This can be 

observed in CT images of the lungs, especially if abnormalities are present. For this 

reason, texture analysis plays a crucial role in this research. 

 

In reviewing texture features for use in classification and discrimination schemes 

this Chapter has three main objectives: 

 

• To identify research on the different texture models and texture analysis 

problems 

 

• To review some previous works about texture features applied to medical 

images, and specifically to lung images 

 

• To select a set of feature measures for further investigation about changes in 

parenchyma density, i.e., abnormally bright or dark areas in lung images 
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However, it is not practical to provide an exhaustive survey of all texture 

measures here. We will review though some of the more popular techniques. 

Concerning the selection of features, the criteria will be popularity in the literature, 

ease of implementation and use, efficiency and simplicity. Hence some of the 

following techniques will not be directly used in this project; however they are named 

to illustrate further possibilities of research. Later on Chapter 5, a more accurate 

selection is developed, and some of the features are further outlined. 
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2.2. TEXTURE MODELS 
 
Identifying the perceived qualities of texture in an image is an important first step 

towards building mathematical models for texture. Modelling the intensity variations 

in an image that characterize texture is very difficult, so it is usually characterized by 

the two-dimensional variations in the intensities present in the image. 

 

The “definition” of texture is formulated by different people depending upon the 

particular application and there is no generally agreed upon definition. Some are 

perceptually motivated, and others are driven completely by the application in which 

the definition will be used. Coggins1-6 has compiled a catalogue of texture definitions 

in the computer vision literature. Here we outline some properties of texture which are 

generally assumed to be true: 

 

• Texture is a property of areas, so texture is a contextual property and its 

definition must involve grey values in a spatial neighbourhood. 

 

• Texture involves the spatial distribution of grey levels. Thus, the two-

dimensional histograms or co-occurrence matrices are reasonable texture 

analysis tools. 

 

• Texture in an image can be perceived at different scales or levels of 

resolution 

 

• A texture is perceived when significant individual forms are not present. 

 

Figure 2.1 shows an image that can be segmented into five homogeneous textured 

regions. The purpose of image segmentation is to divide the input image into 

homogeneously textured regions, without knowing a priori what the textures are. 

Texture classification methods, on the other hand, attempt to assign a known texture 

class to each image region1-4. 
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FIGURE 2.1. (a) An image consisting of five different textured regions: cotton canvas (D77), straw 

matting (D55), raffia (D84), herringbone weave (D17), and pressed calf leather. [8]. (b) The goal of 

texture classification is to label each textured region with the proper category label: the identities of the 

five texture regions present in (a). (c) The goal of texture segmentation is to separate the regions in the 

image which have different textures and identify the boundaries between them. The texture categories 

themselves need not be recognized. In this example, the five texture categories in (a) are identified as 

separate textures by the use of generic category labels (represented by the different fill patterns). 

 

These qualities play an important role in describing texture: uniformity, density, 

coarseness, roughness, regularity, linearity, directionality, direction, frequency and 

phase. The fact that the perception of texture has so many different dimensions is an 

important reason why there is no single method of texture representation that is 

adequate for a variety of textures.  

 

2.2.1. SURVEYS 

 
Haralick provided the classic survey of texture measures1-7. He listed and 

described a number of texture extraction methods which he divided into two types: 

structural and statistical. The former used primitives to describe texture elements and 

placement rules to describe the spatial relationship between elements. This approach 

is better suited to textures that exhibit a regular macro-structure, and will not be 

discussed further. The statistical approaches are better suited to micro textures, and 

Haralick identified techniques based upon auto correlation functions, frequency 

domain analysis, edge operators, grey-level co-occurrence matrices, grey-level run 

lengths, and autoregressive models. In the last years, there has been an explosion of 

interest in model-based techniques (Markov fields, fractals etc.), detailed in a survey 

in 1993 by Reed and Buf1-22. Here we will make a differentiation between two main 

groups: model-based and non-model-based features. 
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2.2.2. MODEL-BASED FEATURES 

 
A number of random field models (i.e. models of two-dimensional random 

processes) have been used for modelling and synthesis of texture. If a model is shown 

to be capable of representing and synthesising a range of textures, then its parameters 

may provide a suitable feature set for classification and/or segmentation of the 

textures. For a model based approach to be successful, there must exist a reasonably 

efficient and appropriate parameter estimation scheme, and the model itself should be 

parsimonious, i.e. use the minimum number of parameters. Popular random field 

models used for texture analysis include fractals, autoregressive models and Markov 

random fields. Only fractal models will now briefly be reviewed, because we will not 

use the others in this project. A more extensive review of these approaches may be 

found in the survey by Ahuja and Schachter1-8. 

 

2.2.2.1. FRACTAL MODELS 

 

Many natural surfaces have a statistical quality of roughness and self-similarity at 

different scales. Fractal geometry has proven to be a useful tool in quantifying the 

structure of a wide range of idealized and naturally occurring objects, from pure 

mathematics, through physics and chemistry, to biology and medicine. In the past few 

years fractal analysis techniques have gained increasing attention in signal and image 

processing, especially in medical sciences, e.g. in pathology, neuropsychiatry, 

cardiology. Mandelbrot1-9 proposed fractal geometry and is the first one to notice its 

existence in the natural world. 

 

We first define a deterministic fractal in order to introduce some of the 

fundamental concepts. Self-similarity across scales in fractal geometry is a crucial 

concept. A deterministic fractal is defined using this concept of self-similarity as 

follows. Given a bounded set A in a Euclidean n-space, the set A is said to be self-

similar when A is the union of N distinct (non-overlapping) copies of itself, each of 

which has been scaled down by a ratio of r. The fractal dimension D is related to the 

number N and the ratio r as follows: 
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The fractal dimension gives a measure of the roughness of a surface. Intuitively, the 

larger the fractal dimension, the rougher the texture is. There are a number of methods 

proposed for estimating the fractal dimension D. One method is the estimation of the 

box dimension as follows. Given a bounded set A in Euclidean n-space, consider 

boxes of size on a side that cover the set A. A scaled down version of the set by ratio 

r, will result in similar sets. This new set can be covered by boxes of size L=rLmax. 

The number of such boxes then is related to the fractal dimension by 

 

 

                    (2.2) 

 

 

The fractal dimension is then estimated from Equation (2.2) by the following 

procedure. For a given L, divide the n-space into a grid of boxes of size L and count 

the number of boxes covering A. Repeat this procedure for different values of L. Then 

estimate the value of the fractal dimension D from the slope of the line 

 

                      (2.3) 

 

This can be accomplished by computing the least squares linear fit to the data, 

namely, a plot of ln(L) vs. –ln(N(L)) . 

 

Fractal geometry can be applied in medical image, since fractals can be found 

within the human body. For example, the pulmonary system is composed of tubes that 

lead to air sacs called alveoli. The main tube is the trachea, which splits into the two 

smaller tubes that lead to the separate lungs, the bronchi. The tubes keep splitting until 

the smallest tubes; the bronchioles lead into the alveoli. This is a similar description to 

that of fractal canopies, as shown in Figure 2.2. 
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More evidence to support the idea that the lungs are fractal comes from measuring 

the alveolar area. When they are lightly magnified this area was found to be 80m2, but 

when magnified with an electron microscope it was found to be 140m2. We know that 

the increase in size with magnification is a property of fractals. So the fractal 

dimension can be used as a tool for the detection of structure changes and 

quantification of lung diseases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2. A fractal canopy is an approximation of a lung 

 
 

2.2.3. NON-MODEL-BASED FEATURES 

 
This section briefly reviews Co-occurrence matrices and other related 

Statistical Features, and Frequency Domain Methods. 

 

2.2.3.1. CO-OCCURRENCE MATRICES AND OTHER STATISTICAL      

  FEATURES     

 

One of the defining qualities of texture is the spatial distribution of grey values. 

The use of statistical features is therefore one of the early methods proposed in the 

machine vision literature. A large number of features have been proposed but they are 
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not independent. There is a relationship between the various statistical texture 

measures and the input image. Among these features there are some simple ones that 

are highly popular due to their simplicity and efficiency, such as the Mean Grey 

Value, Maximum and Minimum grey values, Range, Standard Deviation, and 

Percentiles, and other complex ones that will be reviewed here, such as Co-

occurrence matrix features and Autocorrelation features. 

 

The Spatial Grey Level Dependence Matrix (SGLDM) describes the spatial 

distribution and spatial dependence among the grey tones in a local area based on the 

estimation of second order conditional probability density functions f(i,j,d,θ). Each of 

these functions are the probability of going from grey level i to grey level j separated 

by a distance d and aligned to the angle θ. The estimated values (which are grey-tone 

spatial-dependence frequencies) can be written in matrix form, the so-called Co-

occurrence matrices. 

 

Haralick proposed 28 features extracted from 14 equations, but usually only six of 

them are used. Many researchers have used Haralick’s co-occurrence based features. 

The most popular features include Entropy, Energy, Inverse Difference Moment, 

Maximum Probability, Contrast and Correlation, with small displacement vectors e.g. 

(1,0) and (0.1). 

 

An important property of many textures is the repetitive nature of the placement 

of texture elements in the image. The Autocorrelation Function of an image can be 

used to see the amount of regularity as well as the fineness and coarseness of the 

texture present in the image. Formally, the Autocorrelation Function of an image 

I(x,y) is: 

 

               

(2.4) 
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The autocorrelation is related to the size of the texture primitive (i.e., the fineness 

of the texture). If the texture is coarse, then the autocorrelation will drop off slowly. It 

is also related to the power spectrum of the Fourier transform in the space domain. 

 

2.2.3.2. FREQUENCY DOMAIN METHODS 

 

The frequency analysis of the textured images is best done in the Fourier domain. 

The human visual system analyses the textured images by decomposing the image 

into its frequency and orientation components.  

 

Two-dimensional power or magnitude spectra provide information on texture 

coarseness and directionality from their radial and angular distributions respectively. 

The most commonly extracted features consist of sums of coefficients within wedges, 

rings, or sectors of two-dimensional power spectra. However, results derived from 

tests on a Brodazt set are quite disappointing. 

Other frequency domain measures include those derived from the characteristics 

of spectral peaks. D’Astous and Jernigan (1984) used features that included the 

frequency, direction, area and relative power of spectral peaks. Other measures 

contain the Maximum Peak of the spectrum, the Average value and the Energy. 
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2.3. TEXTURE ANALYSIS PROBLEMS 
 

The various methods for modeling textures and extracting texture features can 

be applied in the following broad categories of problems: texture segmentation, 

texture classification, texture synthesis and shape from texture. Only the two first 

will be described here, because they are the only ones with interest for our study. 

 

• Texture segmentation is used to refer to the process of dividing an image up 

into homogeneous regions according to some homogeneity criteria. This is a 

difficult problem because one usually does not know a priori what types of 

textures exist in an image, how many different textures there are, and what 

regions in the image have which textures. In fact, one does not need to know 

which specific textures exist in the image in order to do texture segmentation. 

All that is needed is to tell that two textures (usually in adjacent regions of the 

images) are different. It is therefore intimately concerned with establishing the 

boundaries between these regions without regard to the type of class of the 

regions. 

 

The two general approaches to performing texture segmentation are analogous 

to methods for image segmentation: region-based approaches or boundary-

based approaches. In a region-based approach, one tries to identify regions of 

the image that have a uniform texture, and in a boundary-based approach one 

tries to detect the differences in texture in adjacent regions. 

 

• Texture classification involves deciding what texture category an observed 

image belongs to. In order to accomplish this, one needs to have an a priori 

knowledge of the classes to be recognized. Once this knowledge is available 

and the texture features are extracted, one then uses classical pattern 

classification techniques in order to do the classification. If the classes have 

not been defined a priori, the task is referred to as unsupervised classification. 

Alternatively, if the classes have already been defined (normally through the 

use of training sets of sample textures) then the process is referred to as 

supervised classification, and this is the kind of classification we will work 
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with in the current research. In Figure 2.1 the classification and segmentation 

problems are explained and clearly differentiated. 

    

Before either segmentation or classification can take place, some homogeneity or 

similarity criterion must be defined. These criteria are normally specified in terms of a 

set of feature measures, which each provide a quantitative measure of a certain texture 

characteristic. These feature measures are alternatively referred to as textures 

measures or just simply features. Groups of features assembled for segmentation or 

classification purposes are often referred to as feature vectors.  
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2.4. APPLICATIONS IN MEDICAL IMAGE 
PROCESSING 
 

Texture analysis methods have been utilized in a variety of applications domains, 

such as remote sensing, surface inspection, document processing, and medical image 

processing. Image analysis techniques have played an important role in several 

medical applications. In general, the applications involve the automatic extraction of 

features from the image that are then used for a variety of classification tasks, such as 

distinguishing normal tissue from abnormal tissue. Depending upon the particular 

classification task, the extracted features capture morphological properties, color 

properties, or certain textural properties of the image. The textural properties 

computed are closely related to the application domain to be used. We present here 

some examples of medical applications, and later we will focus on some applications 

in the detection of lung diseases. 

 

Harms et al.1-10 used image texture in combination with color features to diagnose 

leukemic malignancy in samples of stained blood cells. They extracted texture micro-

edges and “textons” between these micro-edges. The textons were regions with almost 

uniform color. They extracted a number of texture features from the textons including 

the total number of pixels in the textons that have a specific color, the mean texton 

radius and texton size for each color and various texton shape features. In 

combination with color, the texture features significantly improved the correct 

classification rate of blood cell types compared to using only color features. 

 

Landeweerd and Gelsema1-11 extracted various first-order statistics (such as mean 

gray level in a region) as well as second-order statistics (such as gray level co-

occurrence matrices) to differentiate different types of white blood cells.  

 

Lundervold1-12 used fractal texture features in combination with other features 

(such as response to edge detector operators) to analyze ultrasound images of the 

heart. 
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2.4.1. APPLICATIONS IN THE DETECTION OF LUNG 

 DISEASES 

 
There are many studies about automatic detection of lung diseases using texture 

features, since in the last years applying computers to medical image processing has 

become essential to medical diagnosis. In this section we present several previous 

investigations, stating the features used in each one, as well as the results of interest. 

 

Sutton and Hall1-13 discussed the classification of pulmonary disease using texture 

features. Some diseases, such as interstitial fibrosis, affect the lungs in such a manner 

that the resulting changes in the X-ray images are texture changes as opposed to 

clearly delineated lesions. In such applications, texture analysis methods are ideally 

suited for these images. Sutton and Hall proposed the use of three types of texture 

features to distinguish normal lungs from diseased lungs. These features are computed 

based on an isotropic contrast measure, a directional contrast measure, and a Fourier 

domain energy sampling. In their classification experiments, the best classification 

results were obtained using the directional contrast measure. 

 

Douglas et al.2-3 outline the importance of fractal analysis in lung images as a 

useful method for assisting in the diagnostic interpretation of perfusion lung scans. 

This work is based on the hypothesis that the fractal dimension can quantify the 

difference between normally and abnormally perfused lung scan areas. Each lung was 

divided into three zones (upper, middle, lower) and a small region of interest (ROI) 

was selected for each lung zone. The ROI approach was chosen to determine the 

utility of fractal analysis to characterize each disease process individually, and was 

placed to correspond to normal lung or to the abnormality in the lung zone. Each ROI 

was characterized as either normal or abnormal with abnormal divided into PE 

(pulmonary embolism), OPD (obstructive pulmonary disease), OPAC (parenchymal 

opacity), EFFU (pleural effusion), ATEL (atelectasis), and OTHER. The results show 

that the average fractal dimension of normal lung ROIs was significantly higher than 

that of abnormal ones. As an example, the average fractal dimension of abnormal 

regions with pulmonary embolism is much lower than the fractal dimension of regions 

with chronic obstructive pulmonary disease present. 
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Kelly and Cannon2-4 developed a method for calculating the similarity between 

two digital images, and applied this algorithm to the problem of search and retrieval 

for  a database containing pulmonary CT imaginery. A global signature describing the 

texture, shape, or color content is first computed for every image stored in a database, 

and a normalized distance between probability density functions of feature vectors is 

used to match signatures. When the database retrieval software is asked to search for 

images similar to a given target image, it first computes the global signature of the 

target image and then matches it against the signatures of all images in the database. 

A handful of images having similar content, i.e. database images having a similar 

signature to the target image, is returned to the user. A normalized distance between 

probability density functions of feature vectors is used to match signatures. The 

general idea is that first several features (local colour, texture, and/or shape) at every 

pixel in the image are computed, and then a histogram of feature vector (pixel vector) 

occurrences for that image is made. The features selected for this problem were 

texture energy measures, which have the advantage of being able to discriminate 

between different textures, while being quick and easy to compute. Using only four 

texture features, the system successfully discriminates between different pulmonary 

diseases, returning images with the same content and resolution as the target images. 

 

Sonka et al.2-5 worked on a texture-based tissue characterization method based 

upon the training acquired on a set of representative examples. The AFMF has been 

applied to several different discrimination tasks including normal subjects, subjects 

with interstitial lung disease, smokers, asbestos-exposed subjects, and subjects with 

cystic fibrosis, as well as for the analysis of pulmonary parenchyma from X-Ray CT. 

It basically consists of four steps: preprocessing of the images, feature extraction, 

optimal feature selection, and classification. The feature computation involved 

extracting measures based on grey level distribution, percentiles, run length matrices, 

co-occurrence matrices, geometric fractal dimension and stochastic fractal dimension. 

The optimal feature selection was performed using the divergence method along with 

correlation analysis. The classification was performed using a Bayesian approach. The 

lung diseases under study were emphysema, interstitial lung disease, asbestosis and 

cystic fibrosis. 
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2.5. SUMMARY AND CONCLUSIONS 
 
In this Chapter we have developed a review of the most frequent texture analysis 

techniques and some of their main applications. The textural features that we will 

finally choose for our project in Chapter 5 are extracted from the models described 

here.  

 

Other features and models that will not be used in the current investigation have 

also been briefly described, in order to have a more general view of the complexity of 

the problem. 
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3. LUNG FUNCTION AND PATHOLOGY 

 

 

 

 

3.1. INTRODUCTION 
 

A sound knowledge of the physiology and pathophysiology of the lung will be 

necessary in diagnosis. Therefore this Chapter provides an overall view of the 

respiratory function and structure of the lungs, in order to identify the syndromes of 

abnormalities and disorders that are indicated, precisely, by the changes in structure. 

Some diseases are reviewed, indicating their cause and diagnosis, and narrowing the 

view to the most relevant ones for our research, emphysema and fibrosis. 

 

The current work is based mainly on extracting measures from CT lung scans. 

Hence, further description of CT imaginery is outlined, providing details about 

general procedures for extracting these images, benefits and risks of its use and a 

comparison between CT techniques and Magnetic Resonance Imaging (MRI). 

