
2. PREVIOUS AND RELATED WORK

2.1 Background

Noting that the number of devices that surround users at home, at work,
and on the run is increasing; and realising that each device requires some
kind of attention from the user, each consuming some amount of time, a
new step towards enabling and exploiting a higher degree of intelligent
behaviour of these devices is needed. A recent concept to enable the
desired improvement of these devices is context awareness. The design of
context-aware devices results in simplified user interfaces, applications that
try to hide as much computation as possible from the user, and better
services that take greater advantage of the existing infrastructure. One class
of these more intelligent devices are audio-only wearable devices, for
which a study was carried out, resulting in the creation of Nomadic
Radio[1]. The main idea behind the Nomadic Radio was the unification of
the functionality of most of the existing personal audio devices into a single
audio-only intelligent wearable device that is able to anticipate the user’s
needs. Nomadic Radio achieves its purpose by building on text-to-speech
synthesis tools, speaker and speech recognition, and spatial audio among
others. With this background in mind, this thesis focuses on audio for
mobile users in a quest to create more useful devices. To understand the
rest of this thesis some knowledge in several areas is needed, this is present
in the following.

2.1.1 Wearable Devices

There has been little agreement as to what the exact requirements are for a
wearable device. One description given in [4] states that a device needs to
be portable, enable hands-free use, possess a wide array of environmental
sensors, and always be proactively acting on its user’s behalf. This
description is of quite a powerful and flexible device, but fails as a more
general description as it excludes devices that are considered wearable
nowadays. Another more flexible description of devices that can be
considered wearable are devices that offer some kind of computing, that are
worn or carried on one’s person habitually and whose primary interaction is
with the person wearing or carrying the device[4]. Examples of wearable
devices that fit the latter definition, which will be the definition we will be
assuming through the rest of this document, are laptops, cell phones, and
Personal Digital Assistants (PDAs).

The performance of a wearable device can be measured according to two
criteria: transparency and efficacy. This thesis will not go deeper into the

details of the performance of a wearable device, but will assume that our
wearable devices are connected over wireless interfaces at all times and
will assume that the details of connectivity are hidden from the user and
hence not relevant for the thesis. The means of providing the appropriate
selection of wireless interface is the topic of Giulio Mola’s thesis[18].

2.1.2 Digital Audio Players

Music audio or audio of any kind, must be in some digital storage format to
be able to exist online. In this digital form, we are able to access and listen
to audio from our computers and many other digital devices[23]. Digital
music is nothing more than binary data, i.e., strings of ones and zeros. One
can basically find two kinds of audio players in the market, MP3 players,
which are made to handle MP3 files; and real-time audio players, such as
RealAudio[26] or Windows Media Player[28]. Sometimes, this division is
invisible as players are designed in a very complete way and can operate as
both MP3 players or real-time players at the same time.

Most audio players share features, such as standard operation buttons (play,
stop, pause,...), volume controls, playlists generation (see section 2.1.3),
display track (MP3 files often come with embedded track info, such as the
artist's name, the title or the album), CD information, equaliser functions
(RealPlayer [27] supports these functions), and compatibility with different
sound formats (most players can play formats including: WAV, AIFF,
MOV,..., in addition to MP3) since no single standard for digital audio
online exists[23].

In this thesis, the player-client (built as one of the clients of the
client/server application) generates audio output from digital audio content
by selecting the appropriate player. However, only one of these players is a
pre-existing player. This is mpg123, which is available in SmartBadge 4,
and is obviously used for playing MPEG files. Because the results of using
the FLite text-to-speech synthesis tool is a wave file, and no suitable player
for wave files was implemented for SmartBadge 4, a wave player was
designed (see section 3.6). Finally, as the software necessary for playing
SUN AU files with SmartBadge 4 was already available, this type of audio
file was also included in the player-client.

2.1.3 Playlists

In order to understand how to exploit audio for mobile users, which is the
main purpose of this master’s thesis, a basic application must be created.
This application should build and maintain a list of content to be played;

i.e. what to output and when it should be output. This list will be
dynamically modified to include new information, such as personal
announcements, alerts, etc. of interest to the user.

