
Description of Algorithms for Simulation of
the Autonomous Model Helicopter

MARVIN

Carsten Deeg

17th November 2003

Technische Universität Berlin
Real-Time Systems & Robotics

http://pdv.cs.tu-berlin.de/MARVIN/

1. Introduction

Controlling a helicopter requires specialized algorithms, which permanently have to sta-
bilize the vehicle, as it is inherently instable. To be able to test these algorithms “of-
fline”, before the real helicopter is used, a software simulator is needed. The simulator
described in this paper is designed especially for the autonomous helicopter MARVIN
(Multi-purpose Aerial Robot Vehicle with Intelligent Navigation) contructed at TU
Berlin. It can be used to validate changes to the flight controller as well as changes to
the software of the IMU (see below).

2. Basic Concept

2.1. Application Flow

The whole simulation combines several components of the MARVIN system:

Controller This is the part of software, which makes MARVIN fly.

IMU The Inertial Measurement Unit and the on-board GPS are used by the IMU
software to tell the controller where the helicopter is and how it is oriented. For
simulation the IMU software is used and the hardware sensors are emulated (see
below).

1

http://pdv.cs.tu-berlin.de/MARVIN/

Sensors Sensors produce the input for the IMU software. For simulation they are emu-
lated including their problems and incorrect measurements.

Simulator This is the part, which simulates all the physics of a flying helicopter. In the
following text the word simulator denotes this software part.

For the first two components (controller and IMU) the same code is used as for real
flights.

Simulator

Sensors

IMU

Controller

Figure 1: Application flow

During the simulation the output of the simulator is used to produce the input for the
IMU software (see figure 1). Special characteristics of the sensors are simulated. Based
on these “measurements” the IMU software computes position, orientation etc. Then the
controller uses the output of the IMU software to control the helicopter. The calculated
servo values are returned to the simulator to produce the results for the next time step.

Since the controller is designed for a fixed time step of 0.05s, this cannot be changed
for simulation. To improve accuracy of simulation, it is possible to run the simulator
more frequently than the controller. In figure 1, this is indicated by the dashed line. See
section 4.1 for details.

2.2. Helicopter State

The state of the helicopter describes the location, velocity and all the other values that
change over time and which are needed for calculating future states. The following table
shows all these information, stored in a struct called SimState:

2

~s = (x y z)T Position in BCS (see below)

~v = (vx vy vz)T Velocity in BCS

~a = (ax ay az)T Acceleration in BCS (for sensors
only)

~ϕ = (ϕx ϕy ϕz)T Orientation in yaw-pitch-roll

~ω = (ωx ωy ωz)T Angular velocity in HCS (see below)

ωr Angular velocity of main rotor (pos-
itive for clockwise)

pc,px,py,pt,th Servo positions for main rotor (col-
lective pitch pc, cyclic pitch px,py),
tail rotor (pitch pt), throttle for en-
gine

There are two different coordinate systems used for the values:

BCS This is the Base Coordinate System. It is fixed in the environment (x-axis towards
north, y-axis west, z-axis up).

HCS The Helicopter Coordinate System changes its point of origin and its orientation
with the movement of the helicopter (x-axis forward, y-axis left, z-axis up).

All values are stored in SI base units with the exception of servo values, which are given
in proprietary counts of servo steps.

3. Physics of Flight

This section gives an overview of the physical laws, needed to understand and simulate
a flying helicopter.

3.1. Basics

3.1.1. Translation

To simulate the movement of the helicopter along the axes of the BCS, the simple and
well known equation of Newton is used:

~F = m~̈s (1)

m represents the mass of the helicopter and ~F is the resulting force of all simulated
effects.

3

3.1.2. Rotation

Equations for rotational movements are more complex than for simple translation. First
there is the corresponding one to equation 1:

~M = JH · ~̈ϕ (2)

~M is the torque and JH the tensor of the moments of inertia:

JH =

 Jx 0 0
0 Jy 0
0 0 Jz


For simulation of simple rotational movements such as the rotational speed of the

main rotor according to the torque of the engine, equation 2 is sufficient. But in order to
alter rotor axis’ direction we have to deal with the effects of gyros such as precession. To
fulfill all of these effects we start the derivation with the law of conservation of angular
momentum (~L):

~M = ~̇L

=
d

dt
(~LM + ~LT + ~LH) (3)

The components of ~L are the momentum of the main rotor (~LM), the tail rotor (~LT)
and the rotating helicopter body (~LH). To break down equation 3 we have to have a
look at the separate components.