 

In such images, the unhealthy regions are presented with abnormally bright or 

dark grey values, which represent the main characteristic used to detect diseases. In 

fact, throughout some subsequent cases and diagnostics our goal will consist of 

detecting these areas as ‘abnormal’ without regard to the kind of abnormality, leaving 

this task to expert physicians, who can make a more accurate diagnosis. The point of 

this is that if this research is successful, physicians will save a considerable amount of 

time, since they will only have to look into the images with ‘unhealthy’ regions, and 

decide about the type of disorder. 
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3.2. LUNG FUNCTION1-14 

 

The respiratory system is composed of the lungs, the conducting airways, the parts 

of the central nervous system concerned with the control of the muscles of respiration, 

and the chest wall. The chest wall consists of the muscles of respiration (the 

diaphragm, the intercostal muscles, and the abdominal muscles), and the rib cage. 

 

Its main function is the exchange of carbon dioxide for oxygen that takes place in 

the lungs. Fresh air, containing oxygen, is inspired into the lungs through the 

conducting airways. The forces needed to cause the air to flow are generated by the 

respiratory muscles, acting on commands initiated by the central nervous system. At 

the same time, venous blood returning from the various body tissues is pumped into 

the lungs by the right ventricle of the heart. This mixed venous blood has high carbon 

dioxide content and low oxygen content. In the pulmonary capillaries, carbon dioxide 

is exchanged for oxygen. 

 

3.2.1. THE MUSCLES OF RESPIRATION AND THE CHEST 

 WALL 

 
The muscles of respiration and the chest wall are essential components of the 

respiratory system. The lungs are not capable of inflating themselves; the muscles of 

respiration must supply the force for this inflation. The chest wall must be intact and 

able to expand if air is to enter the alveoli normally. The primary components of the 

chest wall are shown schematically in figure 3.1 (left). These include the rib cage, the 

external and internal intercostal muscles and the diaphragm, which are the main 

muscles of respiration involved in the processes of inspiration and expiration. 

 

The normal inspiration and expiration processes are altered by the presence of 

disease, as we can see in figure 3.1 (centre), where static pressure-volume curves 

corresponding to the expiratory process are presented. Emphysema, as described later 

in further detail, increases the compliance of the lungs because it destroys the alveolar 

septal tissue that normally opposes lung expansion. On the other hand, fibrosis makes 

the lungs less compliant, or stiffer, and increases alveolar elastic recoil. 
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3.2.2. THE AIRWAYS 

 
After passing through the nose or mouth, the pharynx, and the larynx (the upper 

airways), air enters the tracheobronchial tree. Starting with the trachea, the air may 

pass through as few as 10 or as many as 23 generations, or branchings, on its way to 

the alveoli. The first 16 generations of airways, the conducting zone, contain no 

alveoli and thus are anatomically incapable of gas exchange with the venous blood. 

They constitute the anatomic dead space. Alveoli start to appear at the seventeenth 

through the nineteenth generations, in the respiratory bronchioles, which constitute 

the transitional zone. The twentieth to twenty-second generations are lined with 

alveoli. These alveolar ducts and the alveolar sacs, which terminate the 

tracheobronchial tree, are referred to as the respiratory zone.  

 

The structural architecture of the airways is composed of cartilage, smooth muscle 

and fibrous tissue, and this structure is shaped like natural or random fractals 

(structures that grow with an element of chance and over a range of magnifications 

have the same fractal dimension). It varies considerably, depending on their location 

in the tracheobronchial tree. The trachea is a fibromuscular tube supported 

ventrolaterally by C-shaped cartilage and completed dorsally by smooth muscle. The 

cartilage of the large bronchi is semicircular, like that of the trachea, but as the 

bronchi enter the lungs, the cartilage rings disappear and are replaced by irregularly 

shaped cartilage plates. By definition, airways with no cartilage are termed 

bronchioles. Because the bronchioles and alveolar ducts contain no cartilage support, 

they are subject to collapse when compressed.  

 

3.2.3. THE ALVEOLAR-CAPILLARY UNIT 

 
This unit is the site of gas exchange in the lung. The alveoli, estimated to number 

about 300 million, are almost completely enveloped in pulmonary capillaries. There 

may be as many as 280 billion pulmonary capillaries. The result of these staggering 

numbers of alveoli and pulmonary capillaries is a vast area of contact between alveoli 

and pulmonary capillaries, probably 50 to 100 m2 of surface area available for gas 

exchange by diffusion. 
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A dense fibrous network of collagen and elastin in the interstitium that surrounds 

the airways provides the architectural struts needed to support the large gas exchange 

surface. Fibers originated in the visceral pleura radiate inward to invest each lobe and 

subdivide the lobes into lung segments. Elastic fibers contribute to the fibrous 

elements in which a contractile property is added to the structure. Alterations in this 

fiber network such as overgrowth (pulmonary fibrosis) or destruction (emphysema) 

can cause severe dysfunction. 

 

The acinus (figure 3.1 right) is the basic gas exchange unit of the lung and consists 

of those structures distal to the terminal bronchiole. The acinus is a descending series 

of branches and includes two to five orders of respiratory bronchioles, two to five 

orders of alveolar ducts, one to three alveolar sacs, and alveoli.  

 

 

 

 

 

 

 

 
 

Figure 3.1. Lung structure and function. 

Left: repiratory muscles. Centre: Compliance curves comparing normal/abnormal states. Right: Acinus 
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3.3. LUNG DISEASES1-16,1-17 

 
3.3.1. OVERALL VIEW 

 
In taking medical history of a patient with pulmonary problems, the physician 

should note the primary symptoms of pulmonary disease and also any symptoms 

arising from other organ system that may relate to pulmonary disorders. These 

primary symptoms are cough, expectoration, dyspnea, wheezing and chest pain. Key 

points in the patient’s past medical history include smoking, allergies, and 

occupational exposure to potential disease-producing environments. The presence of a 

particular syndrome constitutes a functional diagnosis. This will reflect, and in some 

instances indicate precisely, the underlying changes in structure that are present in CT 

scans. 

 
Diseases of the airways can be localised, e.g. a tumour or polyp, or generalised. 

Generalised conditions of the airways can present with cough and expectoration of 

phlegm, with wheeze which may be episodic, or with breathlessness on exertion. The 

classical causes are then chronic bronchitis, asthma and emphysema. However the 

conditions may coexist and all can be associated with airflow limitation so the 

distinction between them is not always clear cut. This has led to use of the terms 

CNLD (chronic non-specific lung disease), COLD (chronic obstruction lung disease), 

COPD (chronic obstructive pulmonary disease) and CAO (chronic airways 

obstruction). CNLD describes chronic airflow limitation associated with chronic 

bronchitis, emphysema or asthma and carries the implication that one or more host 

factors may contribute to the flow limitation. COLD describes airflow limitation 

which is progressive, mainly irreversible and yet is clearly not due to bronchiolitis or 

asthma of defined aetiology. COPD is nearly interchangeable with COLD but can also 

describe emphysema without airflow limitation. CAO describes airflow limitation 

associated with partial bronchial obstruction and should strictly exclude flow 

limitation due to a reduced elastic recoil pressure as occurs in emphysema. However, 

the terms are of limited usefulness because they are seldom used in a precise sense. 
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In the following section, we will make a division of diseases into those that 

present an ‘above normal’ parenchymal density, and those that present a ‘below 

normal’ parenchymal density, because this is the splitting that best suits the 

considerations made in this project. 

 

3.3.2. CLASSIFICATION 

 
The main disorder under study presenting abnormally low greyscale values in 

the lung tissue is emphysema. Emphysema (figure 3.2, top left) is a condition of the 

lung characterised by an increase beyond the normal in the size of air spaces distal to 

the terminal bronchioles, and destruction of some of the air sacs and the walls of the 

airways. The expansion commonly affects the second order of respiratory bronchioles. 

That due to destruction of the walls of the airways is known as centriacinar (or 

centrilobular) emphysema. When it is due to dilatation which is secondary to the 

accumulation of inert dust in the lung it is called focal emphysema. Compensatory 

and senile types of emphysema also occur. Panacinar emphysema refers to the 

condition in which there is destruction and expansion of more than one order of 

airway within the acinus, i.e. that portion of the lung which is distal to each terminal 

bronchiole. The condition can then arise in the air sacs and alveolar ducts. Bullous 

emphysema may be said to be present when, in the inflated lung, the diameter of one 

or more of the emphysematous spaces exceeds 1 cm. Emphysema and chronic 

bronchitis together comprise COPD. The tobacco smoke is the main cause of this 

disorder. In some occasions, a little fibrosis or structural narrowing of small airways 

can appear together with emphysema. 

 

The clinical features of emphysema are relatively independent of the underlying 

pathology, except in the case of large bullae when the symptoms and signs of a space-

occupying lesion can be superimposed. The clinical history is of progressively 

increasing breathlessness, whilst cough and expectoration can be mild and of late 

onset. Wheeze is common and on clinical examination the chest is held in an inflated 

position. The chest radiograph typically shows over-inflation and loss of lung tissue. 
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At an early stage of the disease, the diagnosis can be made by computer-assisted 

tomography (CT), as showed in figure 3.2. This can identify both bullae and areas of 

reduced density where lung tissue has been destroyed. The areas of low density can be 

highlighted in the CT display.  

 

The physiological features of diffuse emphysema are secondary to the loss of lung 

tissue. This affects both the elastic recoil of the lung and the surface area which is 

available for the exchange of gas. The elastic recoil is reduced to its greatest extent in 

panacinar emphysema whilst the loss of surface occurs equally in centriacinar and 

panacinar emphysema.  

 

The diagnosis of emphysema is suspected on the basis of the clinical features and 

the chest radiograph. The diagnosis is confirmed by the findings on computer-assisted 

tomography and the assessment of lung function. 

 

The second group of this classification comprises those disorders presenting 

abnormally high greyscale values in the parenchyma. In this category, the 

interstitial lung diseases play an important role. The quantity of interstitial tissue is 

increased in many disorders of the lung. Usually reticulum is laid down the alveoli 

and there is proliferation of cubical type II cells in the walls of the alveoli, sometimes 

with desqueamation into the lumen, hyperplasia of the bronchiolar epithelium and 

arteritis of the small pulmonary arteries. These disorders are associated with diffuse 

nodular and/or irregular opacities on the chest radiograph. They are sometimes 

accompanied by dry cough and vague chest pains, and usually by breathlessness 

which is due to characteristic changes in lung function. In many of the conditions the 

lesions are initially reversible, either by removal of the cause or in response to 

treatment by steroid or immunosuppressant drugs. Subsequently they can progress via 

interalveolar and peribronchial fibrosis to diffuse interstitial fibrosis. This may be 

further complicated by infection, by diffuse dilatation of airways, by emphysematous 

distortion of parts of the lung and by extensive destruction of the pulmonary vascular 

bed leading pulmonary hypertension and right heart failure. 

 

The conditions have been classified by Turner Warwick under four headings: 
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• Widespread granulomas. These include sarcodiosis, beryllium disease, 

extrinsic allergic alveolitis caused by various organic dusts, tuberculosis and 

other granulomas. 

 

• Interstitial exudates. These are non-inflammatory when due to uraemia or to 

a raised left atrial pressure as in mitral stenosis, or to failure of the left 

ventricle. Inflammatory exudates occur with infections, cryptogenic 

fibrosing alveolitis and systemic connective tissue disease. 

 

• Disorders caused by inhaled inorganic particulates. These conditions are 

mainly of occupational origin. 

 

• Tumours and congenital dysplasias. 

 

The lung function of patients with interstitial lung disease usually combines the 

features of a restrictive ventilatory defect and a defect of gas transfer. However, one 

or other may predominate depending on the lung pathology. In the late stages the 

typical features may be obscured by airflow obstruction.  

 

In the interstitial lung diseases the lung volumes can be reduced by an increase in 

volume of interstitial tissue, replacement of ventilated lung units by fibrous tissue and 

diffuse interstitial fibrosis which reduces the distensibility of those units which 

remain. Hence the static lung compliance is reduced and the recoil pressure at total 

lung capacity is increased (figure 3.1 centre).  

 

In cryptogenic fibrosing alveolitis, also known as diffuse interstitial pulmonary 

fibrosis (figure 3.2 top right), the principal feature is thickening of the interstitium of 

the alveolar wall by collagen. These changes may be dispersed irregularly within the 

lung. In some patients, a cellular exudates consisting of macrophages and other 

mononuclear cells is seen within the alveoli in the early stages of the disease. This is 

called “desquamation”. Eventually, the alveolar architecture is destroyed, and the 

scarring results in multiple air-filled cystic spaces formed by dilated terminal and 

respiratory bronchioles. Collagen is scar tissue and is well seen in a scar on the arm, 
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for example. This can be the end result of a variety of insults including trauma, 

infection, or a burn. In the same way, interstitial pulmonary fibrosis is the end result 

of many forms of injury, and it is often impossible to determine what the injurious 

agent was.  

 

Diffuse pleural fibrosis is another disorder that shows high density in the lung 

tissue, presenting a thickening of the pleura. This condition usually affects both the 

parietal and the visceral pleura. It can be primary as following exposure to asbestos or 

secondary to pleural effusion or haemothorax. The presence of fibrous tissue reduces 

the lung compliance and increases the recoil pressure.  

 

Finally, we will briefly review bronchiectasis and lung cancer, also included into 

this second group of diseases.  

 

The term bronchiectasis (figure 3.2 bottom left) means simply dilation of the 

bronchi, but in general usage also implies the infectious destruction of bronchial 

walls. The principal clinical feature of bronchiectasis is a chronic, loose cough, 

usually productive of large amounts of mucopurulent, often foul-smelling sputum. In 

advanced cases, the sputum settles out into three layers: cloudy mucus on top, clear 

saliva in the middle, and cloudy purulent material on the bottom. The diagnosis of 

bronchiectasis can often be made from the history alone. Advanced bronchiectasis can 

be diagnosed sometimes from the standard postero-anterior chest film. CT scans with 

thin columnation are proven to be quite useful as well. However, it can be confirmed 

only after a bronchography is performed. 

 

The symptoms for bronchogenic carcinoma (figure 3.2 bottom right) at the time 

of radiologic diagnosis may be absent. However they usually show one of the 

following symptom complexes. Cough is the commonest symptom. Hemoptysis, 

which is the coughing up of blood from the respiratory tract, is a particularly 

suggestive sign and should never be ignored, particularly in patients over 35 years old 

who have a history of smoking. Vague nonpleuretic chest pain added to a worsening 

cough and hemoptysis is a common triad seen in these diseases. Dyspnea may occur, 

secondary either to an obstruction of an airway or to lymphangitic spread of the 

tumour.  
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In the majority of cases of lung cancer, the chest radiograph or CT scan is 

abnormal at the time of the diagnosis. A common radiographic abnormality is the 

solitary pulmonary nodule, by definition less than 3 cms in diameter and completely 

surrounded by lung tissue. Larger lesions are termed masses. In many cases the 

radiographic appearance of a lesion allows reliable determination of benign nature. 

Dense, central, concentric, or “popcorn” calcification seen on plain radiographs or CT 

is a reliable sign that a nodule is benign. Interpretation of calcification on CT scans 

may be confusing, because lesions containing only a fleck of calcification may 

represent scar carcinomas growing near an old calcified lesion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2. CT scans of unhealthy lungs. Top left: emphysema. Top right: fibrosing alveolitis. 

Bottom left: Bronchiectasis. Bottom right: Bronchogenic carcinoma 
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3.4. COMPUTED TOMOGRAPHY (CT)1-18 

 
3.4.1. CT AND MAGNETIC RESONANCE IMAGING (MRI) 

 
The application of digital imaging in the field of medicine has been a major 

innovation. There are many advantages of creating digital chest radiographs, such as 

the ability to use a computer to manipulate contrast levels and to process the image, 

the possibility of a greater range of contrast, the control of the image density, and the 

facility to store the information in high-density form on digital archiving devices. 

 

We will briefly compare here two of the most important modalities of digital 

radiography, CT and magnetic resonance imaging (MRI). Both of them have 

inherently good contrast, but the spatial resolution is nor as good as with conventional 

radiography. This is the main problem with these techniques, however digital 

radiography is being developed to improve this. 

 

CT has become the screening procedure of choice in evaluating many abdominal 

and spinal diseases. Improvements in scanning technology have resulted in better 

spatial resolution and faster data acquisition. This allowed a broader use of CT to 

areas such as the evaluation of bronchiectasis and other lung diseases such as 

emphysema. Furthermore, CT is no longer used exclusively for detection and 

diagnosis, but to guide biopsy and treatment. 

 

As CT technology maturated, MRI has been introduced into clinical practice. The 

initial application of MRI, like CT, focused on the brain because of its size and lack of 

respiratory or other physiologic motion. Development of surface coil technology, 

cardiac triggering, various motion suppression techniques, and fast imaging sequences 

have made it possible to use MRI for other parts of the body.  

 

The advantages of MRI are that it produces clear anatomical display in any plane, 

with no radiation risk to the patient, and that it has a soft tissue contrast sensitivity and 

discrimination unrivalled by any other imaging technique. The underlying technology 
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is particularly complex and a working knowledge of it is essential to good practice. 

The radiologist, therefore, needs the support of the technologists. 

 

As stated above, CT has been the initial imaging procedure for evaluating many 

clinical problems, as well as a non-invasive, efficacious means for assessing and 

monitoring patients with a wide variety of cancers and other chronic illness. CT has 

become readily accessible and a vital part of quality medical cares. As the numbers of 

CT examinations have substantially increased, it has become even more important to 

conduct CT in a way that maximizes diagnostic information and minimizes risks and 

costs.  

 

CT is an x-ray-generated imaging study that requires roughly the same photon 

density as conventional radiography, but is designed to focus x-rays on a limited 

cross-sectional tissue plane and to utilize those x-rays more efficiently. The efficiency 

of this method results in excellent contrast sensitivity because of its reduction in 

scatter, removal of superimposed information, sophisticated detection systems, and 

sensitive display techniques. 

 

On the other hand, MRI is technique capable of producing thin tomographic 

sections that, in contrast with CT, requires ionising radiation. It is based on the 

interaction between radio waves and atomic nuclei in the presence of a strong 

magnetic field. Whereas the pixel intensity in CT reflects electron density, in MRI it 

reflects the density of mobile nuclei modified by their magnetic relaxation times, T1 

and T2. Because the hydrogen atom, which consists of a single proton in its nucleus, 

is the most abundant element in the body and because it has a strong magnetic 

moment, it is the technique used most commonly for “in vivo” imaging. There is a 

large number of available operator-controlled parameters and it is a real challenge to 

the practicing radiologist, because even large lesions can go undetected if 

inappropriate techniques are used. But proper selection of these factors will result in 

images of high quality that will show appropriate tissues to best advantage with a 

reasonable expenditure of time. 

 

Despite the fact that very fine soft tissue details can be more readily and clearly 

seen with MRI, and that in some situations these soft tissues may be obscured by 
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nearby bone structures in a CT, the point of using Computed Tomography for images 

in the chest and lungs, is that with MRI, the air-tissue interfaces perturb magnetic 

fields, and therefore peripheral pulmonary features that may be relevant are not well 

detected due to the low density of hydrogen atoms in the inflated lungs. Hence, this is 

the technique used throughout this project to display the images of the lungs. 