The first approach to building such an application is to build a basic playlist
with only scheduled output. This is similar to a typical broadcast radio
station’s playlist. Thus, a basic understanding of what a typical playlist
usually includes is needed. Once we have this in mind, we can consider all
the changes and additions necessary that must be made to this playlist for
our specific purpose.

One of the major advantages of digital music today is being able to store
dozens or hundreds of albums in a physically small digital storage device.
This was popularised by the Apple iPod and Diamond Rio, but today many
vendors sell such devices in a very wide variety of form factors.
Additionally, one can find countless software tools for managing such
digital music on the market. These tools vary from each other and differ in
the way they produce a playlist, however, some concepts and features are
included in almost all playlists and therefore we will examine these
common features.

One of the most common characteristics of many radio station’s playlists is
that they consist of a mix of wave files[29] and MPEG files[24]. A typical
playlist usually includes the titles to be played, their storage location
(filename), date, and time following a predetermined order, selected by the
user him/herself or by the programmer responsible for producing a playlist.
Each element of audio content is called a cut. Frequently, the different
music cuts to be played are organised into a database where one can
include additional information such as music titles, openers, trailers, news,
spots, promos, IDs, and comments[5].

Some information associated with the cut that can be useful are so called
“cue points”. These cue points are critical time points such as the starting
point of the song, the intro time (which is the time when the vocals start),
the outro time (which is the time when the vocals end), and the fade-out
point[5]. These time points can be used when including new information to
the playlist as one could decide to add the new content after the outro time
point, instead of waiting for the song to end completely.

Some operations that applications should usually provide when dealing
with a playlist are swapping cuts within the playlist, deleting cuts from the
playlist, adding new cuts, creating a new playlist, and changing the cuts in
a playlist.

Another interesting feature that should be contemplated is the possibility of
having two mixer faders, each associated with a cut, that can be played
simultaneously in order to be able to fade from one source to the other.
This could be used when presenting a new personal announce to decrease
the volume of the currently playing cut and increasing the volume of the
announcement.

There is quite a lot of information and lots of software available for the
creation and manipulation of digital playlists, such as XML playlists[6],
protocols for fetching playlists[7], Java tools for manipulating playlists[8],
a commercial playlist product description[9], and a complete open source
broadcasting system[10] among others.

In this thesis we will produce a playlist using an application written in C.
This playlist manager will maintain the usual information in playlists about
title, artist, and album when possible (this information is sometimes
embedded in MPEG files), along with length, size, sample rate, and other
information necessary for the internal functioning of the program like
priority, name of the file that contains the cut, recording type, and order of
the cut inside the playlist. The functions of adding cuts to the playlist,
deleting cuts, or saving the playlist in a file will be described in chapter 3,
where the details of the application will be presented.

2.1.4 MPEG Audio Frame Header

MPEG audio files are built up from smaller parts called frames, which are
blocks of data with a header. Generally, frames are independent items, each
frame has its own header and audio information. However, due to internal
data organisation in MPEG version 1 Layer III files, frames are often
dependent. When one wants to extract information from an MPEG file,
having a clear image of the file’s structure can be highly beneficial. Figure
1 shows the structure of an MPEG file.

The first thing we encounter when reading a MPEG file is an optional list
of ID3 tags. ID3 is a general tagging format for audio, which makes it
possible to store meta-data about the audio inside the audio file itself. ID3
was designed to be as flexible and expandable as possible to meet new
meta information needs that might arise. As described in [25], the ID3 tag
is composed of a header, an optional extended header, different tags (each
containing a header itself), and optional padding and a footer. The
information contained in the tag is quite broad and can include the length of
the MPEG file, the date of recording, the name of the composers or an

URL pointing at a webpage with information such as where the album can
be bought[25].