Figure 2 illustrates the dependencies for ~LM (~LT , respectively):

~̇LM = ~ω × ~LM = JM ~ω × ~ωM (4)

~̇LT = ~ω × ~LT = JT ~ω × ~ωT (5)

d~LM

~LM

~ωdt

Figure 2: Momentum of main rotor

The complete equation for the whole helicopter combines both rotors:

~M = JM ~ω × ~ωM + JT ~ω × ~ωT + JH · d

dt
~ω (6)

4

3.2. Forces and Torques caused by a Rotor

To be able to calculate the forces and torques, it is necessary to have a look at the rotor
blades. There are always two forces when a blade is moved through air: lift and drag.
Lift is the component, that makes any air vehicle fly, drag is the force, that slows down
the movement due to air friction.

While blades of rotors are moved through air, the forces change with different positions
during one cycle as long as there is wind or the helicopter moves. To keep simulation
simple, one mean value should be used. One cycle of our main rotor takes approximately
0.05s, which has to be divided by the number of blades (2) to get the effective frequency
of 40Hz (the tail rotor has 3 blades and runs at a higher rotary speed). Our controller
works at a frequency of 20Hz, so that it “sees” just a mean value of the forces and
torques.

3.2.1. Lift

The following equation describes the mean value of the lifting force of the whole rotor.
The blades range from radius R1 to R2. Figure 3 shows the definitions for integration
over the area of the main rotor.

R1 R2

y

x

α

one blade

rotating direction

v

Figure 3: Definitions for integration

FL =
∫ 2π

0

∫ R2

R1

F ′L(α, r)r dr dα (7)

FL depends on several values such as the pitch of the blades, angular speed and velocity
of air with components vax and vay. According to several references [1, 2], lift is given by
(CL coefficient of drag, ρ density of air, A area of blade, v component of relative speed

5

of air within the rotor plane orthogonal to the blade)

dFL =
1
2
Cρv2dA (8)

ωM and the velocity air ~va are combined to the speed of air relative and orthogonal
to the blade:

v = −vax sin(α) + vay cos(α)− ωMr

This equation for v is valid as long as |~va| < |ωMr|. Otherwise the direction of airflow
at this radius is wrong. But since v is used squared, a changing sign does not affect
the result. For the inner radius of R1 = 0.1m this means that in simulation wind
must not be faster than 12m/s at ωM ≈ −120rad/s (34m/s for tail rotor R1 = 0.05m,
ωT ≈ −680rad/s).

How does C depend on the angle of attack, given by three values of pitch? First we
assume here pitch to be equal to angle of attack [1]. According to [1, 2] for the normal
range of flight (i.e. no stall) we assume C to be proportional to any value of pitch (see
figure 4). Collective pitch pc and cyclic pitch px, py have to be combined. px is defined to
produce a positive rotation around x-axis. According to theory of spinning objects (see
section 3.1.2) this means mainly a positive torque around y-axis. py analogical produces
a negative torque around x-axis:

pc

CL

CD

Stall

Figure 4: Coefficients of lift and drag

C ∼ pc − cos(α)px − sin(α)py

C is not zero, if there is no pitch, because the blades are airfoils. Combining all
constants in equation 8 the complete relationship looks as follows with new constants
C1 and C2:

F ′L(α, r) = (C1 + C2(pc − cos(α)px − sin(α)py))(−vax sin(α) + vay cos(α)− ωMr)2 (9)

6

C1 and C2 are specified by measurements of real flying tests with the helicopter (see
section 4). To include the effect of rare air in great altitudes these constants can be
modified by applying the well known barometric equation (density ρ0 and pressure p0 at
z = 0, g gravity):

ρ(z) = ρ0 exp
(
−ρ0

p0
gz

)
(10)

Solving of equation 7 is no problem.

FL =
π

2
(C1 + C2pc)(ω2

M (R4
2 −R4

1) + (v2
ax + v2

ay)(R
2
2 −R2

1)) (11)

− 2π

3
C2ωM (−pxvay + pyvax)(R3

2 −R3
1)

Equation 11 contains cyclic pitch. Since the tail rotor does not have any cyclic pitch,
the equation can be reduced in this case.