 

3.4.2. GENERAL PROCEDURE 

  
CT scannings depend on the same basic physical principles as conventional 

radiography, namely, the absorption of x-rays by the atoms of the tissues. The 

difference is that by using multiple projections and computer calculations of 

radiographic density, it is possible to record finer differences in absorption that can be 

achieved with conventional films. Also, these differences can be displayed in 

sectional format without blurring. 

 

The basic components of a CT machine are: 

 

• The x-ray tube, which is similar to the x-ray tube of a conventional machine 

 

• An array of electronic x-ray detectors, placed opposite the tube, is housed in 

a scanning gantry. In stationary-rotate systems, there are stationary detectors 

arranged in a ring around the patient, and the x-ray tube rotates within this 

ring, emitting a fan-shaped beam that always covers the whole width of the 

body part to be examined. In the rotate-rotate system, both the tube and x-

ray detector array rotate synchronously around the patient, the number of 

detectors being enough to cover the fan-shaped beam, but no more. 

 

• Control devices to rotate the tube (and the detectors where appropriate) 

around the patient in a short enough time to ensure an image in one breath 

hold. 

 

• A computer to reconstruct the image from x-rays received by the detectors. 
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• Some monitors to display the images. 

The image is composed of a matrix of picture elements (pixels), the diameter of 

which determines the resolution of the image. Most machines operate with a fixed 

number of pixels in the matrix. Thus, the size of each pixel varies according to the 

diameter of the circle to be scanned. The narrower the scan circle, the smaller the area 

represented by the pixel and the higher the resolution. By the selection of specific 

areas (so-called “targeting”), the optimal resolution of the image can be displayed, 

making available to the operator information that is in the raw data but not displayed 

when the whole-body section is viewed at one time. 

 

The height of the pixel is determined by the thickness of the section and is chosen 

by the operator. In chest work, the usual routine is to place the patient supine and 

obtain contiguous 8-10 mm thick sections from the extreme lung bases to the apices. 

Thinner sections may be chosen if the lesion being investigated is very small or if 

partial volume artefacts may be influencing the interpretation of the image. Thus, each 

pixel has a definite volume. For this reason, it is frequently referred to as a volume 

element (voxel). The average radiographic density of each voxel is calculated by the 

computer, and the resulting image consists of a representation of the average density 

of each of the voxels in the section. 

 

The units have been arbitrarily chosen so that zero is water density, -1000 is air 

density and +1000 is solid bone. These units have been named Hounsfield units (HU). 

The range of densities to be displayed on the monitors is selected by the operator. 

This is necessary because neither the display nor the human eye can appreciate more 

than approximately 22 shades of grey. Two variables are employed: window width 

and window centre. The window width is the number of HUs to be displayed. Any 

densities greater than the upper limit of the window are displayed as white, and any 

below the limit of the window as black. Between these limits, the densities are 

displayed in shadows of grey. For lung images, a very wide window of 1000 HU or 

more and a centre of –400 to –600 HUs are used. 

 

Currently, the instrument in use at the Bristol Royal Infirmary1-19 (B.R.I.) is the 

Siemens Somaton Plus 4, a whole-body spiral scanner, whose largest field of view is 

500 mm. It has a choice of slice thickness from 1 to 10 mm, determined by 
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collimation of the x-ray beam. Generally, 2 to 8 mm thickness is used. Various 

corrections can be applied to minimize any artefacts and image blur from involuntary 

movement of the patient, such as heartbeat and pulse. Computer storage is sufficient 

for 3200 images of compressed data in 512x512 format. The endoscopically 

accessible central airways, which include trachea, carina, lobular and segmented 

airways, are all routinely visualized using CT scans with 2 mm collimation. This 

means that one data-set could contain as many as 80 image slices, often in pairs, one 

“hard” focus and one “soft” focus for each “slice”, as we will see in more detail in 

Chapter 7 when we work with whole data-sets of lung images. 

 

3.4.3. BENEFITS VS. RISKS 

 

Benefits: 

 

• Unlike other imaging methods, CT scanning offers detailed views of many 

types of tissue, including the lung, bones, soft tissues, and blood vessels. 

 

• CT examinations are fast and simple. Especially in trauma cases, they can 

reveal internal injuries and bleeding quickly enough to help save lives. 

 

• CT scanning can identify both normal and abnormal structures, making it a 

useful tool to guide radiotherapy, needle biopsies, and other minimally 

invasive procedures. 

 

• CT scanning is painless, non-invasive, and accurate. 

 

• Diagnosis made with the assistance of CT can eliminate the need for 

invasive exploratory surgery and surgical biopsy. 

 

• CT has been shown to be a cost-effective imaging tool for a wide range of 

clinical problems. 
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Risks: 

 

• CT does involve exposure to radiation in the form of x-rays, but the benefit 

of an accurate diagnosis far outweighs the risk. The effective radiation dose 

from this procedure is about 10 mSv, which is about the same as the average 

person receives from background radiation in three years. 

 

• Special care is taken during x-ray examinations to ensure maximum safety 

for the patient by shielding the abdomen and pelvis with a lead apron, with 

the exception of those examinations in which the abdomen and pelvis are 

being imaged. Women should always inform their doctor or x-ray 

technologist if there is any possibility that they are pregnant. 

 

• Nursing mothers should wait for 24 hours after contrast injection before 

resuming breast-feeding. 

 

• The risk of serious allergic reaction to iodine-containing contrast material 

are rare, and radiology departments are well equipped to deal with them. 
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4. DEVELOPMENT OF THE DIAGNOSTIC TOOLS 

 

 

 

 

4.1. PREVIOUS CONSIDERATIONS.  
       CHOSEN LANGUAGE AND ENVIRONMENT. 
 

As we stated in the former Chapter, we will work with data containing lung 

images and we will make an attempt to extract measures from them in order to detect 

the presence or absence of aberrations and disorders in the lung tissue. But previously 

to this, the images must be appropriately processed and treated to obtain a high degree 

of robustness in our program. Regarding this matter, many researches have been 

developed in the University’s Department of Engineering Mathematics, detailing the 

image processing from the very first scanning stage to the normalization and 

segmentation of the extracted slices, which is our starting line. We briefly expose 

these previous steps below. 

 

First of all, the scanner providing the primary data at the B.R.I. sends information 

to a host computer1-19, T.O.S.C.A., from which it can be downloaded in a compressed 

3D image format. Lung scans are usually high resolution, with a 2 mm collimation of 

the x-ray beam. A software package to unstack these slices for analysis with integrity 

was developed. It was a 16-bit image display and analysis program, optimized for 

displaying CT data. After this, the normalization and noise suppression problems 

were treated, and ultimately a consistent segmentation method was proposed, 

removing information from all the body regions except from the lungs (figure 4.1).   

 

At this point, the aim of this project is to use these segmented images to develop a 

learning machine that is able to make an automatic detection of diseases. 
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Figure 4.1. Segmentation process 
 
 
 
 
The language that we will utilize is MATLAB v. 6.0., which is a high-

performance language for technical computing that integrates computation, 

visualization, and programming in an easy-to-use environment, and it takes 

considerably less time to write a program in MATLAB than in a scalar non-

interactive language such as C or FORTRAN. 

 

In this environment we can also use a family of application-specific solutions 

called toolboxes, as well as a large number of mathematical libraries and functions for 

visualization, which will make our work much easier.  
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4.2. DEVELOPED METHODOLOGY AND PROGRAM 
       STRUCTURE 
 

The developed methodology to tackle the current subject comprises two different 

modules:  

 

1. The first module performed texture analysis on the segmented lung images. 

The image is divided into square regions, and texture measures are extracted 

from these regions.  

 

2. The second module was the definition of a learning machine based on artificial 

intelligence techniques (Neural Networks) that merged the discovered textural 

parameters into a diagnosis regarding the presence or absence of a pulmonary 

problem. 

 

Image noise and limitations of the human visual system can sometimes hinder 

radiologists, particularly in low contrast detection problems. In addition, humans 

often miss a diagnosis because the image feature was simply overlooked. 

 

Computers approach image analysis and feature extraction differently than 

humans. Computers consistently apply, without bias or distraction, the rules they are 

programmed with for feature extraction. The different approach taken by computers is 

often complementary to human observers. Therefore, researchers have recognized that 

human interpretation of CT images may be improved by adding the second opinion 

introduced by an expert system1-20. 

 

Artificial Neural Networks, on the other hand, have gained acceptance as an 

alternative to traditional statistical modelling1-21. They are useful for performing 

nonlinear statistical analysis without having to define a formal statistical model and, 

even though they often lack explanatory power and are developed using an empirical 

training procedure, they have proven to be particularly suitable for prediction and 

classification problems in medical decision making.  
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There are several ways to apply computers in the diagnostic interpretation of 

medical images. Specifically, in our system, we base it on image features extracted by 

a human observer. These features must be integrated then into a diagnosis, using 

standard diagnosis criteria. 

 

The criteria used by us, as mentioned in previous Chapters, consists of considering 

as unhealthy any aberration in the grey level scale in certain areas of the lungs, i.e., 

abnormally low density levels and abnormally high density levels, without regard to 

the kind of disease in most of the cases, and leaving this task to a posterior 

examination by expert physicians. 

 

Initially, the criteria are applied directly by a human observer, and an example of 

the result of this diagnosis is shown in figure 4.2., where we can see two pictures from 

two different patients. The first of them shows widespread emphysema with scarring 

in both lungs, which means a lost of structure and areas with clearly low grey levels. 

The second one, on the other hand, shows greyscale values significantly higher than 

normal, suggesting fibrosis. 

 

 

     

 

 

 

 

 

 

 

 

 
  4.2.a. Emphysematous lungs     4.2.b. Fibrous lungs 

 

Figure 4.2. Diagnosis made by a human observer. Some brightness corrections 

have been made to the pictures in order to see them clearer. 
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The human observer marks the square regions that he thinks are unhealthy, 

following a visual criterion. Using an expert system, this criterion is transformed into 

the digital environment, and applied in a consistent and unbiased way. Such a system 

is typically limited by imperfections and bias in the criteria it uses so we use an 

artificial neural network to reduce the bias. 

 

An expert system using neural networks learns and develops the decision criteria 

based on the examples presented to it, in our case these examples consist of square 

regions as seen in the previous figures. As more representative and unbiased examples 

are collected and used to train the neural network, it develops a model of the 

diagnostic process that it can then generalize to unseen cases. 

 

The challenge then becomes collecting the cases, selecting good features to use in 

the construction of the model and incorporate as much a priori knowledge about the 

problem as possible. 

 

In next section the different steps to develop the method, as well as the interface 

of the program used to do the process will be described in more detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



An investigation into feature selection and machine learning for detecting disease from lung scans 
 

 42

4.3. 2D INTERFACE 
 

For the current project, we have developed two different user interfaces, one for 

2D process and diagnosis, and the other one, which will be introduced in Chapter 7, 

for a 3D approach of the problem. 

 

Therefore, the initial investigations will focus on isolated single slices. The stored 

patient CT scans of this study have a resolution of 8 bit grey scale precision, i.e., 256 

greyscale levels, and we have developed a graphical interface to aid in the display and 

process of such images, as shown in the figure below. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. 2D Interface 
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To run the program, it is only necessary to type “interface” in the prompt of 

MATLAB, without any additional parameters. 

 

Next, the different elements of this graphical tool are described, paying special 

attention to the extract features and DO DIAGNOSIS  buttons, that comprise the main 

tasks developed. 

 
• Open file: 

 
Before the pre-process and segmentation of the images, the used files had 

extension “*.pgm”, and after the segmentation, the information was stored 

numerically in a file with extension “*.lg”. 

 

 Having the information this way in a file allows us to work in MATLAB 

with these values, reading them directly from the file and storing them in 

internal variables. In this type of files, we have the values sorted in four 

different columns, as follows: 

 

Column1               Column2               Column3               Column4 

File name     Row         Column  Intensity 

 

As we said previously, our work starts after the segmentation of the lungs 

is done, hence “*.lg” is the extension of the files we will work with, as we can 

see in figure 4.3., where slice “329.lg” is displayed. 

 

Two considerations are relevant here. Before opening a file, we have to 

check if it is the correct kind of file, i.e., “*.lg”, otherwise the following error 

message is displayed (figure 4.4): 
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Figure 4.4. Open file error 

 

On the other hand the size of the square window’s side we will use to mark 

the unhealthy areas, and the option of grid on/off are checked and used for the 

opened file, although this can also be done at any time later on. 

 

• Refresh image: 

 
This will remove all the marks from the current image, and besides it will 

update the parameters for a new window size, and for displaying the binary 

image, if this option is selected (we will see this below). Therefore, this must 

be used when we want to make a new process or diagnosis of the image. 

 

• Extract features: 

 
The feature extraction and all the texture features used in this project will 

be fully described in next Chapter. However, we will introduce here some 

concepts that will give us a general idea of the process. 

 

Before carrying out the extraction of the textural measures, a human 

observer has to deal with the problem of doing manually some previous 

diagnoses, based on visual perception. These diagnoses will be used in 

posterior steps to train the neural network. This step, hence, is critical for our 

application.  

 

We have used throughout this research 16x16 pixel regions, although a 

new study could be easily done with the other available window sizes, 8x8 and 
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32x32.  The way to select the areas we think are unhealthy is simply by 

clicking on them. A double click would remove the mark, leaving it as 

healthy. After completing the visual diagnosis, it can be saved to a file, so that 

it would be available for a posterior inspection. This allows the physicians to 

have available a data base for different patients and for different CT scans 

from the same person.   

 

Once we have selected the unhealthy areas, we are ready to proceed with 

the features extraction. When we press this button, a new dialog window 

appears (figure 4.5), displaying a list of 25 features. This set of features has 

been selected from all those reviewed in Chapter 2. 

 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Features extraction 
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We have divided them into five groups: 

 

• Statistical features: mean grey value, maximum and minimum grey 

value, standard deviation, range, percentile, and autocorrelation. 

 

• Co-occurrence matrix features: maximum co-occurrence probability, 

contrast, energy, inverse difference, and entropy.  

 

• Fourier features: average, energy, and maximum peak. 

 

• Grey-level image fractal features: Fractal dimension and Hurst 

exponent. 

 

• Binary features: area, compactness, eccentricity, binary fractal 

dimension, and first, second and third invariant moments. 

 

Their definitions and characteristics will be reviewed in Chapter 5. The 

question now is to understand the process of selecting a subset of features 

from these initial 25 ones. 

 

Feature selection can be empirical (pick features that have a high 

correlation with the known diagnosis when considered alone) or analytical 

(pick features based on some selection algorithm). We will start using an 

empirical approach, and when we introduce the neural networks, we will 

describe an analytical algorithm. 

 

For empirical observations, we will assume that the observer’s decision 

can be modelled by a random variable that fits the binormal model (figure 

4.6).  

 

The probability density functions of this random variable under the two 

hypotheses, i.e., normal tissue and abnormal tissue are assumed to be normally 

distributed. Since the separation between both populations is not perfect, these 
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normal
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distributions will overlap and the decision threshold, that will eventually be 

fixed by the neural network, will always involve some compromise between 

false positive (test calls an actually negative case positive) and false negative 

(test calls an actually positive case negative) decision. 

 

The underlying binormal assumption is generally preferred because many 

experimentally determined curves are binormal.   

 

Therefore, we have to look for those features that present a better 

discrimination between both populations of normal and abnormal regions, and 

combine them in order to discover which one of the many possible 

combinations of measures has the best performance for differentiating both 

classes.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6. The binormal model for empirical analysis. 
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Now we will show an initial example to demonstrate that the previous 

considerations are quite close to reality. Using a real lung image, such as that 

from figure 4.2.a, which presents some very dark areas, we can see if both 

classes actually fit the binormal model. 

 

To accomplish this, firstly the manual diagnosis was made, and then the 

“extract features” function was used. Two features were selected: mean grey 

value, and standard deviation.  

 

For each feature, a normalized histogram and a box plot with lines at the 

lower quartile, median, and upper quartile values, have been calculated (figure 

4.7). In the box plot, apart from the mentioned lines, we also have the 

whiskers which are lines that extend from each end of the box to show the 

extent of the rest of the data. The outliers are data with values beyond the ends 

of the whiskers. If there is no data outside the whisker, a dot is placed at the 

bottom whisker. 

 

Therefore, the box plot gives an idea of the dispersion of the data inside 

the same class. We can also make a comparison between both classes, normal 

and abnormal, and see if they completely overlap or if, on the contrary, they 

are separable. None of the features that we will use are perfect, hence the 

classes will not be separable for any of them. On the other hand, the 

histograms are another way of showing the distributions, and we have 

normalized them to compare both populations of data.  

 

In figure 4.7, we can see that the diagnostic potential of the mean value is 

relatively good, if we compare it with the standard deviation feature. In the 

former, the populations overlap, but we still have some discriminatory power. 

Besides, the histograms show that the binormal assumption adopted for 

modelling this problem is close to reality in this case. On the contrary, the 

standard deviation presents a very poor reliability, because normal and 

abnormal classes completely overlap, until the point that the median value is 

almost the same for both of them.  
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Figure 4.7. Mean and Standard deviation features. Comparison between both classes. 

Top of each picture: Box plot of the distributions. Bottom: Normalized Histograms. 

 



An investigation into feature selection and machine learning for detecting disease from lung scans 
 

 50

Once some features have been extracted, the numeric values are stored in 

internal variables, and we also have the option of storing them in a file in order 

to have access to them at any time. These files have extension “*.res”. An 

extract of the file with the numeric results of the previous example is 

presented in table 4.1.  

 

The classes are labelled as “0”, if abnormal, and “1” if normal. We also 

have a mark of “1” if the regions belong to the contour of the lung, or “0” if 

they belong to the inner parts. This last distinction is due to the fact that some 

features can be very good for regions belonging to the centre of the lungs, and 

very bad for the peripheric areas, since in these zones there is a lack of 

structure and therefore a lack of information.  One clear example of this can be 

any feature related to the co-occurrence matrix, because for these measures a 

square matrix with full information is needed to have an accurate result. On 

the other hand, there are some features, such as the mean grey value, that are 

not affected by the fact of belonging to the centre or to the contour of the 

lungs.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Table 4.1. Numeric values of the selected features, extracted from file. 

 

 

 

CLASS MEAN STD EDGES 

1 0.1149 0.0959 1 

1 0.1340 0.1261 1 

0 0.0618 0.1307 1 

0 0.0246 0.0287 0 

1 0.0949 0.0714 0 

1 0.1127 0.0785 0 

1 0.1189 0.1265 1 

0 0.0540 0.1036 0 
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After the feature extraction, an optimal subset of a reduced number of 

features must be selected. This subset, if our method if successful, must be the 

one that better captures the texture information of the images, so that it 

contributes to the neural network’s ability to diagnose diseases and aberrations 

in the lung parenchyma. 