Figure 1: Structure of an MPEG file

There is no fixed order in which the tags should appear, and not all the
existing tags are included in all the MPEG files. In this thesis we will look
for the tag TLEN, whose information is a numeric string with the length of
the song in milliseconds, but only when the MPEG file contains this tag. In
the files that do not include the TLEN tag, the length of the MPEG file
must be calculated using information such as bitrate, samplerate, and the
size of the file in bytes (see section 3.4).

After the ID3 tag, audio frames start to appear in the file. Each frame has
its own header, which is indicated by the first four bytes of each frame. In
such header, information about the file’s version, layer, the frame’s bitrate,
samplerate, and padding byte among other information is included. Not all
of the frames must have the same bitrate. Bitrate switching, which means
that the bitrate changes according to the content of each frame, is used in
some MPEG files. This way lower bitrates may be used in frames where it
will not reduce sound quality. This allows better compression while
retaining high quality of more complex sounds. For a description of the
exact meaning of each bit in the header see [24].

At the end of the MPEG file, another ID3 tag often appears. This is a fixed
length tag that is 128 bytes in size, it is always at the very end of the file,
and contains information about the file’s song, artist, album, publishing
year, some comment, and its genre. The genre is a number from 0 (‘Blues’)
to 125 (‘Dance Hall’), each number corresponds to one of the possible
genres of an audio file[24].

2.1.5 XML – Extensible Markup Language

XML is a mark-up language for documents containing structured
information[11]. Structured information contains both content (words,
pictures, etc.) and some indication of what role that content plays (for
example, content in a section heading has a different meaning from the
same content in a footnote, which means yet something different in a figure
caption, in a table, etc.). Almost all documents have some structure. A
mark-up language is a mechanism to explicitly identify this structure in a
document. The XML specification defines a standard way to add mark-up
to documents.

XML differs from HTML. In HTML, both the mark-up tag semantics and
the tag set are fixed. The World Wide Web Consortium (W3C), browser
vendors, and the WWW community are continuously working to extend the
definition of HTML to allow new tags. However, with these changes there
is often some delay and difference in what the browser vendors have
implemented. The result in compatibility is always a negative factor. In
contrast, XML specifies neither semantics nor a tag set. In fact XML is
really a language for describing mark-up languages. Thus XML provides a
facility to define tags and the structural relationships between them[11].

XML is defined as an application profile of SGML. SGML is the Standard
Generalised Mark-up Language defined by ISO 8879[30]. SGML has been
the standard, vendor-independent way to maintain repositories of structured
documentation for more than a decade, but it is not well suited to serving
documents over the web. XML is a restricted form of SGML better suited
for the Internet.

In order to understand the importance of XML, we need to understand why
it was created. XML was created so that richly structured documents could
be used over the web. As mentioned above, HTML and SGML, are not
practical for this purpose. Some of the goals for XML are that it should be
straightforward to use over the Internet, it should support a wide variety of
applications, it shall be compatible with SGML, it shall be easy to write
programs that process XML documents, the number of optional features in
XML should be minimum and ideally zero, XML documents should be
human legible, clear and easy to create, and that XML’s design should be
prepared quickly, be formal, and concise.

In the present thesis XML will be used to initially define the elements
needed for the playlist to be used in the program. The necessary tags will
be identified in XML. A possible improvement to the solution presented in

this thesis, would be a program that processes the XML document and
automatically produces the C code necessary to manipulate it. Thus an
alternate implementation method would be to manipulate the actual XML,
for example using the Extensible Stylesheet Language Transformations

(XSLT)[35], the Document Object Model (DOM)[33] or the Simple API
for XML (SAX)[34] APIs .

2.1.6 Wireless LAN

A wireless LAN (WLAN) is a local area network that operates without
wires in which the data is carried by radio or infrared transmissions. It
offers the possibility of maintaining connectivity while the user moves
about and the advantage of multiple users sharing the same network;
requiring only a wireless card and authorisation to use the network, if this
network is not an open one (i.e., if the network limits who may use this
network). Using electromagnetic waves to transmit and receive data
between users (and an access point) over the air, replaces the usual wired
connections. An access point is a device that interconnects the wired and
wireless networks, therefore enabling the wireless devices to communicate
with devices attached to the wired network.