3.2.2. Torques

There are several possible sources of torque on the helicopter. First there is the tail
rotor, which has to compensate the torque of the engine on the main rotor. Another
source is the cyclic pitch px, py. But even wind can cause torques, when it is blowing
over the rotor.

To calculate these torques, produced by one rotor due to wind and rotation, F ′L of
equation 9 is used. This force has to be integrated as follows:

Mx =
∫ 2π

0

∫ R2

R1

F ′L(α, r)r2 sin(α) dr dα (12)

My =
∫ 2π

0

∫ R2

R1

−F ′L(α, r)r2 cos(α) dr dα (13)

These equations can be solved as well:

Mx =
π

2
(C1 + C2pc)ωMvax(R4

2 −R4
1) (14)

+
π

6
C2pxvaxvay(R3

2 −R3
1)

− π

60
C2py(12ω2

M (R5
2 −R5

1) + (15v2
ax + 5v2

ay)(R
3
2 −R3

1))

My =
π

2
(C1 + C2pc)ωMvay(R4

2 −R4
1) (15)

− π

6
C2pyvaxvay(R3

2 −R3
1)

+
π

60
C2px(12ω2

M (R5
2 −R5

1) + (5v2
ax + 15v2

ay)(R
3
2 −R3

1))

7

3.2.3. Drag

Dealing with rotors, the drag has to be transformed into a torque. This means that we
have to use another slightly different integral than in equations 7,12 and 13:

MD =
∫ 2π

0

∫ R2

R1

F ′D(α, r)r2 dr dα (16)

Drag can be represented by an equation similar to 8:

dFD =
1
2
Kρv2dA (17)

K is a constant similar to C. But as seen in figure 4, K is not proportional to the
pitch. In [1] it is suggested to assume that K is proportional to the square of the pitch:

K ∼ (pc − cos(α)px − sin(α)py)2

At no pitch there is still drag, so with two new constants K1 and K2 we have a new
equation for F ′D, similar to 9:

F ′D(α, r) = (K1 +K2(pc−cos(α)px− sin(α)py)2)(−vax sin(α)+vay cos(α)−ωMr)2 (18)

Integral solved:

MD = π(K1 + K2p
2
c)
(

2
5
ω2

M (R5
2 −R5

1) +
1
3
(v2

ax + v2
ay)(R

3
2 −R3

1)
)

(19)

+ πK2(p2
x + p2

y)
(

1
5
ω2

M (R5
2 −R5

1) +
1
4
(v2

ax + v2
ay)(R

3
2 −R3

1)
)

− πK2

(
ωMpc(−pxvay + pyvax)(R4

2 −R4
1) +

1
6
(pxvax + pyvay)2(R3

2 −R3
1)
)

4. Implementation

4.1. Numerical Integration (Runge-Kutta)

According to equations 1 and 2, forces and torques cause accelerations. To get the
according velocity and position, these accelerations have to be integrated. It is not
possible to solve the equations symbolically, because there is no known function. All
the parameters such as pitch and wind will change, depending on the actions of the
controller. The only possibility is to integrate numerically.

A very efficient method for numerical integration is the algorithm called Runge-Kutta.
In [?] it is described as “best compromise between programming effort, computational
time and numeric accuracy”. To integrate a given differential equation d

dt~x = ~f(~x), the
algorithm tries to estimate a representative gradient for the current time step. This is

8

done using the following equations with a time step of ∆t:

~xi+1 = ~xi +
1
6
(~k1 + 2~k2 + 2~k3 + ~k4) +O(∆t4)

~k1 = ∆t ~f(~xi)

~k2 = ∆t ~f

(
~xi +

~k1

2

)

~k3 = ∆t ~f

(
~xi +

~k2

2

)
~k4 = ∆t ~f(~xi + ~k3)

The remaining error of numerical integration is represented by O(∆t4), Runge-Kutta
is a fourth order method.

The smaller you choose ∆t the better the accuracy of simulation becomes. As the
controller is called at a fixed frequency of 20Hz, this is the upper limit for ∆t. To
increase accuracy the simulator can be called more frequently than the controller. But
besides longer durations for calculation there is another problem. Because of smaller
∆t, rounding errors will be increased, too. To avoid this, one could use higher resolution
data types than double. But since the accuracy produced by Runge-Kutta algorithm
is very good, there is no need to call the simulator more often than the controller. The
best results are reached by calling both controller and simulator at the same frequency.