 

 A last consideration must be mentioned here. As we stated before, some 

features can come up with different results depending on the position of the 

regions, i.e., centres or edges. Some different results can appear as well if we 

study the same feature for several diseases, because the conditions and 

structure of the disorders can change considerably. Therefore, the best subset 

of features for emphysema does not necessarily have to be the optimal one for 

fibrosis or bronchiectasis, although it also depends on the type of features that 

we work with.     

 

• Save diagnosis: 

 
After the human observer marks manually the unhealthy areas, or the 

diagnosis is carried out automatically by our tool, we will want to store this 

diagnosis into a file. Doing this, the physicians will save time, since they will 

not have to wait for all the process to be accomplished again each time that 

they want to consult the CT scans from some patient. 

 

The extension used for this type of files is “*.dgn”. If diagnoses using 

different window sizes are done, they do not need to be stored in three 

different files. They can be saved in the same file, and we can also overwrite 

the diagnosis made for a particular window size at any moment, without 

affecting the diagnoses that belong to the others. 

 

Therefore, a manageable data base with lung scans and their diagnoses 

can be easily organized in order to save time for the expert physicians. 
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• Load diagnosis: 

 
This allows us to recover the diagnoses that have been previously done for 

the current image. 

 

The diagnosis is read from a file, and immediately after the unhealthy 

regions are marked with a red square if the window size is 16 or 32, or with a 

red X in the corner of the region if the window size is 8, for a clearer 

visualization of the image. 

 

If the diagnosis that we are trying to load is empty for the current window 

size, the following error message is displayed: 

 

 

 

 

 

 
 

Figure 4.8. Load diagnosis error. Invalid window size. 

 

On the other hand, if the diagnosis file does not belong to the current 

image, this error message is displayed instead: 

 

  

 

 

 

 
Figure 4.9. Load diagnosis error. Invalid file. 
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• DO DIAGNOSIS: 

 
This is the last step of the whole process, where features extraction and 

artificial neural networks are combined and merged into the same diagnostic 

tool. 

 

After the final selection of a subset of representative features, which are 

the ones that best define the textural properties of the lungs images, these 

measures are used to train an artificial neural network for the automatic 

detection of pulmonary diseases.  

 

The neural network used in this project and all its characteristics are 

explained in Chapter 6. Basically, the process consists of training and testing 

the net with different subsets of features, the so-called feature vectors, until the 

performance obtained can not be beaten, and hence the selection process stops 

at that point. We also have to consider that the size of the subset must not be 

too large, in order not to complicate the neural network too much. The 

artificial neural networks are used in the model building process because they 

are useful for capturing complex hidden relationships between many input 

variables. 

 

To accomplish the diagnosis of the current lung image, firstly the image is 

divided into square regions, depending upon the window side, which in our 

study consists of 16x16 pixels regions. Then, the feature vector is calculated 

for each area. We will see later in next Chapters that different feature vectors 

are used for the edges and for the centres, and hence different neural networks 

are needed as well. At the next stage, these feature vectors are simulated using 

the neural networks, and then we come up with the final diagnostic results, 

detecting presence or absence of disease. 

 

Finally, the unhealthy areas are marked, and the diagnosis is showed in the 

image. Then, we can save it to a file and process a new slice. 
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• Binary image / grey level image: 

 
Some of the features that we work with in this project, as stated in a 

previous section, are binary features. This group of binary measures, that will 

be fully reviewed in next Chapter, include binary area, compactness, 

eccentricity, binary fractal dimension, and first, second and third invariant 

moments.  

 

In order to utilize these features, first we have to convert the image under 

study into a binary image. As an example of this, we have used the images 

from figure 4.2, which present abnormally low and high density levels 

respectively. 

 

The greyscale range that we are using is 0 (black) – 255 (white), and in the 

conversion, all the values below a certain low threshold and above another 

high threshold are turned to white, while the rest of the values are turned to 

black. 

 

The choice of the thresholds is an important and delicate question, because 

this will have an influence upon the quality of the features. We have chosen a 

low threshold of “12” for the abnormally low greyscale values, and a high 

threshold of “80” for the abnormally high greyscale values. The reasons of this 

are explained in Chapter 5. 

 

In figure 4.10, we have the binary versions of those images from figure 

4.2. For the first image, which corresponds to an emphysematous lung with 

large dark areas, we have used a low threshold of “12”, as mentioned before, 

and a high threshold of “255”, because we are only interested in this case in 

detecting the presence of low-density areas. For the second image, which 

corresponds to a fibrous lung with large bright areas, the high threshold was 

fixed to “80”, and the low threshold to “0”, for similar reasons than the case 

before.  
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      4.10.a. Emphysematous lung             4.10.b. Fibrous lung 

Figure 4.10. Binary images, corresponding to figure 4.2. 

 

In the figure above, the unhealthy regions have been also marked, to 

demonstrate visually that the thresholds actually fit with the diagnoses carried 

out by a human observer. Therefore, we can also use these binary images as a 

means to help in the reduction of mistakes when a visual and manual diagnosis 

by humans is accomplished. 

 

Figure 4.11 shows the graphic tools available in our interface to do the 

conversion. There is a toggle button that displays the binary image when 

pressed and the greyscale image otherwise. The thresholds can be set directly 

by hand or using sliders. The default values for the thresholds are “12” and 

“80”.  

 

 

 

 

 

 

 

 

 
Figure 4.11. Binary conversion tools. 
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• Exit: 

 
Terminate the program. The graphical user interface is closed. As an 

alternative to this, select Close from the File menu or click the close box in the 

figure. 

 

• Select window size: 

 
The options are these three: 8, 16, and 32. Throughout this project, a 

window size of 16 has been used, therefore for the obtention of useful results, 

this is the size that must be utilized when an automatic diagnosis is required.  

The same process, i.e., selecting new features and training again some 

neural networks, should be repeated for the other sizes if we are determined to 

use them.  

 

• Grid: 

 
This turns the current image's grid lines on and off. For a better 

visualization, it is highly recommended to turn them on. 
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4.4. SUMMARY AND CONCLUSIONS 
 
An automatic diagnostic tool approach is presented using texture analysis and 

artificial neural networks to assist physicians in the diagnosis of density disorders in 

the pulmonary parenchyma. 

 

An optimal subset of textural features is needed to achieve a high performance, 

being the ideal goal of this system to accomplish a performance similar to physicians 

for disease detection. In Chapters 5 and 6, we will try to fulfil this aim. 

 

A neural network, basing its diagnosis on these image features extracted from 

training cases during its development, will be utilized as the chosen artificial 

intelligence technique to merge the texture measures into a diagnosis. In Chapter 6, 

the neural networks are explained in detail. 

 

To summarize, the development of the building model process consists of the 

following steps: 

 

1. Investigate representative cases of study. 

 

2. Determine a criterion for the diagnosis of these cases. 

 

3. Extract several features from image regions. 

 

4. Process the features. 

 

5. Merge the extracted features into a diagnosis using one or more artificial neural 

networks. 

 

6. Test developed system using unseen images. 
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Finally, the file extensions used in this project are summarized below: 

 

 
Table 4.2. File extensions 

 

Extension Information contained 

*.lg lung region data points in row, column,  and intensity groups 

   *.dgn diagnosis 

  *.res numeric values from the features extraction 
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5. FEATURE SELECTION 

 

 

 

 

5.1. INTRODUCTION 

 
Texture analysis is an active research field and a large number of schemes for 

texture feature extraction have been proposed1-22. In Chapter 2, a review of the most 

popular techniques and models for texture analysis, as well as its main problems and 

some applications, was carried out.  

 

We have developed a feature extraction method that consists of splitting the whole 

lung image in 16x16 pixels regions, and extracting a texture feature vector for each 

region in each image. We are looking for a method that describes textures in a form 

suitable for pattern recognition, and as a result of the description, each region’s 

texture is represented by a feature vector of properties. The next step would be to 

estimate the abnormality of each region based on these feature vectors, and to find a 

decision rule assigning a texture to some specific class, i.e., normal or abnormal (see 

Chapter 6).    

 

The aim of this Chapter is to present a set of features, selected from all those 

described in Chapter 2, and to study which of them have a significant diagnostic 

potential, and can be reliably utilized to discriminate between healthy tissue and 

unhealthy tissue. 

 

The measures initially chosen for this investigation can be named as “classical 

features”, in the sense that they can be found in many text books about image 

processing and analysis1-23, 1-24. The main criteria utilized for the selection of the 

textural parameters were: 
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• High popularity in the literature, which is a means to check their respective 

performances in previous investigations, and therefore to justify their use in 

ours. 
 

• Ease of implementation and use of the parameters in the design of the 

architecture. This will allow us to reduce the number of unclear assumptions 

that can cause unknown effects on the final program and the user interface 

design. 
 

• Simplicity and efficiency. Within this project the procedure for recognizing 

the problematic regions and distinguishing them from the non problematic 

ones must be as simple as possible, because very complex features can 

increase considerably the computational cost. However, some complex 

features can be very efficient for discriminatory tasks, so we must have a 

balance between efficiency and computational cost as well.  
 

Once this first set of features has been chosen, the next question in our texture-

based tissue characterization method is to select the optimal subset of features from 

this initial set that best performs the detection of diseases. 

 

In the previous Chapter, we saw that the feature selection can be accomplished in 

an empirical or in an analytical way. Here we will introduce an empirical approach, 

picking features without using any selection algorithm, in which a qualitative and 

visual comparison among the measures will be developed. We will not come up with 

a quantitative study until Chapter 6, where the neural networks will be utilized to 

check the performance of the textural parameters. 

 

Each feature has been tested in different lung images with abnormally low, 

abnormally high and normal greyscale levels, and their respective histograms and 

density functions have been plotted. The binormal hypothesis described in former 

sections (figure 4.6) will be further confirmed for some of the features and, on the 

contrary, rejected for others.  
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Due to the fact that the differentiation between both populations of texture 

patterns is not fully complete, some overlapping will appear in the distributions, hence 

in the final results some false negative and some false positive cases will be present. 

The neural networks will be the tools used to optimize the task of minimizing these 

errors. 

 

Initially, we could expect that those features that are actually very clearly related 

to human visual perception, such as the mean grey value, will come up with a 

relatively good differentiation between healthy and unhealthy areas. Notwithstanding, 

there are other texture properties connected to the spatial distribution of the grey 

values, such as smoothness, coarseness, compactness or regularity, that we are not 

able to predict with the naked eye how good they are to characterize disease 

conditions.    

 

To summarize, in the next sections of this Chapter we will deal with the following 

points: 

 

• Review of the textural features used in the set, which we will divide in five 

groups as follows: statistical features, co-occurrence matrix features, Fourier 

features, grey-level image fractal features, and finally a new group that was 

not mentioned in Chapter 2, but that is interesting for our research yielding 

good results, composed by binary features. We have eventually come up with 

a final list of 25 textural parameters, detailing their main characteristics and 

equations. 
 

• Initial trials to evaluate the discriminatory potential of each feature, using two 

sets of samples from lung tissue regions that belong to two different patients. 

One of them presents abnormally low parenchymal density, which 

corresponds to a clear condition of emphysema. The other one presents 

abnormally high parenchymal density, which in this case was diagnosed as 

fibrosing alveolitis.  
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We will check if the features that are liable to detect the underlying structural 

properties that characterize the emphysematous conditions are also able to 

detect other diseases, such as fibrosis. In this case, the simplicity of our system 

would be increased, and the expense of time in the feature extraction stage of 

the process reduced. 

 

The tools used for this purpose are the normalized histograms of the 

populations of both classes, normal and abnormal, and a box-shaped density 

function, which allows us to visualize the distributions in a clearer way. This 

will be described later on. 
 

• Finally, a further word about features in the edges is necessary. In the regions 

that belong to the contour, there is a lack of structure that can bias the results 

for some features, and therefore a separate study is suggested. 
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5.2. SELECTION OF A SET OF FEATURES TO 
        EVALUATE1-23, 1-24 

 
The feature computation for this investigation involves extracting textural 

measures based on: 

 

5.2.1. STATISTICAL FEATURES 

 
In the next equations, I(i,j) represents one pixel of the image, and N is the window 

size, which in our research has a value of 16, representing 16x16 pixel regions. 

 

• Mean Grey Value: 
 

An indicator of the average tone of the region. 

 

(5.1) 

 

 

• Maximum and Minimum Grey Value: 
 

An indicator of the highest and lowest tones of the region. 

 

(5.2) 

 

(5.3) 

 

• Standard Deviation:  
 

An indicator of how much variation exists in the image with respect to the 

average tone. 

 

(5.4) 
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• Range: 
 

An indicator of how much absolute variation exists in the region. It depends 

only on the extreme tones in the area. 

 

(5.5) 

 

• Percentile: 
 

The percentile of a distribution of values is a number xp such that, after the 

data has been ordered from smallest to largest, a percentage p of the 

population values are less than or equal to xp. For example, the 25th percentile, 

also referred to as the .25 quantile or lower quartile, of a variable is a value 

(xp) such that 25% (p) of the values, in this case grey levels, of the variable fall 

below that value. 

 

Similarly, the 75th percentile, also referred to as the .75 quantile or upper 

quartile, is a value such that 75% of the values of the variable fall below that 

value and is calculated accordingly. The range of valid values for the 

percentiles, hence, is [0,1]. The lower and upper quartiles are the percentiles 

most frequently used. For our study, the 0.75 quantile was utilized, yielding 

satisfactory results, as we will see in next sections. The percentiles are 

calculated following these steps: 

 

1. Rank the data from lowest to highest 

 

2. Compute the location L from equation 5.6, where n is the number of data 

points and k is the percentile. 

 

(5.6) 

 

3. The Lth score counting from the lowest is the kth percentile. If L is not a 

whole number, then round up and down, and average them out. 
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• Autocorrelation: 
 

Measuring spatial frequencies is the basis of a large group of texture 

recognition methods. Textural character is in direct relation to the spatial size 

of the texture primitives; coarse textures are built from larger primitives, and 

fine textures from smaller primitives. Fine textures are characterized by higher 

spatial frequencies, coarse textures by lower spatial frequencies. 

 

One of the many related spatial frequency methods evaluates the 

autocorrelation function of a texture. In an autocorrelation model, a single 

pixel is considered a texture primitive, and primitive tone property is the grey 

level. Texture spatial organization is described by the correlation coefficient 

that evaluates linear spatial relationships between primitives. If the texture 

primitives are relatively large, the autocorrelation function value decreases 

slowly (coarse texture) with increasing distance, while it decreases rapidly 

(fine texture) if texture consists of small primitives. If primitives are placed 

periodically in a texture, the autocorrelation increases and decreases 

periodically with distance. 

 

The normalized autocorrelation function of texture is described by the 

equation below: 

 

 

 

(5.7) 

 
 

In equation 5.7, p,q is the position difference in the i,j direction, and M,N are 

the image dimension, in our case M=N=16. Normally, the values used for 

parameters q and p are (0,1), (1,1), and (1,0). After several trials, the pair (0,1) 

was chosen for a further study here.  
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5.2.2. CO-OCCURRENCE MATRIX FEATURES 

 
This method of texture description is based on the repeated occurrence of some 

grey level configuration in the texture. This configuration varies rapidly with distance 

in fine textures, and slowly in coarse textures1-25, 1-7. Let the analysed part of a 

textured image a rectangular window NxN (in our case, 16x16). An occurrence of 

some grey level configuration may be described by a matrix of relative frequencies 

Pd(i,j) for a displacement vector d=(dx,dy) as follows. The entry (i,j) of Pd is the 

number of occurrences of the pair of grey levels i and j which are a distance d apart. 

Formally, it is given as 

 

(5.8) 

 
where (r,s), (t,v) € NxN, (t,v)=(r+dx,s+dy), and ¦.¦ represents the cardinality of a set of 

data. 

 

As an example, consider the following 4x4 image containing 3 different grey 

values: 

 

 

 

 

 

The 3x3 grey level co-occurrence matrix for this image for a displacement vector 

of d=(1,0) is given as follows: 

 

 
 
 
 

Here the entry (0,0) of Pd is 4 because there are four pixel pairs of (0,0) that are 

offset by (1,0) amount. Examples of Pd for other displacement vectors are given 

below (table 5.1): 
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Table 5.1. Co-occurrence matrix examples. 

 
 

Notice that the co-occurrence matrix so defined is not symmetric. But a symmetric 

co-occurrence matrix can be computed by the formula P=Pd+P-d. 

 

The co-occurrence method describes second-order image statistics and works well 

for a large variety of textures1-26. Good properties of the co-occurrence method are the 

description of spatial relations between tonal pixels, and invariance to monotonic grey 

level transformations. On the other hand, it does not consider primitive shapes, and 

therefore cannot be recommended if the texture consists of large primitives. Memory 

requirements represent another big disadvantage, although this is definitely not as 

limiting as it was few years ago. The number of grey levels of the images we are 

working with, though, has been reduced from 256 to 32, which decreases the co-

occurrence matrix sizes, without experimenting a considerable loss of grey level 

accuracy in practice.   

 

Although co-occurrence matrices give very good results in discrimination between 

textures, the method is computationally expensive. A fast algorithm for co-occurrence 

matrix computation is given in1-27.  

 

The following algorithm calculates the co-occurrence matrix Pd from the image 

I(i,j) and the displacement vector d=(dx,dy): 

 

1. Assign Pd(i,j)=0 for all i,j Є [0,L], where L is the maximum brightness 

 

2. For all pixels (r,s) in the image, determine (t,v) which has the relation d with 

the pixel (r,s), i.e., (t,v)=(r+dx,s+dy), and increment Pd thus, 

 

d=(0,1) 








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
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 (5.9) 

 

There are some interesting properties in this matrix. Values of the elements at the 

diagonal of the co-occurrence matrix Pd(k,k) are equal to the area of the regions in the 

image with the brightness k. Thus the diagonal elements correspond to the histogram. 

The values of the elements off the diagonal Pd(k,j)  are equal to the length of the 

border dividing regions with brightnesses k and j, k≠j. For instance, in an image with 

low contrast the elements of the co-occurrence matrix that are far from the diagonal 

are equal to zero or are very small, and the texture is coarse. For high contrast images 

the opposite is true.  

 

A set of features proposed by Haralick1-7 include: 

 

1. Energy:   

 

It is also called Uniformity or Angular Second Moment, and represents an 

image homogeneity measure: the more homogeneous the image, the lower 

the value. Its value is lowest when the elements of the co-occurrence 

matrix are all equal. 

 

(5.10) 

 

2. Entropy:  

 

It is a measure of randomness, achieving its highest value when all 

elements of Pd are equal. 

 

(5.11) 

 

3. Maximum probability: 

 

This property gives an indication of the strongest response to Pd. 

 

(5.12) 
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4. Contrast: 

 

This descriptor is a measure of local image variations. It has a relatively 

low value when the high values of Pd are near the main diagonal since the 

differences (i-j) are smaller there. 

 

(5.13) 

 

5. Inverse Difference moment: 

 

It has the opposite effect of the previous characteristic. Its value is high 

when the high values of Pd are far from the diagonal. 