The IEEE 802.11 standard specifies the technologies for wireless LANs
and how they can be used to provide portable, fixed and moving stations
with connectivity within a local area network. The standard includes link
layer encryption using the Wired Equivalent Privacy algorithm.
Unfortunately, this algorithm provides only weak security. For addition
details see [31].

High-bandwidth allocation for wireless LANs has made possible relatively
low-cost “wiring” of classrooms. On KTH’s campus is Kista, Sweden,
WLAN access is almost universally available. The low cost and ease of
installation has lead to installation of wireless LAN systems where existing
LANs are not already in place.

In some situations, a wireless LAN may be preferable to a wired LAN
because it is cheaper to install and maintain. The coverage radii of an
access point are 150 meters for indoors and 300 meters for outdoors,
although better antennas, designed for the specific allocation, and the use of
repeaters and other devices can enlarge an axis of the wireless cell’s area,
but generally change coverage from roughly a circular cell to a more
elongated shape. These facts, combined with the increasingly importance of
mobility and increasing number of wearable devices, have made wireless
LAN quite popular and widespread in the market. A wireless LAN

interface is now built into most laptop computers or PDAs, and many
external wireless cards are sold for those devices lacking a built-in wireless
LAN interface.

2.1.7 Context-awareness in Wearable Devices

Taking into account context-awareness when designing wearable devices
can result in many advantages. However, there are slightly different ways
in which the concept of context-awareness can be understood and defined.
The term context can be seen as a knowledge about the user’s and/or
device’s state, including things like surroundings, location, and situation. In
a more general definition, context is any information that we can use for
knowing the situation of a person, place, or object. In this thesis, we will
consider context to be any information and data derivable by a wearable
device about its state, environment, and surroundings.

Context-awareness is described as the awareness of the environment,
location, situation, user, time, and current task. Context-awareness occurs
when applications on wearable devices or servers use the context
information when making decisions. As a result of using context
information, these wearable devices achieve a higher degree of intelligence
and exhibit greater independence in their behaviour. The use of this new
information also should lead to “better” services (with respect to being
more suitable for the user’s current state) and simpler user interfaces (since
much manual configuration can be eliminated).

Not all the acquired context information is relevant to applications running
in the wearable devices, so a process of filtering this information must be
performed in order to utilise the appropriate information at the right time
while discarding information when it is not useful.

We obtain context information either by using sensors or exchanging data
with other wearable devices or devices attached to the network. Sensors
can be on the wearable device itself or in the environment. Their data can
be transmitted over the network to any wearable device for its use. Sensors
can provide speaker recognition (for use in voice recognition, for example),
location based on Global Positioning System (GPS), time of day based on
network attached clocks, humidity sensors (a type of environmental
sensors), ... or software for monitoring. For details about collecting sensor
data see Andreas Wennlund’s thesis[13].

2.1.8 Nomadic Radio

As previously noted, people use a number of appliances and portable
devices for a variety of tasks at home, in their workplace, and on the run;
thus taking advantage of the information-rich environment that currently
exists[1]. Attending to all these devices, each giving different kinds of
notifications without taking into account the user’s state (e.g., the user may
be busy and maybe does not need to know the information included in a
certain notification at the moment of reception), leads to overload of the
user’s limited attention. In order to be more effective, these devices should
be aware of the environment in which the user is present. Nomadic Radio
presents an approach to a first solution to this problem.

One of the problems of having multiple devices that Nomadic Radio
addresses is the lack of differentiation in notification cues, i.e., using the
same (binary) auditory cues for all the messages makes it impossible for
the user to easily distinguish between urgent and important messages and
non-urgent and less important ones.

Minimal awareness of the user and the user’s environment enables filtering
notifications which will interrupt the user. Intelligent devices can learn
from prior interactions with the user and hence can take into consideration
the user’s behaviour, concerning the same (or similar) notification. This
awareness can be used to co-ordinate notifications, so that the user’s
different devices work co-operatively resulting in only one notification
occurring at any given time[1].