Using Runge-Kutta for integration, the differential equations for the helicopter can be
reduced to five very simple but still coupled equations:

ωr =
∫

ω̇rdt −→s =
∫ −→v dt −→v =

∫ −→a dt −→ϕ =
∫ −̇→ϕ dt −→ω =

∫ −̇→ω dt (20)

Note that not ~ω is used for ~ϕ, because it uses a different coordinate system. The
following section describes the calculation of ω̇r, −→v , −→a , −̇→ϕ and −̇→ω . These values are
used by the explained Runge-Kutta algorithm to compute ωr, −→s , −→v , −→ϕ and −→ω of the
next time step.

4.2. Simulation of Flight

In section 3 the individual physical equations are described. Now they will be put
together to build the simulator.

4.2.1. Servos

First lets have a look at the servos. They need time to reach the value given by the
controller. To model this behavior is very difficult, as servos contain their own small
controller to move to the given position. The best approach found so far is quite simple:
The remaining difference is decreased exponentially (pcs target position).

pc(t + ∆t) = pc(t) + (pcs − pc(t))2.5∆t

In this example the collective pitch pc is used, but every servo is simulated this way.
The constant 2.5 has been chosen by experiments.

9

4.2.2. Wind

In most of the equations the velocity of air is needed, which consists of two components:
wind (~vw) and the movement of the helicopter (~v). The air movement has to be calculated
in HCS, using the matrix for rotation from BCS to HCS HRB:

~va = HRB · (~vw − ~v) (21)

4.2.3. Rotor

This section deals with the rotational speed of the rotors. Both main rotor (ωM) and
tail rotor (ωT) are connected to the engine (ωe) via a fixed gear transmission ratio, so
that their rotational speed is given by ωr and a coefficient:

ωM = −ωr

ωT = −ωrnT

ωe = ωrne

There are four torques on the rotors and engine. Two because of drag of the rotors
(MM , MT), friction in gear (Mg) and the accelerating torque of the engine (Me). For
the first two, equation 19 is used:

MM = (KM1 + KM2p
2
c)
(

2
5
ω2

r (R
5
M2 −R5

M1) +
1
3
(v2

ax + v2
ay)(R

3
M2 −R3

M1)
)

(22)

+ KM2(p2
x + p2

y)
(

1
5
ω2

r (R
5
M2 −R5

M1) +
1
4
(v2

ax + v2
ay)(R

3
M2 −R3

M1)
)

+ KM2

(
ωrpc(−pxvay + pyvax)(R4

M2 −R4
M1)−

1
6
(pxvax + pyvay)2(R3

M2 −R3
M1)

)
MT = (KT1 + KT2p

2
t)
(

2
5
ω2

rn
2
T (R5

T2 −R5
T1) +

1
3
(v2

ax + v2
az)(R

3
T2 −R3

T1)
)

(23)

The values of all the R can be simply determined by measuring the size of the blades
of the helicopter. Determining the other constants (KM1...) is not so simple. In each
equation there are two unknown constants K1 and K2. So we need two equations to
solve them. One good choice is using the operating point of hovering. To get another
equation, you can choose another hovering situation at a different angular speed ωr.

To determine MM for an operating point, we need several information about this
point. The tail rotor (lever arm dT) has to compensate the torque of the engine, which
compensates the torque MM . On the other hand the force of the tail rotor FTA (index A
denotes operating point), which pushes the helicopter to the side, has to be compensated
by the main rotor by pulling to the other side. This force can be determined by using
the appropriate slope ϕxA. Finally we need to know the force of lift of the main rotor
FzA. Since it has to keep the helicopter in the air, this force has to compensate exactly
the gravity. This leads to the following definitions for an operating point:

FzA = cos(ϕxA)mg (24)
FTA = sin(ϕxA)mg

MMA = FzAdT

10

MT cannot be determined this way. It is much smaller, so the measurements are
too imprecise. This means the effect of MT may be unessential for simulation. But
nevertheless it is possible to include even the effect of the tail rotor, if the constants can
be identified.