 

(5.14) 

 

6. Correlation:  

 

It is a measure of image linearity. Linear directional structures in the 

direction d result in large correlation values in this direction. 

 

(5.15) 

 

 

where mx, my are means and σx, σy standard deviations: 

 

 

 

 

 

 

The most usual values for the displacement vector are (0,1), (1,0), and (1,1). 

Coinciding with the autocorrelation feature, d=(0,1) will be the selected one. 
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5.2.3. FOURIER FEATURES 

 
The Fourier transform describes spatial frequencies extremely well1-28. It is ideally 

suited for describing the directionality of periodic or almost periodic two-dimensional 

patterns in an image. These global texture patterns, while being easily distinguishable 

as concentrations of high-energy bursts in the spectrum, are generally quite difficult to 

detect using spatial methods because of the local nature of these techniques. In 

opposition to the co-occurrence matrices, the classification measures from the Fourier 

spectrum of image segments is a different statistical technique that uses the absolute 

differences between pairs of grey levels in an image region. 

 

Average values of energy in specific wedges and rings of the Fourier spectrum 

can be used as textural description features. Features evaluated from rings reflect 

coarseness of the textures; high energy in large radius rings is characteristic of fine 

textures (high frequencies), while high energy in small radii is characteristic of coarse 

textures (low spatial frequencies). Apart from these measures extracted from rings and 

wedges, there is another approach for obtaining Fourier features related to the 

amplitudes of the spatial frequencies, that is the one we will use here. 

 

This classification measures from the Fourier spectrum of image regions require 

the calculation of the fast Fourier transform (FFT) for each area and the definition of 

features in terms of the amplitudes of the spatial frequencies. The discrete Fourier 

transform F(n,m) of a digitized image segment I(j,k) of size NxN is defined by  

 

(5.16) 

 

where (i=√-1), (n,m) are the discrete spatial frequencies, and (j,k) are the pixel 

positions. 

 

The set of features based on the power spectrum consists of three statistical 

measures. If |F(n,m)| is the matrix containing the amplitudes of the spectrum and N2 is 

the number of frequency components then these measures, proposed by Augusteijn et 

al.1-29 are given by: 
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(5.18) 
 
 
 

(5.19) 
 
 
 
 
5.2.4. GREY-LEVEL IMAGE FRACTAL FEATURES2-6 

 
A detailed description of the relevance of applying fractal measures as a possible 

means to detect the presence of diseases in the pulmonary parenchyma was outlined 

in Chapter 2. Fractal geometry is becoming increasingly more important in the study 

of image characteristics, since it allows quantification of structure or pattern across 

many spatial or temporal scales and therefore could be useful in many biomedical 

applications1-30.  

 

The fractal dimension is a measure of randomness, as well as of complexity. In the 

human body, we have some complex structures, such as the brain and the bronchial 

tubes, whose fractal dimension is liable to be calculated, and to be used as a tool for 

the quantification of structure changes.  

 

There are numerous methods available to estimate parameters from images of 

fractal surfaces. The images’ fractal dimension may be measured, for example, by use 

of the local second-order statistics (interpixel differences change with distance) or the 

Fourier power spectrum1-31. In our study two techniques to estimate the fractal 

dimension have been developed.  

 

The first one, explained below, comprises a study based on greyscale images of 

the lungs, yielding a range of values between 2 and 3, which is what we should expect 

because the fractal geometry can be considered as an extension of Euclidean 

geometry, and allows non-integer dimensions. Perfectly flat planes have Euclidean 

dimension of 2, but real surfaces have a dimension greater than 2, which is our case. 
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The second one, on the other hand, is based on a binary version of the greyscale 

images, which is a general and powerful technique if the conversion is carried out 

conveniently and will be discussed in next section.  

 

Many surveys comparing methods for measuring fractal dimensions have been 

conducted1-32. The one chosen here uses the difference between pixels at different 

scales, coming up with a measure linearly related to the fractal dimension, called the 

Hurst exponent (H), as follows: 

 

1. For k=1,…, N , a measure of the interpixel grey level difference is 

obtained: 

 

 

(5.20) 

 

 

where N is the window size, and k is the increasing distance. 

 

2. In practice, H can be estimated from the slope of the log-log plot: 

 

(5.21) 

 

where T is a constant, and H the Hurst exponent 

 

3. The fractal dimension (FD) can finally be obtained by: 

 

(5.22) 

 

 

As an example, in figure 5.1 a zoom into a 16x16 region extracted from the lung 

of figure 4.2.a and the log-log plot are shown, and its fractal dimension has been 

calculated following this procedure. 
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Figure 5.1. Grey-level differences method for measuring the fractal dimension 

 
 
 
 
 
5.2.5. BINARY FEATURES2-7 

 
Binary images are images that have been quantised to two values, usually denoted 

0 and 1, but often with pixel values 0 and 255, representing black and white. They are 

typically obtained by thresholding a grey level image. However, choosing a threshold 

can be difficult, and is even considered by some1-33 to be a “black art”. Most 

approaches make use of the histogram of the number of times each grey level occurs 

in the image. 

 

In our case, two different thresholds have to be selected, one for differentiating 

abnormally dark areas from normal ones, and the other for differentiating abnormally 

bright areas. The histograms for abnormal and normal regions are not perfectly 

bimodal and will overlap, making it more difficult to find good values for the 

thresholds since there will be no clear way of choosing them.  

 

An empirical approach has been utilized here to find the thresholds that are better 

for the conversion from a greyscale image to a binary image. Repeated observations 

of different regions considered unhealthy and healthy using several images were 

carried out. 
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In next figure, we present some samples of these observations, extracted again 

from figures 4.2.a. and 4.2.b: 

 

 

 
 
 
 
 
 
 
 
 
 
 

5.2.a. NORMAL DENSITY AREA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2.b. LOW DENSITY AREA 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2.c. HIGH DENSITY AREA 
 

Figure 5.2. Threshold selection Process 
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The histograms above show the grey level distributions in these three cases: low, 

normal and high density areas. The window size, as usual, is 16, and we have done a 

zoom in on the regions to see them clearer. Along with each region, we also present 

the binary image as the result of applying the thresholds.  

 

We have to distinguish thus both cases to understand the results. For the high 

threshold, pixels with a grey level above the threshold are set to 1 (equivalently 255, 

white), whilst the rest are set to 0, black. On the other hand, for the low threshold, 

pixels with a grey level below it are set to 1, and the rest to 0. In figure 5.2.a, most of 

the pixels are black, which is an indication of normality; however in figures 5.2.b and 

5.2.c, most of them are white, indicating abnormality.   

 

There is another consideration that we can get out of the previous histograms, 

which is that the low threshold appears to be much more sensitive to changes than the 

high threshold. This is due to the fact that the histograms corresponding to low 

density are more concentrated in the lowest positions of the grey level scale, while the 

other histograms are more disperse and we can have a larger range of selection for the 

threshold. Furthermore, there are sometimes healthy and unhealthy parts in the same 

region, which makes it even more difficult to obtain accurate results. After many trials 

and observations, we have come to the result that the optimal range of values for the 

low threshold is [10-15], and [75-85] for the high threshold (the whole range of grey 

levels is [0-255]), and they have eventually been set to the values “12” and “80” 

respectively. 

 

Once the conversion from a greyscale image to a binary image has been 

explained, we can carry out the analysis of some binary measures. The parameters 

that are used to describe them are various statistical measures, which may be divided 

into two distinct classes: geometrical descriptors and topological descriptors.  

 

We will narrow the study to the fractal dimension of the binary image, and to 

some geometrical descriptors, which are: area, compactness, eccentricity, and the 

first, second and third invariant moments. 
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• Area: 
 

It is the simplest and most natural property of a region, and it is given by the 

number of pixels of which the region consists, i.e., the number of pixels that 

have been set to 1. A normalized version is presented below:  

 

 

(5.23) 

 

 

where b(n,m) represents a pixel of the binary image, and N2 is the number of 

pixels in the region. 

 

• Compactness: 
 

Compactness is a popular shape description characteristic invariant with 

respect to scaling and rotation. 

 

(5.24) 

 

where 4N is the region border length. 

 

• Eccentricity: 
 

This descriptor is sometimes called elongation, and it is invariant with respect 

to scaling, rotation and translation. This is the ratio of the maximum length of 

line or chord that spans the region to the minimum length chord. We can also 

define this in terms of moments as follows: 

 

(5.25) 
 

 

where µ20,µ02, and µ11 are invariant moments, as explained below. 
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• Moments: 
 

Moments can be used for grey level region description and also for binary 

description1-34. A moment of order (p+q) is dependent on scaling, translation, 

rotation and is given by: 

 

(5.26) 

 

where (n,m) are the pixel coordinates. 

 

Translation invariance can be achieved if we use the central moments: 

 

(5.27) 

 

where xx and yc are the coordinates of the region’s centre of gravity (centroid) 

which can be obtained using the following relationships 

 

(5.28) 

 

 

where m00 represents the binary area.  

 

The central moments of order 3 can be expressed as follows: 

 

µ00=m00,   µ11=m11-ycm10 

µ10=0,    µ30=m30-3xcm20+2m10xc
2 

µ01=0,    µ12=m12-2ycm11-xcm02+2yc
2m10         (5.29) 

µ20=m20-xcm10,  µ21= m21-2xcm11-ycm20+2xc
2m01   

µ02= m02-ycm01,  µ03= m03-3ycm02+2yc
2m01 

 

 

Scale invariant features can also be found in the normalized central moments 

hpq, defined as: 
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From the second and third moments, a set of seven invariant moments can be 

derived. The first, second and third invariant moments are given by 

 

(5.31) 

 

(5.32) 

 

(5.33) 

 

• Binary Fractal Dimension: 
 

This is a different approach to study the fractal dimension of an image. In fact, 

since we will work with binary images obtained from the application of certain 

brightness thresholds to the grey scale image, we cannot expect that the 

resulting pattern is a real fractal object. However, a “fractal dimension” can be 

calculated and we can work with it as a measure of information and 

complexity of the binary structure.  

 

Some surveys have been developed to demonstrate the reliability of using 

fractal measures derived from binary images. Pentland1-31 demonstrated that 

fractal based segmentation converting a grey image to binary image according 

to local fractality yielded higher classification accuracy than other methods 

such as correlation statistics, co-occurrence statistics, and texture energy 

statistics. 

 

The program used to find the fractal dimension (courtesy of Dr. Jonathan 

Rossiter), utilizes the box-counting method described in Chapter 2, yielding 

high values when we test it on abnormal areas (figure 5.2.a and b), and low 

values for regions considered as normal(figure 5.2.a). The range of possible 
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values is [0-2]. If the region contains only zeros, then the fractal dimension is 

2, and if it contains only ones, it yields a result of 0. 

 

 

A large number of texture features have been proposed. But these features are not 

independent as pointed out by Tomita and Tsuji1-35. The relationship between the 

various statistical texture measures and the input image is summarized in the next 

figure: 

 

 

 
Figure 5.3. The interrelation between the various second-order statistics and the input image 
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5.3. INITIAL TRIALS. 
 

The next step in our research has to be the evaluation of each feature as a method 

of differentiating normal lung tissue regions from abnormal ones. A comparison 

amongst all the features belonging to the first set has to be carried out in order to 

obtain a final reduced subset with the ones that yield the best performances.  

 

To make the comparison between both classes of regions, healthy and unhealthy, 

we have plotted histograms and box-shaped density functions. The histograms have 

been normalized in order to make a clearer comparison, making the sum of all the 

grey level occurrences of each class equal to one. This is though a qualitative and 

empirical approach, and the final quantitative method for the current project will be 

based on neural networks.  

 

However, there are certain tools in MATLAB that we could use to make a first 

attempt to evaluate the performance of each feature in a numerical way. This function 

is anova1, an extended version of the boxplot function that was initially described in 

Chapter 4. It performs a comparison between both sets of data (healthy/unhealthy) 

under the null hypothesis that all the samples in both groups are drawn from the same 

population or from different populations with the same mean, and returns a p-value. If 

this value is near zero, this casts doubt on the null hypothesis and suggests that both 

means are significantly different. Therefore, the lower the p-value, the higher the 

discriminatory power of the feature under study.  

 

The test makes the following assumptions about both populations: 

 

• They have equal variance 
 

• They are normally distributed 
 

• Both observations are mutually independent 
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The test is known to be robust to modest violations of the first two assumptions, 

and we will illustrate these first trials with these results. 

 

A further word about the features in the edges is needed before starting off the 

following process. There are some features that yield poor and unreliable results if 

they are calculated in regions that include pixels belonging to the outer parts of the 

lungs. The reasons of this are explained in next section, but here we can see an 

example in figure 5.4, where the histograms for the energy of the co-occurrence 

matrix corresponding to the lungs from image 4.2.a are plotted. We can see that the 

range of values for the edges concentrates in [0-0.12], while the range for the centres 

is [0-0.35], plus the distributions clearly vary. For this reason, if we mix in the same 

study edges and centres, the results will appear biased. Hence, we will only work here 

with the inner regions, which comprise the most representative information about the 

state of the lungs, and the study of the boundaries will be done separately in Chapter 6  

 

 

  

 

 

 

 

 

 
 

 

 
Figure 5.4. Co-occurrence matrix energy in edges and centres. In red: Unhealthy class; in blue: healthy class. 

 

A study was carried out using the two main sample images that we have seen so 

far, which are those from figure 4.2, because the diseases appear very distinctly in 

them. The first one presents an emphysematous condition, and the second one is a 

lung with fibrosis. In the next Chapters more images will be used and more tests 

developed.  
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5.3.1. ABNORMALLY LOW PARENCHYMAL DENSITY: 

 EMPHYSEMA 
 

The areas marked with red squares in figure 5.5 present lower than normal 

greyscale values. The diagnosis is the presence of widespread emphysema with 

scarring in both lungs. We can see that most of the bullae are clustered around the 

inner borders of the lungs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.5. Widespread emphysema 

 

We will proceed to evaluate each feature, using the MATLAB function anova1. 

Table 5.1 comprises the results obtained for the p-values in order of better 

performance. As we can see, it is not a very accurate means of coming up with an 

optimal selection, but it gives a general idea about which features will be finally 

included in the optimal subset. Actually, at the end of Chapter 6, the six selected 

features are: mean, percentile, autocorrelation, Fourier max. peak, binary fractal 
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dimension, and binary area, which present here a p-value of 0, so the results below are 

not very accurate but they are robust. 

 

 

 
Table 5.1. Features evaluation for abnormally low tissue density with anova1 

                              

 

Order feature p-value 

1 Mean 0 

2 Percentile 0 

3 Autocorrelation 0 

4 Fourier max. peak 0 

5 Binary fractal dimension 0 

6 Binary area 0 

7 Fourier energy 0 

8 Max. co-occurrence prob. 0 

9 Entropy  0 

10 Compactness 0 

11 Contrast  0 

12 First moment 0 

13 Eccentricity 0.0023 

14 Max. grey value 0.0063 

15 Range 0.0064 

16 Hurst exponent 0.0143 

17 Grey-level fractal dimension 0.0143 

18 Third moment 0.0229 

19 Correlation 0.0268 

20 Standard Deviation 0.0568 

21 Second moment 0.0648 

22 Inverse diff. moment 0.0714 

23 Fourier average 0.5151 

24 Min. grey value 0.6352 

25 Co-occurrence matrix energy 0.7944 
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The histograms and boxplots of four of the best features, percentile, binary area, 

binary fractal dimension and Fourier maximum peak, are shown in the figure below. 

For the binary features, the thresholds utilized are 12 for the low threshold and 255 for 

the high threshold. The class unhealthy is represented in red in the histograms, and the 

class healthy in blue. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.6. Histograms and boxplots. 
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5.3.2. ABNORMALLY HIGH PARENCHYMAL DENSITY: 

 FIBROSIS 
 

We will follow the previous procedure for the lungs of figure 5.7, which present 

higher than normal greyscale values, corresponding to fibrosing alveolitis, especially 

relevant in the inferior part of both lungs. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.7. Fibrosing alveolitis 

 

 

Table 5.2 comprises the results obtained for the p-values in order of better 

performance. The thresholds for the binary features, in this case, are 0 and 80. In 

Chapter 6 we will discover that the optimal subset of features coincides with the 

optimal subset for detecting emphysema. Their p-value is 0 here, which proves again 

the robustness of this method. In figure 5.8, the histograms and boxplots for the 

percentile, binary area, binary fractal dimension and Fourier maximum peak are 

calculated. 
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Table 5.2. Features evaluation for abnormally high tissue density with anova1 

 

                           

 

 

 

 

Order feature p-value 

1 Mean 0 

2 Percentile 0 

3 Autocorrelation 0 

4 Fourier max. peak 0 

5 Binary fractal dimension 0 

6 Binary area 0 

7 Co-occurrence matrix energy 0 

8 Max. co-occurrence prob. 0 

9 Entropy  0 

10 Compactness 0 

11 Contrast  0 

12 Standard deviation 0 

13 Correlation 0 

14 Max. grey value 0 

15 Min. grey value 0 

16 Inverse diff. moment 0 

17 Fourier average 0 

18 First moment 0.0001 

19 Range 0.0011 

20 Eccentricity 0.0233 

21 Fourier energy 0.0341 

22 Second moment 0.1790 

23 Third moment 0.1965 

24 Hurst exponent 0.7507 

25 Grey-level fractal dimension 0.7507 
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Figure 5.8. Histograms and boxplots. 
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5.4. A SPECIAL CASE: FEATURES IN EDGES 
 

We have already mentioned the problem of this matter. We can divide the set of 

features into two groups. The first group is composed by the features that yield the 

same result regardless of the position of the region under study, which can thus 

belong to the edge or to the inner parts of the lung. This group comprises the 

following 8 features: mean, maximum and minimum grey value, range, standard 

deviation, percentile, binary area and compactness. The second group is composed by 

the rest of the features, and the reason for their bad behaviour in the contours is that 

they need a complete square-shaped structure due to their own definition. For 

example, for the co-occurrence matrices, we need to use a rectangular region in order 

to achieve some results, and the same thing happens with the rest of the features. This 

is why if edges and centres were treated together without any differences, the results 

would appear biased. 

 

Some solutions have been proposed to this problem. Firstly, all the pixels that do 

not belong to the lung, i.e., the image background, were marked with a label (a 

number out of the greyscale range, such as -2). These labels were replaced with 

random noise inside the greyscale range. The idea was to push all the peripheral 

regions in the same way with noise, so that certain comparisons could be carried out 

amongst these areas in order to differentiate the abnormalities in them. This 

approximation only has a sense with the second group of features that we mentioned 

before, and would not be applied to the first group of features. Another way we used 

to deal with the problem will be treated in next Chapter, where we propose to train a 

different neural network specifically only with edges. Notwithstanding, we have 

included those regions with at least an 85% of relevant information as belonging to 

the inner parts of the lungs and therefore they have been treated accordingly. On the 

other hand, since the pixel areas we are working with is 16x16 which is not very 

large, we have only considered regions that contain at least a 40% of information, 

discarding those that cannot really contribute to the diagnosis due to their lack of 

structure.  
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5.5. SUMMARY AND CONCLUSIONS 
 

In this Chapter we have selected 25 texture features to investigate their 

discriminatory potential for detecting lung diseases. Some initial trials have been 

carried out utilizing sample images with abnormally low and abnormally high tissue 

density, presenting clear symptoms of emphysema and fibrosing alveolitis 

respectively.  