Nomadic Radio’s goal was to give timely and filtered information relevant
to the current user state[2]. A variety of auditory techniques must be
supported in a non-visual wearable interface. For browsing and scanning
messages in an easy way, spatial listening can be used. A spatial sound
system is able to place individual voices in particular spatial locations.
Synthetic speech and speech recognition provides hands-free navigation
and control, and auditory cues provide effective awareness and
notifications. All these auditory techniques must operate synchronously in
order to be useful and not confuse the user[2].

The system operates as a wearable audio-only device, providing a hands-
free and unobtrusive interface to a nomadic user, although a visual
interface is used for setting user preferences and server-related functions.
The prototype used as a platform for the development of Nomadic Radio
was the SoundBeam Neckset, patented by Nortel for use in hands-free
telephony. It consists of two directional speakers mounted on the user’s

shoulders (necessary for providing spatial audio), and a directional
microphone placed on the chest[1].

An audio-only interface has been incorporated in Nomadic Radio, and a
networked infrastructure for unified messaging for wearable access. This
master thesis tries to understand how to exploit audio for mobile users,
building upon improvements suggested by Nomadic Radio.

2.1.9 Connectionless Transport: UDP

Two widely used transport protocols are used by Internet applications,
these are the Transfer Control Protocol (TCP) and the User Datagram
Protocol (UDP). Both are part of a large collection of protocols referred to
as TCP/IP stack.

UDP provides simple but unreliable datagram services, it is a minimal
transport service. As defined in STD 6, RFC 768[36], UDP is a
connectionless protocol which is layered on top of IP and it requires neither
a connection nor does it guarantee delivery. As a result, it is lightweight
and efficient, but leaves to the application program all the error processing
and retransmission. An application using UDP must deal directly with end-
to-end communication problems (retransmission for reliable delivery,
packetization and reassemble, flow control, congestion avoidance). UDP is
used by applications that do not require the level of service of TCP (a
reliable, connection oriented protocol) or that wish to use communications
services not available from TCP.

The only services of UDP beyond IP (the underlying protocol) are
checksumming of data and de/multiplexing by port number. UDP operates
as a transport protocol as follows. UDP takes messages from an application
process, attaches source and destination port number fields for the
multiplexing/demultiplexing service, and passes the resulting "segment" to
the network layer. The action that the network layer takes is to encapsulate
this segment into an IP datagram, and then, make a best-effort attempt to
deliver the segment to the receiving host. When the delivery is successful
and the segment arrives at the receiving host, UDP uses the port numbers
and the IP source and destination addresses to deliver the data in the
segment to the correct application process. UDP does not implement three-
way handshaking (always present in TCP) between sending and receiving
transport-layer entities before sending a segment. For this reason, UDP is
said to be connectionless[14].

Although one might consider that TCP is always preferable to UDP since it
provides reliable data transfer, there are many application better suited for
UDP. As UDP is connectionless, it does not introduce any delay
establishing a connection; unlike TCP which uses a three-way handshake to
establish a connection before starting to transfer data, as commented above.

UDP does not maintain connection state and hence does not track
parameters such as receive and send buffer occupancy, congestion control
parameters, or sequence and acknowledgement numbers. This enables a
server devoted to a particular application to support many more active
clients than if the same application were run over TCP. Additionally, a
smaller segment header overhead is always more convenient than a big one
as more bytes can be used for transmitting useful information. This fact
makes UDP a desirable protocol for small amounts of information, as it
only has 8 bytes of header overhead.

Another advantageous factor when using UDP is its unregulated sending
rate. The speed at which UDP sends data is only constrained by the rate at
which the application generates data, the capabilities of the source (CPU,
clock rate, etc.) and the access bandwidth. However, the receiving host
does not necessarily receive all the data. When the network is congested, a
significant fraction of the UDP-transmitted data could be lost due to router
buffer overflow. Thus, the receive rate is limited by network congestion
even if the sending rate is not constrained[14].