To receive KM1 and KM2, equation 22 (23, respectively) has to be solved for two
operating points (similar solutions for tail rotor KTi):

KM1 = KM0(−MMA1ω
2
rA2

p2
cA2

+ MMA2ω
2
rA1

p2
cA1

)
KM2 = KM0(MMA1ω

2
rA2

−MMA2ω
2
rA1

)

KM0 =
5
2

ρ(z)
ρ0

1
ω2

rA1
ω2

rA2
(p2

cA1
− p2

cA2
)(R5

M2 −R5
M1)

The torque inside the gear is estimated to be proportional to angular speed:

Mg = ωr
MgA

ωrA
(25)

The torque produced by the engine is approximated very simple. Only reduced power
due to rare air is simulated:

Me =
th

thA
(MMA + MTAnT + MgA)

ρ(z)
ρ0

(26)

Using equations 22 through 26, the acceleration of angular speed ω̇r can be calculated
with known moments of inertia of the rotors (JM , JT) and the gear (Jg):

ω̇r =
Me −MM −MT nT −Mg

JM + JT nT + Jg
(27)

4.2.4. Translation

To calculate the accelerations of the helicopter, all the forces are needed. They are
composed of lift according to equation 11 and friction due to movement of the helicopter
body. Equation 17 shows how to get the force because of friction. But a problem for
helicopters is that they produce most of the wind themselves. Nevertheless this approach
is used in this simulator. All constants in equation 17 are merged to only one (f) per
direction. The values are estimated from flight experiments.

The forces produced by both rotors (FM and FT) are used to calculate the resulting
forces on the helicopter:

FT = fT (vay + ωzdT) |vay + ωzdT | (28)

+
1
2
(CT1 + CT2pt)(ω2

rn
2
T (R4

T2 −R4
T1) + (v2

ax + v2
az)(R

2
T2 −R2

T1))

FM =
1
2
(CM1 + CM2pc)(ω2

r (R
4
M2 −R4

M1) + (v2
ax + v2

ay)(R
2
M2 −R2

M1)) (29)

11

+
2
3
CM2ωr(−pxvay + pyvax)(R3

M2 −R3
M1)

Fx = fxvax |vax| (30)
Fy = fyvay |vay|+ FT (31)
Fz = fzvaz |vaz|+ FM (32)

Here again new constants have to be defined, which is possible using the definitions
of the operating point of equations 24 (similar solutions for tail rotor CTi):

CM1 = CM0(−FMA1ω
2
rA2

pcA2 + FMA2ω
2
rA1

pcA1)
CM2 = CM0(FMA1ω

2
rA2

− FMA2ω
2
rA1

)

CM0 =
ρ(z)
ρ0

2
ω2

rA1
ω2

rA2
(pcA1 − pcA2)(R4

M2 −R4
M1)

Now the resulting accelerations of these forces have to be converted to BCS. (In
equation 21 the transformation to HCS was needed). Finally the acceleration of gravity
has to be removed from the result:

~a = BRH · 1
m

 Fx

Fy

Fz

−
 0

0
g

 (33)

4.2.5. Rotation

Here we need the several torques that affect the body of the helicopter. Equations 14
and 15 are used, together with torques of the engine according to 26 and the effect of
the tail rotor (28).

The torque of the engine is applied to both main and tail rotor. Each rotor consumes
one portion for the drag. This is directly represented by the appropriate torque MM

(MT). The remaining portion is used to increase (or decrease, if it is negative) the
angular speed. Using equation 2, it can be expressed as ω̇rJM .

Another reason of torque is given by the location of the center of gravity of the
helicopter. The main rotor pulls along the rotor axis. Any distance between the center
of gravity and the main rotor axis (mx, my) causes additional torque.

Mx = − 1
2
(CM1 + CM2pc)ωrvax(R4

M2 −R4
M1) (34)

+
1
6
CM2pxvaxvay(R3

M2 −R3
M1)

− 1
60

CM2py(12ω2
r (R

5
M2 −R5

M1) + (15v2
ax + 5v2

ay)(R
3
M2 −R3

M1))

− 1
2
(CT1 + CT2pt)ωrnT vax(R4

T2 −R4
T1)

− FMmy

12

My = − 1
2
(CM1 + CM2pc)ωrvay(R4

M2 −R4
M1) (35)

− 1
6
CM2pyvaxvay(R3

M2 −R3
M1)

+
1
60

CM2px(12ω2
r (R

5
M2 −R5

M1) + (5v2
ax + 15v2

ay)(R
3
M2 −R3

M1))

+ MT + ω̇rJT nT

+ FMmx

Mz = + MM + ω̇rJM (36)
− FT dT

− 1
2
(CT1 + CT2pt)ωrnT vaz(R4

T2 −R4
T1)

These torques Mx, My, Mz have to be used to calculate the angular accelerations.
This is done by applying equation 6.