 

We have obtained some qualitative results in the observation of the histograms 

and density function, and a first approach of a quantitative method for measuring the 

performance of the features has been proposed, showing little accuracy but high 

robustness. 

 

 We can finally conclude that the treatment of the features in edges is a difficult 

problem that will impoverish the performance of our diagnostic tool. 
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6. NEURAL NETWORKS. THE LEARNING PROCESS 

 

 

 

 

6.1. INTRODUCTION1-36, 1-37, 1-38, 1-39 

 
Artificial intelligence has become an important element for investigation in tasks 

such as pattern recognition, computer vision and medical applications. There are 

many AI techniques (artificial neural networks, genetic algorithms, case-based 

reasoning systems), the most popular and historically successful of them in medical 

decision making, has been the artificial neural networks1-40. They have already 

outperformed conventional techniques on a number of problems, so it is realistic to 

expect that neural computing could be the dominant approach to computing in this 

century. 

 

They are useful to carry out complex analyses using an empirical training 

procedure without having to describe a formal model, and are able to capture the 

underlying relationships between the textural features extracted from the images, 

which will be the input variables of our neural network. 

 

This Chapter presents an overall view of the neural networks architectures, 

narrowing the focus to the cascade-forward architecture and also the standard back-

error propagation or BP algorithm, which is a supervised learning algorithm for 

multi-layered networks. The MATLAB neural network toolbox provides the 

necessary functions to develop these strategies, and will be reviewed to fully 

understand the procedure.  

 

The sequential forward and the sequential backward algorithms for feature 

selection are explained, and applied to obtain the two optimal subsets of features 

corresponding to the two main diseases under study, emphysema and fibrosis. The 
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‘leave-one-out cross-validation’ method for the training/validation process is carried 

out along with these sequential feature selection algorithms, and we will eventually 

come up with the resultant performances. 

 

A differentiation between both diseases and also between edges and centres is 

necessary; hence four cascade-forward neural networks have been trained to yield 

satisfactory results. 

 

6.1.1. NEURAL NETWORKS ARCHITECTURES 

 
The inspiration for neural network theory comes from biological neural systems, 

such as the human brain and their basic component: the neuron. This field has a 

history of six decades, since McCulloch and Pitts outlined in 19431-41 the first model 

of an artificial neuron, but has seen solid application only in the past twenty years, 

when several people in the mid-1980s found a learning algorithm, called the back-

propagation algorithm, that could adjust the weights in multi-layer nets, and the field 

is still developing rapidly. 

 

A neuron with a single scalar input and no bias appears on figure 6.1, and another 

one with a scalar bias on its right. The scalar input p is transmitted through a 

connection that multiplies its strength by the scalar weight w, to form the product wp, 

again a scalar. Here the weighted input wp is the only argument of the transfer 

function T, which produces the scalar output o. The neuron on the right has a scalar 

bias, b, that is added to the product wp, and the resulting net input is wp+b. The 

transfer function is typically a step function, a linear function or a sigmoid function, 

and produces the output o=T(wp+b). The weight and the bias are parameters liable to 

be adjusted so that the network exhibits some desired or interesting behaviour. Thus, 

we can train the network to do a particular job by adjusting these parameters, or 

perhaps the network itself will adjust these parameters to achieve some desired end. 

 

More complex structures can be derived from this first model. A neuron can have 

an input vector p=[p1, p2, …, pR] instead of a scalar input, and the weights w1, w2, 

…, wR correspond to a single row matrix W. The dot product Wp plus the scalar bias 
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b form the net input n= w1p1+w2p2+…+w3p3+b, which is the argument of the 

transfer function T. 

 

Two or more of the neurons can be combined in a layer, and a particular network 

could contain one or more such layers. First consider a single layer of S neurons with 

R elements in input vector. In this network, each element of the input vector p is 

connected to each neuron input through the weight matrix W. The ith neuron has a 

summer that gathers its weighted inputs and bias to form its own scalar output ni. The 

various ni taken together form an S-element net input vector n. Finally, the neuron 

layer outputs form a column vector o.  

 

The input vector elements enter the network through the weight matrix W. The 

row indices on the elements of matrix W indicate the destination neuron of the 

weight, and the column indices indicate which source is the input for that weight. 

Thus, the indices wi,j  say that the strength of the signal from the jth input element to 

the ith neuron is wi,j. 

 

 

 

 

 

 

 

 Finally, several layers can be combined in a more complex architecture, 

presenting basically an input layer, an output layer and one or more hidden layers.  

 

We will eventually come up with neural networks that have one single hidden 

layer and only one output neuron as the architecture that better suits our problem We 

can see its general scheme in figure 6.1.  

 

Each layer has a weight matrix W, a bias vector b, and an output vector o. We 

have appended in the figure the number of the layer as a superscript to the variable of 

interest. 
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Figure 6.1. Neural Network Architectures 

 

 

6.1.2. CASCADE-FORWARD NETWORKS 

 
One basic split is between recurrent (feed-back) and feed-forward or cascade-

forward architectures. A recurrent processing architecture includes direct or indirect 

loops of connections; the current state of each single layer of nodes is fed through an 

updating function of the nodes to produce a new state, which is in turn feedback into 

the nodes to produce a new state again, etc. The alternative type of architecture is one 

that have asymmetric connection matrices wi,j in which information is presented and 

proceeded uni-directionally from input to output. This type of nets resembles 

conventional methods of statistical pattern recognition much more closely. The 

interconnections between nodes in adjacent layers start with random weights that are 

changed during an iterative process of neural net learning which may be unsupervised 

or supervised, as we will describe below.  

 

We will use cascade-forward networks, belonging to the latter type, which can be 

subdivided into two main classes: single-layered and multi-layered networks. Single-

layered structures consist only of an input layer and an output layer, and cannot 
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perform certain classification tasks or certain logic operations, such as the XOR 

problem, because they can solely solve linearly separable problems. As we discussed 

in previous Chapters, we do not have separable classes for the features, so we need to 

complicate the architecture by adding more layers until the results are satisfactory. In 

practice, one single hidden layer should suffice for most of the datasets, and can 

compute most of the functions. Problems that require 2 hidden layers are obscure and 

involve datasets generated by discontinuous functions1-42. The optimal number of 

nodes for an errorless classification is not known beforehand; hence several trials are 

necessary to find it. 

 

Cascade-forward network learning is based on the back-propagation algorithm1-

43, that calculates a set of weights wi,j  from a training set of examples, where the 

weight wi,j  represents an interconnection between node i and j in the next layer. In 

next section, this algorithm is further detailed.  

 

6.1.3. LEARNING PROCESS. SUPERVISED LEARNING &     

 BACK-PROPAGATION ALGORITHM 

 
The property that is of primary significance for a neural network is the ability of 

the network to learn from its environment, and to improve its performance through 

learning. The improvement in performance takes place over time in accordance with 

some prescribed measure. A neural network learns about its environment through and 

interactive process of adjustments applied to its weights and bias levels. Ideally, the 

network becomes more knowledgeable about its environment after each iteration of 

the learning process. 

 

The current learning process takes place under the tutelage of a teacher, and it is 

called supervised learning. Figure 6.2 shows a block diagram that illustrates this form 

of learning. The teacher has knowledge about the environment, with that knowledge 

being represented by a set of input-output examples. In our case, the teacher is a 

human observer making decisions about the state of the lungs, and the input-output 

pairs correspond to feature_vector-diagnosis examples. The feature vectors comprise 

the information about the environment; in this case the environment consists of 16x16 
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pixel areas of lung images, and the features vectors are integrated by several measures 

that capture the textural information of these lung segments. The targets or desired 

responses are divided into two classes of diagnosis, healthy and unhealthy, which 

correspond to a binary classification. 

 

Let us suppose now that the teacher and the neural network are both exposed to a 

training vector drawn from the environment. By virtue of the built-in knowledge, the 

teacher is able to provide the neural network with a desired response for that training 

vector. Indeed, the desired response represents the optimum action to be performed by 

the neural network. The net parameters are adjusted under the combined influence of 

the training vector and the error signal. The error signal is defined as the difference 

between the desired response and the actual response of the network. This adjustment 

is carried out iteratively in a step-by-step fashion with the aim of eventually making 

the neural network emulate the teacher; the simulation is presumed to be optimal in 

some statistical sense. In this way knowledge of the environment available to the 

teacher is transferred to the neural network through training as fully as possible. When 

this condition is reached, we then dispense with the teacher and let the net deal with 

the environment completely by itself. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.2. Supervised training. 
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There are several supervised learning methods, such as quickdrop, conjugate 

gradient methods, quasi-Newton methods, etc. We will use a gradient descent 

algorithm for multi-layered networks, the standard back-error propagation or BP 

algorithm. 

 

Back-propagation works by feeding the inputs for a case through an initially 

random network and comparing the output to the desired output for that case. It then 

back-propagates the error through the network, incrementally adjusting the weights 

along each connection to minimize the mean squared error between the actual 

network output and the desired output. This has been shown to achieve a gradient 

descent of the error surface1-44. Two distinct passes of computation are distinguished, 

the first pass is referred to as the forward pass, and the second one is referred to as the 

backward pass. In the forward pass the synaptic weights remain unaltered throughout 

the network, and the function signals of the network are computed on a neuron-by-

neuron basis. The backward pass, on the other hand, starts at the output layer by 

passing the error signals layer by layer, computing the local gradient for each neuron. 

The algorithm is described below. 

 

 

 

 

 

 

 

 

 

 
Figure 6.3. Cascade-forward network to illustrate BP algorithm 

 

 

Let us consider the network illustrated schematically above (we will change 

slightly the notation used in section 6.1.1. to clarify the algorithm). Suppose we 

consider a network with an input layer (which we label m=0) and q processing layers 
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(labelled m=1, 2, …, q). oi
m is the output on layer m. Let Wij

m be the weights leading 

into layer m i.e. connecting layers m-1 and m. Then, the algorithm works as follows: 

 

1. Weights on the connections between neurons are randomly initialized. Small 

values are used to avoid early saturation of the activation function. 

 

2. An input pattern xk is presented to the input layer (m=0) and the output on the 

final output layer (m=q) is found. This output is oi
q. 

 

3. Compute the error terms δi
q on the output layer from 

 

(6.1) 

 

where q
if  are the inputs for last layer q, 'T  is the derivative of the transfer 

function, oi
q the outputs on the ouput layer and yi is the corresponding 

target for input xk. 

 

4. Find the errors δj
m-1 for the preceding layer by recursively using 

 

(6.2) 

 

5. Find the weight changes for the weights leading into each layer m 

 

(6.3) 

 

and update the weights according to  

 

(6.4) 

6. Go to step (2) and present the next pattern in the pattern set; until the pattern 

set is exhausted. 

 

7. Stop if the mean squared error performance function (MSE) E is less than the 

selected tolerance, or re-present the entire pattern set otherwise. 
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The constant h in (6.3) defines the learning rate of the network. With a small 

learning rate, the back-propagation algorithm will minimize the cumulative mean 

square error between the target outputs and the actual network outputs as training 

progresses. In most real-world problems, unfortunately, a small learning rate will 

result in the network settling in a false local error minimum, and some convergence 

problems can appear. On the contrary, if the value is too large, oscillations can occur. 

In order to avoid such oscillations and to avoid get caught in a shallow minimum, it is 

common practice to add a momemtum term: 

 

 

(6.5) 

 

 

where mc is a momentum constant that multiplies the previous weight change, 

controlling how much momentum is used. The other factor is the product of the 

learning rate and the gradient with respect to the performance MSE. 

 

Finally, the back-propagation algorithm can be implemented in two different 

ways: batch mode and sequential mode. One complete presentation of the entire 

training set during the learning process is called an epoch. In batch mode, weight 

updating is performed after the presentation of all the training examples that constitute 

an epoch. On the contrary, in sequential mode weight updating is performed after the 

presentation of each training example. We will use batch training, because it is more 

efficient to present all the input vectors at the same time than presenting the vectors 

one at a time. 

 

6.1.4. MATLAB FUNCTIONS 

 
MATLAB provides the necessary tools to design many types of neural networks. 

Here we will review the function that produces trainable multi-layered back-

propagation cascade forward networks, newcf, as well as its parameters, which can be 

adjusted to suit our needs, and that are summarized as follows: 
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• Number of layers, and number of neurons in each layer: 
 

Unfortunately, there are no reliable rules for predicting how many hidden 

layers are required for a given problem or how many hidden nodes are 

required in each layer, so this must be decided by us during the process (we 

will describe this in next section). 

 

• Transfer function for each layer: 
 

We can choose between a large range of linear and non-linear transfer 

functions, such as the saturating linear (satlin), log-sigmoid (logsig), 

hyperbolic tangent sigmoid (tansig), and purely linear (purelin). The tansig 

function has been used in all the hidden neurons, because it has been 

commonly utilized in back-propagation networks1-45, and it is a good trade off 

for neural nets, where speed is important and the exact shape of the transfer 

function is not. The purelin function is used in the output neuron, because we 

want to obtain its input value with a linear transformation. 

 

 

 

 

 
 

 

 

 

Figure 6.4. Transfer functions 

 

• Back-propagation network training function: 
 

Training functions repeatedly apply a set of input vectors to a network, 

updating the network each time, until some stopping criteria is met. We will 

use trainlm, which is very fast, and uses the gradient descent back-propagation 

algorithm described before.  
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• Back-propagation weight/bias learning function,: 
 

The most specific kind of learning function is a weight and bias learning 

function. These functions are used to update individual weights and biases 

during learning. The one we will use is learngdm, which uses gradient descent 

algorithm with momentum, to avoid convergence problems. 

 

• Performance function: 
 

The mean squared error performance function mse is utilized. It measures the 

network’s performance according to the mean of squared errors. 

 

Once that the parameters have been explained, the algorithm for newcf can be 

described as follows: 

 

Cascade-forward networks consist of N layers using the dotprod weight function, 

netsum net input function, and the specified transfer functions (tansig and purelin).  

The inputs are appropriately normalized and pre-processed so that its mean value is 

close to zero and the process is accelerated. The first layer has weights coming from 

the input. Each subsequent layer has weights coming from the input and all previous 

layers. All layers have biases. The last layer is the network output. Each layer's 

weights and biases are initialized with initnw. Adaption is done with trains, which 

updates weights with the specified learning function (learngdm). Training is done 

with the specified training function (traingd). Performance is measured according to 

the specified performance function (mse).  

 

Dotprod applies weights to an input to get weighted input. It returns the dot 

product of the weight matrix W and the input vectors P. 

 

Netsum calculates a layer’s net input by combining its weighted inputs and biases. 

 

Initnw initializes a layer’s weights and biases according to the Nguyen-Widrow 

algorithm1-46, which chooses values in order to distribute the active region of each 
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neuron in the layer approximately evenly across the layer’s input space. This presents 

several advantages over purely random initialization. 

 

6.1.5. MEDICAL APPLICATIONS 

 
Neural networks have been successfully applied to a range of medical problems 

and entire workshops are devoted to this area. The main applications are: 

 

• Medical imaging, especially ultrasound, magnetic resonance imaging (MRI), 

Computed Tomography (CT), planar thallium scans and thermal imaging. 
 

• Waveform analysis especially EEG (electro-encephalograms), ECG (electro-

cardiograms), etc. 
 

• Detection of cancerous tissue, and of cardiac and pulmonary problems.  
 

We will briefly describe two studies carried out in the latter application mentioned 

above, to illustrate the techniques: 

 

Ricketts1-47 applied neural networks to the recognition of single cancer cells. The 

study used the back-propagation algorithm and the networks was trained on 524 

single cells, and tested on 524 previously unseen cells. 80 features were extracted 

from the cell images. Best performance 96.0% was achieved using a multi-layer 

network containing 80 inputs, 4 nodes in a hidden layer and a single output node. 

 

In the field of automatic detection of lung diseases, Friman et al.2-8 made an 

attempt to detect emphysema in lungs. In the study, 500 CT images were used for 

training/testing. 14 features were extracted from the images. The results outperformed 

other statistical methods, the best performance 89.4% was achieved using a multi-

layered network containing 8 hidden neurons and one output neuron.  
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6.2. A SECOND APPROACH ON FEATURES 
SELECTION 
 
6.2.1. METHODOLOGY1-48 

 
In the design of a neural network, there are many free parameters that we have to 

adjust in order to achieve the best results for our problem, such as the number of 

inputs, the number of hidden layers, and the number of hidden neurons in each layer. 

 

The number of relevant texture features to obtain an optimum classification is 

unknown a priori. Many features (25) have been extracted from the images, but some 

of them do not contribute or even worsen the classification performance, thus they 

have to be discarded. Many algorithms exist which typically consist of four basic 

steps1-49:   

 

1. A generation procedure to generate the next subset of features X 

 

2. An evaluation criterion J to evaluate the quality of X 

 

3. A stopping criterion for concluding the search. It can either be based on the 

generation procedure or on the evaluation function 

 

4. A validation procedure for verifying the validity of the selected subset. 

 

The task of feature selection is to reduce the number of extracted features to a set 

of a few significant features which optimize the classification performance. The best 

subset 

 

(6.6) 

 

is selected from the set 
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where D is the number of extracted features, 25 in our case, and d≤D denotes the size 

of the feature subset. A feature selection criterion J(X) evaluates a chosen subset X, 

whereby a higher value of J indicates a better subset. The problem of features 

selection is to find a subset X from Y such that the number of chosen features is d and 

J reaches the maximum 

 

(6.8) 

 

The evaluation criterion J is proposed to be the performance of our neural 

network. An exhaustive search for feature selection is too time consuming, hence we 

will use a combination of two suboptimal algorithms, the Sequential Forward 

Selection (SFS) and the Sequential Backward Selection (SBS). In the former, the 

method starts with an empty set, and one feature among the remaining features is 

added to the subset with each iteration, so that the subset maximizes the evaluation 

criterion J. In the later, the algorithm starts with all features selected, and one feature 

is rejected in each step so that the remaining subset gives the best result. The search 

concludes when the best suboptimal performance is achieved. 

 

To find the best number of hidden layers and neurons, a process of training/testing 

is used to check the performance of the network when we use different numbers of 

hidden elements. This has to be applied for each subset of features. To carry out this 

process, in the back-propagation algorithm we usually have the data used split into a 

training set, which we use to train the network, i.e., find the weights and biases, and a 

test set, which is utilized to evaluate the net performance.  