As we can see in table 1, UDP is used for RIP routing table updates,
because the updates are sent periodically, so that lost updates are replaced
by more up-to-date updates. UDP is also used to carry network
management (SNMP) data, since it must often run when the network is in a
stressed state, i.e., when reliable, congestion-controlled data transfer is
difficult to achieve. DNS runs over UDP in order to avoid TCP's
connection establishment delays.

To realise advantages stated above, the transport protocol that will be used
in this master thesis is UDP. It will be used for the communication between
the server and the several clients. The details of this communication are
described in section 3.

Table 1: Popular Internet applications and their underlying transport
protocols.

Application Application-layer
protocol

Underlying
Transport Protocol

electronic mail SMTP TCP
remote terminal access Telnet TCP
Web HTTP TCP
file transfer FTP TCP
remote file server NFS typically UDP
streaming multimedia proprietary typically UDP
Internet telephony proprietary or SIP or H323 typically UDP
Network Management SNMP typically UDP
Routing Protocol RIP typically UDP
Name Translation DNS typically UDP

2.2 Related Work

There has been a rapid evolution in the research on context-awareness and
wearable devices, since it first began in the 1980s. Today one can find lots
of information on the subject thanks to the number of research projects that
have been carried out. We will give short summaries of related work.

2.2.1 SmartBadge 4

SmartBadge 4 is the fourth version of the SmartBadge. It has been
developed at Hewlett-Packard Laboratories in conjunction with the Royal
Institute of Technology (KTH), as a prototype of future smart card systems.
The first badge of this version was operational on February 2001 and in
July 2001 it began running Linux. This version is a 12 layer printed circuit
board with a ball grid array (BGA) mounted Intel Strong ARM SA1110
processor and SA1111 companion chip[3].

It measures 64x110 mm and is equipped with several sensors such as a 3-
axis accelerometer, temperature sensors, humidity sensors and light level
sensors. Some other components of SmartBadge 4 are infrared, PCMCIA,
USB and compact flash port interfaces, providing a wide diversity in its
connectivity and communication.

This badge can be seen as a technology platform for biometrics, context
sensors, audio processing, video streaming, wireless systems, power
optimisation, and measurements among others. The SmartBadge 4 has been
used in courses at KTH such as the Mobile Personal Communication
module of the Telecommunication course, and at University of
Wollongong (Australia).

2.2.2 Active Badge

The Active Badge was developed between 1989 and 1992 at AT&T. Using
Active Badges, one can be located in a building where the system is
installed, as the badge repeatedly transmits an infrared signal identifying
itself. This infrared signal is received by networked infrared sensors
installed in the building. Each of these sensors has a unique network
address and thus provides the system with information about the location of
those badges whose signals it receives[15].

2.2.3 Festival-Lite

Festival-Lite (FLite) is a small, fast run-time speech synthesis engine
developed at Carnegie Mellon University (CMU). It is mainly designed for
small-embedded machines, in addition to large servers. It is a very portable
engine which can be used on most platforms. FLite is written in ANSI C
and offers text to speech synthesis in a small and efficient binary. FLite is a
synthesis library that can be linked to other programs, it includes two
simple voices with the distribution, an old diphone voice and an example
limited domain voice, which uses the newer unit selection techniques
developed by CMU[16]. The result of the text to speech synthesis is an
ordinary wave file. In the present master thesis, this tool will be used for
translating textual notifications into audio ones, getting closer, in this way,
to an audio-only device.

2.2.4 MyCampus

MyCampus is an agent-based environment for context aware mobile
services, developed at Carnegie Mellon University (CMU) and evaluated
on their campus. It uses smart agents running on a PDA that uses a context
server to obtain context information. The agents can suggest places for
having dinner on the campus basing its decision on the user’s schedule,
their position, and the expected weather, for instance. Restaurants and
weather information are obtained from the server and the user’s schedule
can be already on their PDA or on a server along with other relevant

information about the user. Users can download to their PDAs task specific
agents in order to access the services they are interested in[17].