 

One robust method is the leave-one-out scheme, which is a special case of the 

cross-validation sampling scheme1-50. In leave-one-out with n cases, the network is 

trained n times. Each time the network is trained, n-1 cases are used to train the 

network and it is tested on the one that was left out. This is repeated until each case 

has been used for testing. In k-fold cross-validation, the data is randomly divided into 

k subsets. Each subset is used for testing while the remainder are used for training. 

Training and testing are repeated for each of the k subsets and the testing results are 
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accumulated and reported. The leave-one-out scheme overcomes the problem of 

limited data very effectively since it uses almost all available data to develop the 

network. 

 

Finally, we can see the issue of the generalisation ability from two perspectives1-

51. We can consider that the architecture of the net is fixed, and the issue to be 

resolved is that of determining the size of the training set needed for a good 

generalisation, or we can consider that the size of the training set is fixed, and 

therefore we have to obtain the best architecture for achieving good generalization. 

We will use the latter approach. For a good generalisation, the ratio of the number of 

patterns over the number of parameters has been shown to be greater than 31-52. For 

example, if we had 10 features as inputs, we would need a training set of at least 30 

feature vectors, each of them containing its 10 respective features. We will not have 

problems of poor generalisation in our study, since the number of available patterns 

exceeds more than three times the number of features utilized in each subset, as we 

will see in next sections. 

 

6.2.2. TRAINING/TESTING PROCESS FOR EMPHYSEMA 

 
We have based this study on 635 patterns (486 healthy “1”, and 149 unhealthy 

“0”), extracted from 3 different images that present clear emphysematous state. We 

will use the algorithms previously explained. First, to simplify the process, after 

studying the histograms for the three images, we have reduced the set of features to 7, 

because the others present too much overlapping between both classes to expect any 

results of interest, plus the study would be considerably complicated in computational 

terms. Therefore, the set of features under study is comprised by: mean, percentile 

0.75, autocorrelation (0,1), Fourier energy, Fourier max. peak, binary area, and 

binary fractal dimension. As we can see, the ratio of the number of patterns over the 

number of inputs is much greater than 3, so we will not have generalisation problems. 

We have also made a different study for edges and for centres, in order to improve the 

performance, as we detailed in Chapter 5. Removing the edges, the number of patterns 

is reduced to 476 (380 healthy and 96 unhealthy), and removing the centres, the 

number of patterns is reduced to 159 (106 healthy and 53 unhealthy). 
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The first trials without edges using each feature individually yielded very poor 

results (table 6.1 left). The reason of this is that we have used a much larger number 

of healthy patterns (380) in comparison to the unhealthy patterns (only 138). Hence, 

the results are highly biased, and the percentages of correct detection for “0” 

(unhealthy) are very low. We thought of two possible ways of solving this 

inconvenient: either we can reduce the number of healthy patterns to 138 or we can 

increase the number of unhealthy patterns to 499, so that we have the same number of 

patterns for each class and the bias would disappear. We chose the latter alternative, 

in order not to lose information, and the results were encouragingly improved (table 

6.1 right).  

 

The leave-one-out cross-validation algorithm explained before has been used, and 

since normally more than 10 runs are needed to obtain accurate results, we have used 

15 here.  

 

For individual features, the used network architecture has no hidden layers (since 

they are not necessary at this stage where there is only one input), and one output with 

a linear transfer function, where we apply a simple threshold (0.5) to decide if the 

output belongs to the class healthy “1” (>0.5) or unhealthy “0” (<0.5).  

 

In table 6.1, the results are presented as cross-validation matrices. T represents the 

desired targets or desired response, and O the real outputs. For example for the mean 

grey value, we obtain the following results without bias: 80.95% of true positives (i.e., 

both the desired and the real response are “0”, disease), 79.51% of true negatives (real 

and desired response equal to “1”), 19.05% false positives (real response disease, 

desired response healthy), and 20.49% false negatives (real response healthy, desired 

response disease).  We can see the bias in the first table, where the performance 

39.13% for true positives is extremely low, while the percentage for true negatives 

97.03% is extremely high. 

 

In figure 6.5, it is illustrated that the larger the number of epochs of training, the 

better the performance. The number of epoch has been fixed to 50, where the 

performance does not improve any more. 
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Table 6.1. Features’ performances. Left: Biased results. Right: Unbiased results 

 

 

   Mean    

O\T 0 1  O\T 0 1 

0 39.13 60.87  0 80.95 19.05 

1 2.97 97.03  1 20.49 79.51 

   Percentile    

O\T 0 1  O\T 0 1 

0 35.51 64.49  0 73.94 26.06 

1 0.66 99.44  1 20.77 79.23 

   Autocorrelation    

O\T 0 1  O\T 0 1 

0 26.81 73.19  0 68.13 31.87 

1 4.45 95.55  1 15.04 84.96 

   F. Energy    

O\T 0 1  O\T 0 1 

0 31.88 68.12  0 60.36 39.64 

1 3.15 96.85  1 15.00 85.00 

   F. Max. Peak    

O\T 0 1  O\T 0 1 

0 32.15 67.85  0 72.79 27.21 

1 2.78 97.22  1 25.81 74.19 

   Binary area    

O\T 0 1  O\T 0 1 

0 60.87 39.13  0 89.13 10.87 

1 4.64 95.36  1 11.99 88.01 

   Binary fractal dimension    

O\T 0 1  O\T 0 1 

0 27.54 72.46  0 89.52 10.48 

1 4.27 95.73  1 12.77 87.23 
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Figure 6.5. Training with 50 epoch at each step of the leave-one-out algorithm 

 

The features can be sorted out by their respective global performances, i.e., the 

average of the true negatives and true positives, as follows: 1. Binary area (88.57%), 

2. Binary fractal dimension (88.37%), 3. Mean (80.26%), 4. Percentile (76.59%), 5. 

Autocorrelation (76.58%), 6. Max. peak (73.48%), and 7. Energy (72.71%). 

 

Both the Sequential Forward and the Sequential Backward Selection algorithms 

(SFS and SBS) for discovering the best suboptimal subset of features are utilized. 

First, we try with the SFS, starting with the best feature, area, and adding features one 

by one in order of performance, until the results do not improve any more: 

 

• Area + fractal dimension: 
 

 

    
 

Table 6.2. Binary area and fractal dimension without hidden layer. 

 

O\T 0 1 

0 81.00 19.00 

1 28.04 71.96 
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The global performance is 76.37%, which is worse than the 88.57% 

corresponding to the area. This means that we have to add hidden elements. 

With 1 hidden layer comprising 2 nodes the global performance is 90.31%: 

 

 

 

 
Table 6.3. Binary area and fractal dimension with hidden layer of 2 nodes 

 

The results do not improve adding more hidden elements. Throughout all this 

process, the best results have been proved to appear using only one hidden 

layer with two nodes. Adding more layers or more nodes was not effective due 

to the size of the subsets of features, and the complexity of our problem. 

Hence, in order to abbreviate the procedure, from now on, at each step one 

hidden layer with 2 neurons is used, although many other trials changing the 

number of layers and nodes have been carried out to back up the results. 

   

• Area + fractal dimension + mean: 
 

 

 

 
Table 6.4. Binary area, fractal dimension and mean. 

 

The global performance is 91.09%, which outperforms the previous subset. 

 

• Area + fractal dimension + mean + percentile: 
 

 

 
 

Table 6.5. Binary area, fractal dimension, mean and percentile 

 

O\T 0 1 

0 91.46 8.54 

1 10.83 89.17 

O\T 0 1 

0 91.84 8.16 

1 9.67 90.33 

O\T 0 1 

0 89.97 10.03 

1 10.86 89.14 
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The performance is 89.56%, which is worse than the previous one. The 

algorithm SFS stops here. However, we made other attempts with other 

subsets of four and five features which turned out to be worse as well. 

 

Now the SBS algorithm will be used. All the features are selected at first, and we 

will start removing features one by one in order of worse performance, until the 

performance of the new subset is worse than that of the previous one. 

 

• Area + fractal dimension + mean + energy + max. peak + percentile + 

autocorrelation: 
 

 
 

 

 

Table 6.6. All features, with hidden layer of 3 nodes. 

 

The global performance is 91.87%, but this time, as an exception, it was 

achieved with 3 hidden nodes instead of 2. The worst feature of this subset 

proved to be the energy, hence the new subset is: 

 

• Area + fractal dimension + mean + max peak + percentile + autocorrelation: 
 

 

    

 
Table 6.7. All features except energy. 

 

The global performance, again with 2 hidden nodes, is 92.77%. Removing 

more features or adding a new hidden layer has worsened this result. Hence, 

this is our optimal subset of features for centres in emphysema. 

 

For the study only with edges, the idea was to find a subset of features from the 

best group of parameters obtained for the centres. As explained in previous sections, 

those features that require a complete structure in a region will not produce useful 

O\T 0 1 

0 91.45 8.55 

1 7.73 92.27 

O\T 0 1 

0 92.88 7.12 

1 7.35 92.65 
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results for edges. Thus in the set of features composed by area, mean, percentile, 

autocorrelation, fractal dimension, and max. peak, the three latter will not yield good 

performances, as proved in the table below.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 6.8. Features’ performances in edges. 

 

The best features in order of performance are: 1. Area (86.18%), 2. Mean 

(79.14%), 3. Percentile (68.82%), 4. Autocorrelation (63.58%), 5. Max. peak 

(59.18%), and 6. Fractal dimension (56.45%). 

 

Mean O\T 0 1 

 0 76.36 23.64 

 1 18.15 81.85 

    

Percentile O\T 0 1 

 0 65.62 34.38 

 1 28.03 71.97 

    

Autocorrelation O\T 0 1 

 0 51.90 48.10 

 1 24.82 75.18 

    

F. Max. Peak O\T 0 1 

 0 52.54 47.46 

 1 34.26 65.74 

    

Binary area O\T 0 1 

 0 89.86 10.14 

 1 17.50 82.50 

    

Binary fractal dimension O\T 0 1 

 0 75.48 24.52 

 1 62.41 37.59 
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Applying the SFS algorithm: 

 

• Area + mean: 
 

 

    
 

Table 6.9. Binary area and mean for edges with a hidden layer of 2 nodes. 

 

The global performance is 86.36%, which improves the results above, using 1 

hidden layer with 2 neurons. 

 

• Area + mean + percentile: 
 

 

    
 

Table 6.10. Binary area, mean and percentile for edges with a hidden layer of 2 nodes. 

 

The performance continues to improve: 86.46%. Here the SFS algorithm 

stops, because adding more features worsen the results. 

 

Applying the SBS algorithm: 

 

• Area + mean + percentile + autocorrelation + max.peak + fractal dimension: 
 

 

    
 

Table 6.11. All features for edges with a hidden layer of 2 nodes. 

 

The performance is 81.03%. Let us remove now the worst feature of the set, 

which is the fractal dimension. 

 

O\T 0 1 

0 88.88 11.12 

1 16.15 83.85 

O\T 0 1 

0 86.45 13.55 

1 13.52 86.48 

O\T 0 1 

0 81.41 18.59 

1 19.01 80.99 
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• Area + mean + percentile + autocorrelation + max. peak:: 
 

 

    
 

Table 6.12. All features except fractal dimension for edges with hidden layer of 2 nodes. 

 

The performance improves: 82.42% 

 

• Area + mean +percentile + autocorrelation: 
 

 

    
 

Table 6.13. All features except fractal dimension and max. peak with hidden layer of 2 nodes. 

 

The performance improves again: 85.31%. If we remove the next feature, 

autocorrelation, we obtain the same result as in the SFS algorithm. Therefore, 

the best subset of features for edges comprises: binary area, mean and 

percentile, with a hidden layer of 2 neurons. 

 

After all these procedures, we have come up with two neural networks, one for 

detecting emphysema in the inner parts of the lungs, and the other in the edges. For 

the first one, an optimal subset of 6 features extracted from the lung images, 

composed by binary area, binary fractal dimension, mean, percentile, autocorrelation, 

and Fourier max. peak, is presented to the net, which has a hidden layer with two 

neurons and one output neuron, achieving a performance of 92.77%. For the second 

one, the subset of features comprises mean, percentile and binary area, and the neural 

net has also one hidden layer with 2 neurons and one output. The performance in this 

case is lower, 86.46%.  

 

In the figure 6.6, we show the images from the emphysematous lungs that have 

been used in this section. We present with green X the diagnosis made a priori by the 

human observer, and with red squares the diagnosis made automatically by the neural 

O\T 0 1 

0 82.18 17.82 

1 17.33 82.67 

O\T 0 1 

0 87.01 12.99 

1 16.38 83.62 
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nets. We can visualize clearly that the nets are trying to adjust their diagnosis to that 

of the observer. Finally, in the last image (bottom left) we can see how the net works 

with another image of a lung with emphysema that it has not seen before, yielding a 

good result.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.6. Visual results of the process. Diagnosis of emphysema. 
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6.2.3. TRAINING/TESTING PROCESS FOR FIBROSIS 

 
This procedure is similar to that of the previous section. The number of patterns is 

409 (296 healthy “1”, and 113 unhealthy “0”), extracted from 2 different images of 

lungs affected with fibrosis. The initial set of features has been reduced to the same 7 

parameters used for emphysema, because they appear to be the best ones for fibrosis 

as well, although for different ranges of values (for example a very high mean grey 

level will correspond to a fibrous area, and a very low value to a emphysematous area, 

so we can see that the same feature can have a good discriminatory power for both 

diseases).  

 

Again, the ratio of the number of patterns over the number of inputs is much 

greater than 3, so the generalisation ability is expected to be more than enough. Two 

separate studies are developed: for centres the number of patterns is reduced to 314 

(229 healthy and 85 unhealthy), and for edges this number is reduced to 95 (67 

healthy and 28 unhealthy). In order to avoid the bias, the number of unhealthy 

patterns has to be made equal to the number of healthy patterns.  

 

Table 6.14 summarizes the performances without edges obtained when we use 

each feature individually to train a neural network with only one input, and without 

hidden layers.  The features can be sorted out by their respective global performances 

as follows: 1. Percentile (94.76%), 2. Binary fractal dimension (93.45%), 3. Mean 

(93.01%), 4. Max. peak (92.58%), 5. Binary area (92.36%), 6. Autocorrelation 

(70.31%), and 7. Energy (70.00%). At first sight, we realize that these values are 

much better than those corresponding to emphysema. The explanation of this has a 

relation with the study of the histograms for normal areas, and for areas with disease 

(emphysema and fibrosis) that we developed in Chapter 5. In those graphics it was 

shown that the overlapping between normal and abnormal regions was more relevant 

for emphysema than for fibrosis. Hence, the parameters for emphysema cannot 

discriminate both populations as well as the parameters for fibrosis. 

 

Since all the features appear to have similar performances in a range above 90%, 

instead of using the SFS and SBS algorithms, we will develop a more exhaustive and 
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accurate method to find the subset. This consists of studying all the possibilities and 

performances of groups of 2, 3, 4, 5, 6 and 7 features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 6.14. Features’ performances for fibrosis. 

 

Mean O\T 0 1 

 0 96.51 3.49 

 1 10.48 89.52 

    

Percentile O\T 0 1 

 0 98.25 1.75 

 1 8.73 91.27 

    

Autocorrelation O\T 0 1 

 0 73.80 26.20 

 1 33.19 66.81 

    

F. Max. Peak O\T 0 1 

 0 93.01 6.99 

 1 7.86 92.14 

    

F. Energy O\T 0 1 

 0 73.68 26.32 

 1 33.68 66.32 

    

Binary area O\T 0 1 

 0 89.52 10.48 

 1 4.80 95.20 

    

Binary fractal dimension O\T 0 1 

 0 93.89 6.11 

 1 6.99 93.01 
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Let us apply the selection algorithm: 
   

• Pairs: 
 

Most of the pairs have achieved performances above 93% and 94%. The best 

result 94.76% has been obtained combining percentile and fractal dimension, 

and exactly the same value was achieved with the mean and fractal dimension. 

Here we illustrate it with the cross-matrix correspondent to the percentile and 

fractal dimension pair. 

 

 

 

 
Table 6.15. Percentile and fractal dimension with hidden layer of 2 nodes, for fibrosis. 

 
The neural network has a hidden layer of 2 neurons and this architecture will 

be the best for the rest of subsets as well, as discussed in previous section.  

   

• Groups of 3 features: 
 

The best performance, again 94.76% has been achieved by the group formed 

by percentile, max. peak, and area: 

 

 

 

 
Table 6.16. Percentile, max. peak, and area with hidden layer of 2 nodes, for fibrosis. 

   

• Groups of 4,5,6, and 7: 
 

Unexpectedly, the best performance for each one of these groups is fixed to 

94.76%. It turns out that adding more features does not improve the results, 

but they do not worsen either. So at this point we have to choose how many 

features we want in our subset. Normally, it is better to have the minimum 

O\T 0 1 

0 97.38 2.62 

1 7.86 92.14 

O\T 0 1 

0 96.51 3.49 

1 6.99 93.01 
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number of features possible, in order to fasten the process. However, in this 

case, we will choose the same group of 6 features that we had in emphysema. 

The reasons are two: first, having exactly the same subset of features for both 

diseases will reduce the execution time and computational cost of our 

program; second, when new images are presented to the net, having more 

features can compensate the result for the performance in case that one feature 

fail to capture the information of the new image as well as expected. The 

cross-validation matrix for the subset composed by fractal dimension, area, 

mean, percentile, max. peak, and autocorrelation is shown in the table below. 

Tables 6.16 and 6.17 are exactly the same, although they have been calculated 

in independent processes that could have yielded different results. 

 

 

 

 
Table 6.17. Subset of 6 features with hidden layer of 2 nodes, for fibrosis. 

 

Finally, the process has to be repeated for edges in the same way. Therefore, we 

will outline here that the best features are percentile (92.36%), mean (91.3%), and 

area (89.13%). The best pair is composed by mean and percentile ( 91.3%), and the 

optimal subset is formed by these three features, mean, percentile, and binary area 

(93.48%), as illustrated in the table 6.18.  

 

 

 

 
Table 6.18. Subset of 6 features with hidden layer of 2 nodes, for fibrosis. 

 

Therefore, we have designed two neural networks to detect the presence of 

fibrosis in the centres and edges of the lung, using the same subsets of features that 

carry out that task for emphysema. Both nets have one single hidden layer, with 2 

nodes, and their performances are 94.76% for centres and 93.48% for edges. 

 

O\T 0 1 

0 97.38 2.62 

1 7.86 92.14 

O\T 0 1 

0 95.65 4.35 

1 8.70 91.30 
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The utilized images from the fibrous lungs are displayed below, with both the 

automatic diagnosis (red squares) and the human observer’s diagnosis (green X). The 

last two images have been used as examples of the behaviour of the nets when new 

images are presented to them.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.7. Visualization of the process. Diagnosis of fibrosis. 
 
 
6.2.4. OTHER POINTS OF INTEREST 

 
An interesting consideration is to check the behaviour of the program when an 

image containing both emphysema and fibrosis is presented to it, which is a common 

thing because both diseases are often together. The program first extracts from the 

image the features that will feed the neural networks trained to detect emphysema and 
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fibrosis. These features are the same for both diseases, so the extraction process will 

not require a large amount of time. Then, the neural networks will carry out a 

classification of each region of the lung, marking them as unhealthy if they are 

detected as abnormal by the neural network trained to predict emphysema, or by the 

neural network trained to predict fibrosis. Hence, it is a simple OR comparison to 

decide the diagnosis. In figure 6.8, we present again one of the images of figure 6.6, 

which presented emphysema, but also presents some areas with abnormally high 

density levels. We can see that the final diagnosis actually covers the detection of 

both diseases. 

 

 

 

 

 

 

 

 
 
 
 
 

 
6.8. The final diagnosis for both diseases. 

 
We have also made an attempt to utilize only one net to detect both diseases. After 

repeating the training/testing process, we came up with the conclusion that the results 

are worse than in our approach of separating both problems. In figure 6.9, we can 

check visually that the number of false positives increases considerably, if we 

compare this image with the diagnosis resultant in figure 6.6, where we have studied 

the same lung.  

 

Another point of interest is related to the algorithms that have been used to select 

the subset of features. As we discussed before, there is no reliable method to find the 

optimal subset, and these alternative methods can only find suboptimal solutions. We 

present in figure 6.10 the curves performance/size of the subset that we have found 

applying the algorithms, which have different shape and behaviour for each single 
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case, making it difficult to find the real optimal subset, especially if the initial set of 

features is very large. 

 

 

 

 

 

 

 

 
 

 

 
 

Figure 6.9. One net for both diseases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.10. Performance/size of the subset curves. 

Suboptimal performance of 92.77% 
with a subset of 6 features 

Suboptimal performance of 94.76% 
with a subset of 6 features 

Suboptimal performance of 
86.46% achieved with a 
subset of 3 features 
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6.3. SUMMARY AND CONCLUSIONS 
 

In this Chapter we have made a review of neural networks, the AI techniques used 

in this project to accomplish an automatic diagnosis of the state of the lungs. We have 

started describing the main elements that form the different architectures, paying 

special attention to the structures utilized, the cascade-forward networks, as well as 

the learning algorithms, and the tools provided in MATLAB to develop the process. 

 

4 different neural networks have been trained to detect the presence of 

abnormalities in the lung parenchyma, and stored in the file 

“neuronal_networks.mat”. Two of these nets have been trained to detect the presence 

of emphysema (one of them in the centres, and the other one in the edges), and the 

other two to detect the presence of fibrosis (centres and edges again). Applying a 

series of suboptimal algorithms, we have come to the conclusion that the best subset 

of features for detecting emphysema and fibrosis in the inner parts are comprised by 

six features: mean, percentile, autocorrelation, Fourier energy, binary area, and 

binary fractal dimension, yielding performances of 92.77% and 94.76% 

respectively. For edges, the subset includes mean, percentile, and binary area, and 

produces performances of 86.46% and 93.48%. 

 

With this study, the part of the project corresponding to the 2D diagnosis of CT 

lung scans has finished. In next Chapter, a 3D approach is introduced and compared 

to the results obtain in 2D. 
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7. A 3D APPROACH 

 

 

 

 

7.1. MOTIVATIONS 

 
Until now, our work has been based only on the information contained in a single 

slice extracted from CT lung scans. However, one single slice does not represent the 

real state of the lung. As explained in Chapter 2, the CT scanner used in the B.R.I. can 

produce data-sets with as many as 80 image slices, which appear normally in pairs, 

one “hard” or sharp focus, and one “soft” focus for each slice. Hence, when we work 

with only one image we are using 1/40 of the whole information available.  

 

A 3D investigation will give us a more general idea of the actual extension of the 

disease. If we take images of several slices and sort them out, we could expect to 

obtain the state of the lung with more accuracy and reliability than with just one slice, 

since one slice gives incomplete information, and sometimes this information can be 

erroneous. For instance, if we consider a single slice, we could want to search for the 

upper one and the lower one in order to compare them, so that they all contribute to 

the final diagnosis, i.e., if the central slice has an unhealthy area, and the other two are 

healthy, then maybe that region is actually healthy, so we have to look for a balance 

between the three of them to make a final decision. The study will be based on 2D 

features extracted separately from each slice, although another approach could consist 

of using volume features of all the 3 images together. 

 

We will discuss the changes made to the 2D user graphical interface, and a 

comparison between the advantages and disadvantages of a 2D and 3D diagnosis will 

be carried out. 
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7.2. 3D INTERFACE 
 
Some changes in the 2D user interface that we described in Chapter 4 are 

necessary to make a convenient process and treatment of several images. To run the 

program, it is only necessary to type “interface3d” in the prompt of MATLAB and the 

figure 7.1 will appear.  

 

It comprises some new basic tools to deal with a group of images, such as 

insert/remove slice, and also the necessary elements to obtain a 3D diagnosis using in 

our case 3 slices (the current one, the previous one and the next one). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 7.1. 3D Interface 
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We will review the changes and the new tools: 

 
• Open file/series: 

 
It opens one single image or a part of a whole dataset. The images have 

extension “*.lg”. When one image is selected, the dialog box from figure 7.2 

appears. If we are interested in loading more than one image, we have to make 

sure that they all belong to the same dataset and are in the same directory, plus 

their names must be consecutive. For example, in figure 7.1, 5 images have 

been loaded, the first of them was 17.lg, and the rest were 18.lg, 19.lg, 20.lg, 

and 21.lg. If one of them did not exist in the current directory, the loading 

process would stop at that point. 

 

Due to the memory limitations of MATLAB, the process is considerably slow 

when the number of load slices is above 40. For illustrating this procedure, a 

large number of slices is not needed, so it will not be a problem.  

 

 

 

 

 

 

 
Figure 7.2. Number of slices to load 

 

• Insert slice/Remove slice/Go to slice: 

 
Insert slice adds a new image after the current one, and remove slice removes 

the current image. Go to slice displays the selected image. These three 

functions also refresh the number current_ image/number_ of total images, 

that we can see as 3/5 in figure 7.1. 
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• Next/Previous buttons: 

 
They will allow us to move from one image to the previous or the next one. If 

we are in the first image and we press the previous button, an error message 

will be displayed. The same happens if we are in the last one and press the 

next button (figure 7.3) 

 

 

 

 

 

 
 

Figure 7.3. Error messages when we try to access to images out of range 

 

• 3D PROCESS: 

 
This option processes pairs of images, and is basically used to demonstrate the 

differences between the “sharp” and the “soft” version of the same slice. 

Figure 7.4 displays the options available for the comparison, which are image 

subtraction, and the comparison between the diagnoses corresponding to the 

different images.  

 

 

 

 

 

 

 

 

 
 

Figure 7.4. 3D Process of pairs of images 
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An example of this simple process is shown in figure below. The image 

produced by the subtraction of both images shows a small difference between 

them, especially relevant in the contour. This is due to the blur in the edges 

produced by the smoothing process to obtain the soft image.  

 

The diagnosis comparison shows that in the sharper version of the images 

more abnormalities are detected, because during the smooth filtering some 

noise is removed but there is also a loss of information and structure. 

Therefore, from now on, we will only work with the “sharp” version of the 

images, because they keep the integrity of the information. 

 

As we can see, this process of comparison only has sense when the two 

images belong to the same pair correspondent to a single slice, because images 

originated in different positions of the lung will have different shape, size and 

hence the comparison would yield useless results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.5. Comparison of a pair of images (sharp/soft) corresponding to the same slice. 
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• DO 3D DIAGNOSIS: 

 
This process will be further reviewed in next section. The base is the same as 

the diagnosis of one single slice, i.e., it comprises two modules: features 

extraction, and classification of these features using some previously trained 

neural networks.  

 

The difference is that 3 slices are used in the process, in each of them there has 

to be an extraction of features, then the classification, and finally a relation 

between the 3 output values (from the 3 slices) obtained for each region has to 

be found in order to achieve the best performance in the automatic detection of 

diseases. 

 

• View 3D Diagnosis: 

 
This displays a visual representation of how the disease extends throughout 

the whole lung. In order to see the inner parts of the lungs, in the 

representation, we have only plotted the edges for each slice, and then we have 

loaded the diagnosis for each slice, and mark the unhealthy areas with a red X. 

 

 

 
 

 

 

 

 

 

 

 

 

 
Figure 7.6. 3D representation of the state of the lung. Left: the whole dataset 1. Right: Zoom in on 4 slices. 
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To make the representation, we have to select the first file with information about 

the edges, which has the format “*alledges.lg” (for example 1_alledges.lg). After 

selecting the first edges file, we have to select the first diagnosis file that fit it (1.dgn). 

If the rest of the files in the dataset are in the same directory and their names are in 

consecutive order (2_alledges.lg, 3_alledges.lg… 2.dgn, 3.dgn …), then they are all 

loaded and representations like that of figure 7.6. are plotted.  

 

For this figure, we have used the dataset number 1, that we will discuss later in 

next section. In fact, as we explained before, only the files correspondent to the 

“sharp” version of each slice are used, therefore instead of loading all the files 

consecutively (1_alledges.lg, 2_alledges.lg, 3_alledges.lg…), they are loaded by twos 

(1_alledges.lg, 3_alledges.lg, 5_alledges.lg…). 
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7.3. COMPARISON BETWEEN 2D AND 3D DIAGNOSIS. 
       ADVANTAGES AND DISADVANTAGES. 
 

The tools that we will use to develop a 3D Diagnosis are the same than for 2D, 

only that now a combination of several slices is needed. The same textural features 

that comprise information about singles slices are utilized, instead of some volumetric 

features such as the mean grey value applied to a cubic region containing 3 slices.  

 

Hence, we will make an attempt to combine these planar features that belong to 

different slices in order to achieve an improvement in the final performance of the 

diagnosis.  

 

The same four neural networks defined in Chapter 6 will receive the features and 

will classify them to come up with the diagnosis. These neural networks are 

composed by one hidden layer of two nodes, and one single output. Each net receive 

the following inputs: 

 
• Neural network for emphysema in centres: mean grey value, percentile 

0.75, autocorrelation (0,1), Fourier max. peak, binary area, and binary fractal 

dimension. 
 

• Neural network for emphysema in edges: mean grey value, percentile 0.75, 

and binary area. 
 

• Neural network for fibrosis in centres: mean grey value, percentile 0.75, 

autocorrelation (0,1), Fourier max. peak, binary area, and binary fractal 

dimension. 
 

• Neural network for fibrosis in edges: mean grey value, percentile 0.75, and 

binary area. 
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To accomplish the diagnosis of the current lung image, first it is divided into 

16x16 pixels regions, and the upper and lower images are also divided in the same 

way. Narrowing the focus to detect the abnormalities in only one single 16x16 pixels 

region, the process consists of extracting the feature vector corresponding to that 

region, and the feature vectors corresponding to the same region in the previous and 

next images. Then, these three vectors are classified independently using the neural 

networks, and we come up with 3 different diagnoses. The problem that we attempt to 

solve is to decide the best way of combining these results to obtain the final diagnosis 

of the 16x16 region under study. 

 

In figure 7.7 this procedure is illustrated. The three classifications for the selected 

area and the three slices are named S1, S2, and S3. The final decision D about the state 

of the region has to be a function f of the classification results. Initially, before finding 

this function, we can expect that the most relevant parameter has to be S1, although 

including S2 and S3 in the diagnosis can help to solve certain situations where the 

normality or abnormality is not clear enough. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.7. Illustration of the 3D Diagnosis process. 

 

 



An investigation into feature selection and machine learning for detecting disease from lung scans 
 

 131

There are some previous points that we have to consider. A special case can 

appear when we study a region whose upper or lower homologous regions do not 

exist, because they are out of the boundaries of the lung. In this case, they cannot 

contribute to the final diagnosis, and if neither the upper nor the lower region exists, 

then the diagnosis will be equivalent to a simple 2D diagnosis of the area of interest.  

 

Other important point is that we have to be careful when we split the images. This 

is carried out at the first stage when we load some images, and it also depends on the 

number of images. The splitting is done in a way that a 3D representation of the lung 

with the loaded images would fit in a cubic volume, as we can see in figure 7.8. This 

has to be done to work with planar regions that correspond to the same volumetric 

16x16x3 cube (16x16 pixels planar area x3 slices). The difference with the 2D 

interface is that there we squash the single planar image so that it would fit in the 

smallest possible rectangular region, to have the lower number of 16x16 regions, and 

hence to obtain the diagnosis in less time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.8. Splitting process. 
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1 2 1 2 3( ) ( )D S S Sa a= - + +

Finally, the equation proposed to obtain the diagnosis combining S1, S2, S3 is: 

 

(7.1) 

 

where α is the parameter that we have to determine. If for example α=0.33, the 

three parameters would contribute exactly the same weight to the final value. On the 

other hand, if α=0, then D=S1, which correspond to the 2D Diagnosis.  

 

We can expect that lower values of α give better results, because from one image 

to the next or previous one, some areas change considerably (figure 7.9), and the 

results would not be reliable if S2 and S3 had a bigger contribution. 

 

 

 

 

 

  Lower   Current   Upper 
Figure 7.9. Changes in the regions from one image to the upper and lower ones. 

 

In the figure above it is shown that in the current image there is a clear area with 

abnormally high greyscale levels, while in the lower one it completely disappear and 

seems to be healthy. In the upper one, however, there is still some disease. Therefore, 

the selection of α is a difficult and delicate problem. 

 

We have carried out a study on 4 different datasets of lung images to determine 

the best value of α.  We have to say, though, that the results using the slices belonging 

to the lower and upper part of the lungs have not been considered, because it is not 

possible to get a certain degree of good performance using a 3D diagnosis, due to the 

big changes in size and shape from one slice to the next one (we can see this in figure 

7.8). However, for the central slices, which are similar in shape and size, we obtain 

some results of interest. 
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Next figures show curves that illustrate the percentage of error when we change 

the parameter α. They correspond to the 4 datasets previously mentioned. 5 central 

images of each dataset have been utilized to obtain the curves.  

 

 

 

 
 

 

 

 
 

 

 
           

Figure 7.9. Curves of error-α for datasets 1 and 2. 

 

 

 

 

 

 

 

 
 

 
 
          

Figure 7.10. Curves of error-α for datasets 3 and 4. 

 

 

For the trials we have used the following values of α: 0, 0.05, 0.1, 0.15, 0.25, 0.4, 

0.6, and 1.The graphics present the best performance for values of α in very narrow 

range around 0.1. Hence, we take α=0.1 as our chosen value. The equation 7.1 finally 

turns into: 
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0 8 1 0 1 2 3. . ( )D S S S= + + (7.2) 

 

The error percentages and the improvements with respect to the 2D diagnosis are 

presented in the table 7.1 

 

 

 

Table 7.1. Comparison 2D-3D diagnoses. 

 

We have displayed below some images belonging to datasets 1 and 2 to see these 

results visually, showing the diagnosis done by the human observer, and the automatic 

2D and 3D diagnoses. Lung 1 presents some areas with abnormally high density 

tissue, probably corresponding to the initial stage of carcinoma. Lung 2 presents 

abnormally low greyscale value in some regions, corresponding to emphysema. Lung 

3 is almost healthy, presenting only a few isolated areas with high grey levels. Lung 4 

presents a fibrous state. 

 

 

 

 

 
 

 

 

 

 
 Human observer      2D Diagnosis               3D Diagnosis, α=0.1 

Figure 7.11. Diagnosis comparison. Dataset 1. 

 

 

 

Dataset 2D performance error% 3D performance error% Improvement % 

1 18.45 14.84 3.61 

2 14.92 12.68 2.24 

3 26 16 10 

4 18.84 17.68 1.16 
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Human observer        2D Diagnosis               3D Diagnosis, α=0.1 

Figure 7.12. Diagnosis comparison. Dataset 2. 

 

The improvement in the first dataset is clearer than in the second. We can see how 

those isolated regions which appeared marked as unhealthy in the upper part of the 

lungs in the 2D diagnosis disappear in the 3D diagnosis, which is nearer to reality. On 

the other hand, in the second dataset the improvement is difficult to see visually, 

because it is actually very low, only a 2 or 3%. 
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7.4. SUMMARY AND CONCLUSIONS 
 

An attempt to design an automatic diagnostic tool using 3D information contained 

in subsets of 3 lung slices has been carried out in this Chapter. A new graphical user 

interface has been presented, adding some modifications and new elements to the 2D 

interface, in order to display and deal with whole datasets of CT lung scans. 

 

A study on 4 different datasets has been developed, in an attempt to find the best 

relation amongst the parameters obtained after simulations in each one of the three 

slices. Finally, equation 7.2 illustrates this relation, where we can see that the final 

diagnosis is mostly based on the information comprised in the slice under study, and 

the upper and lower slices contribute to the result in a small proportion.  

 

The investigation only yields interesting results when images belonging to the 

central part of the lungs are considered. A little percentage of improvement compared 

to the 2D diagnosis has been discovered in this case, although the results are not 

always clear visually.  
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8. CONCLUSIONS AND FUTURE WORK 

 

 

 

 

8.1. CONCLUSIONS 

 
Two automatic diagnostic tools for detecting abnormalities in the lung 

parenchyma, for 2D and 3D, have been developed and their performances 

investigated. A process of features selection was carried out, yielding a subset of 6 

features for the inner parts of the lungs, and of 3 features for the boundaries.  

 

4 different cascade forward networks were trained and tested in lungs with 

emphysema and fibrosis, yielding a performance above 90% in most of the cases, and 

showing a slight improvement when a 3D version of the method is applied to slices 

belonging to the central parts of the lungs.      

 

The computational cost of the procedure was proved to be reasonable in the 2D 

processes, but the expense of time increased considerably when a 3D diagnosis was 

carried out.  

 

The results of this research can be included into a more complex computer-aided 

diagnostic system, adding investigations into new diseases to help the expert 

physicians in the process. 
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8.2. FUTURE WORK 
 

There are many open questions for further discussion. First, many more datasets 

are needed to enhance the robustness of the techniques and the estimation of their 

performance. Next, a more extensive exploration of new features, such as Markov 

random fields and especially Gabor filters, could be carried out and might be more 

successful. Different techniques to improve the accuracy of some of the features 

already existent in this project, such as the grey-level fractal dimension and the 

optimal thresholds for binary images can be investigated as well. Another new line of 

work could be making new features based on the results of the investigations, and also 

we could start a research using volumetric features in 3D, instead of only 2D 

measures. However, as we have seen, the feature selection problem is very large and 

time consuming and will be even more complex with the addition of more cases.  

 

There are also many points of interest regarding the neural networks. There is too 

much freedom to build this type of structures, and our architecture could be modified 

in many ways. Adding new hidden elements or changing the number of epochs or the 

functions that we have used for training, learning, initialization of the net, 

performance, etc. can lead to an improvement in the results. Although in an initial 

attempt we were not able to integrate all the neural networks into a single one, it 

would be a very interesting aspect to consider, because it would reduce the 

complexity of the system. 
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