2.2.5 Wireless Diversity: Vertical Handoff Optimisation

Today, many different wireless technologies are available. Handoff
mechanisms are needed to provide mobile computing communication with
reliability and transparency. A good deal of the work is addressed by
mobile IP itself, but addressing wireless diversity is the next step. Among
this variety of wireless technologies, some technology provides wide
coverage, while others provides higher bandwidth but are deployed locally,
and even (directional) ad-hoc links can be used to carry IP traffic. To take
full advantage of the infrastructures, a mobile device, with multiple
network interfaces, should be able to dynamically switch from one link
technology to another by changing from one interface to another.
Hopefully, this would be totally transparent to the user. Moreover, multiple
interfaces allow the device to choose, each time a new connection has to be
established, which interface to select to route the datagrams over, based on
the type of service desired/wanted. In Giulio Mola’s thesis a possible
solution is presented, which considers both vertical handoff optimisation
and policy based management. The test platform is the SmartBadge v4,
equipped with both GPRS link and IEEE 802.11b WLAN interfaces[18].

2.2.6 Context-Aware Support for Opportunistic Mobile

Communication

The number of ways in which humans interact with each other has
increased tremendously. Due to modern technologies, people thousand of
miles apart are able to interact with each other, for instance, at low cost,
through the internet. Further improvements of these interaction possibilities
build upon context awareness and location awareness. Today, both
concepts are poorly utilised as sources of information and further
exploitation of them is needed. Location awareness systems collect data
about the absolute or relative location of the user. This project focused on
designing an application which enables users to learn of each other’s
presence and their location through an audio interface. Users learn of each
other’s presence and status by listening to the audio (wave) files generated
by Festival-Lite software running on the SmartBadge 4. A key feature of
this system was coupling an instant messaging system (via Jabber) to
Festival-Lite[19].

2.2.7 Guided by Voices: An Audio Augmented Reality System

Lyon, Gandy, and Starner present a lightweight and inexpensive
infrastructure for augmented realities that uses a simple wearable
computer[20]. Whereas most traditional augmented reality systems overlay
graphics onto the user' s environment, this system employs only audio. A
positioning infrastructure using radio frequency (RF) transmissions was
created to provide approximate location require little computational
overhead. This RF based location system plays digital sounds
corresponding to the user’s location and current state. As a result, the
system created is much less expensive and computationally complex than
traditional augmented reality (AR) systems. ”Guided by Voices” is an AR
game developed to use a prototype infrastructure that allowed its creators to
explore the unique issues involved in creating an engaging augmented
reality audio environment. In the game players move around in the real
world, but this triggers actions in the virtual (game) world. Some of the
issues involved in creating audio-only augmented reality games were
presented, along with the location infrastructure generalizable to other
audio augmented realities.

2.2.8 A university licenses Napster for its students

Penn State University becomes first in the United States to offer its
students a legal high quality alternative to private file sharing services. This
new alternative is based on an agreement with the online music service
Napster, which is a division of Roxio, Inc. Napster is the world’s most
recognised brand in online music, and offers access to a large catalogue of
online music, with more than 500,000 tracks. A user-friendly interface
allows people to quickly search for music, discover new artis ts, burn CDs,
and transfer music to any of 40 different portable devices, among other
interesting services. Members can permanently purchase songs for 99 cents
each or $9.95 an album.[39].

Penn State University will make Napster’s Premium Service available at no
cost to its students. This service intends to meet students’ interests, since
recent studies revealed that the trend when listening to music goes toward
digital music in PC and MP3 players. Students, who have demonstrated a
voracious appetite for online music, are interested in getting extensive
digital access to music. Student focus groups at Penn State have already
been testing the Napster service. Thousands of testers will be deployed in
the spring semester, in order to give feedback before expanding the service
to the rest of university’s students. For further details see [40].

2.3 Prerequisites

In order to fully understand this thesis the reader needs to have some
previous knowledge and understand the basic concepts and fundamentals of
data and computer communication, including wireless communication
(specifically Wireless Local Area Network (WLAN)), and the principles
and functions of communication protocols, specifically the TCP/IP stack.