ω̇x = J−1
x (Mx + JMωyωr − JT nT ωzωr) (37)

ω̇y = J−1
y (My − JMωxωr)

ω̇z = J−1
z (Mz + JT nT ωxωr)

As mentioned for equations 20, we have to convert ~ω to BCS in order to apply it to
~ϕ. Since we use yaw-pitch-roll angles, ωx does not have to be converted. ωy has to be
rotated on the x-axis and ωz on x- and y-axis, which is denoted as Rx(α) for a rotation
on x-axis of α:

~̇ϕ =

 ωx

0
0

+ Rx(ϕx) ·

 0
ωy

0

+ Ry(ϕy) ·Rx(ϕx) ·

 0
0
ωz

 (38)

4.3. Simulation of Sensors

For the complete simulation of MARVIN, the IMU algorithms should be used. So the
values of all connected sensors have to be simulated as well. After each step of flight
simulation, the results are passed to the simulation of sensors.

There are errors in every measurement. To simulate them, firstly the amount was
estimated from log-files of real flights (see appendix B). This error is used to compute
a standard deviation at simulation time. Since the computer only knows uniformly
distributed random numbers (r(a, b) is a distribution between a and b), we have to build
a standard deviation ourselves. This can be done using this definition [3]:

N(0, 1) = lim
n→∞

∑n
i=1 r(0, 1)− n

2√
n
12


A good choice for implementation is n = 12. The distribution of values is quite good

and computation is simple.

13

For simulation of the compass it is possible to choose a declination and inclination.
This is the difference of magnetic north vector and geographic horizontal vector. Incli-
nation is positive, if magnetic north is below horizon. Declination is positive if magnetic
north is west of geographic north.

5. Conclusion

The presented simulator for MARVIN is still under development but it is already capable
of verifying the basic controller and IMU software. A controller, which is capable of flying
the real helicopter will work in simulation, too. On the other hand, a controller that
fails in simulation will not be able to control the real helicopter successfully.

Furthermore some correlations of flight characteristics to certain circumstances such
as wind, rare air or bad sensors can simply be tested.

Really exact results are not reached, since there are too many simplifications and
assumptions. For example in section 3.2.1 we assume pitch to be equal to angle of
attack. This is not really true, because any rotor causes air movement [1]. This effect is
nowhere considered in this simulator. In section 3.2.1 there is explained, why wind should
not be faster than 12m/s during simulation (relative to the helicopter). During normal
flight this is correct. But while the rotors are accelerating to reach there operating point,
this rule is not valid.

Ground effects are not simulated. Servos are simulated very roughly.
Another important point is that we do not know all constants precisely. Many of them

are just estimated (see appendix A).
This simulator can simulate many of interesting effects but one should not expect

them to show the whole truth.

14

A. Helicopter Constants

Identifier Value Comment

m 11kg mass of whole helicopter

mx −0.019m position of center of gravity in HCS

my −0.013m position of center of gravity in HCS

Jx 0.6kgm2 moment of inertia of helicopter body (estimated)

Jy 1kgm2 (estimated)

Jz 1kgm2 (estimated)

Jg 0.1kgm2 engine and gear (estimated)

JM 0.184kgm2 main rotor

JT 0.00029kgm2 tail rotor

RM1 0.1m inner edge of main rotor blades

RM2 0.92m outer edge

RT1 0.05m inner edge of tail rotor blades

RT2 0.17m outer edge

dT 1.045m distance of tail rotor to main rotor axis

nT
85
15 tail rotor is faster than main rotor

ne
64
36nT engine is faster than rotors

fx 0.3 kg
ms2 friction without rotors (f=̂cwAρ

2) (estimated)

fy 0.3 kg
ms2 friction without rotors and tail (estimated)

fz 0.2 kg
ms2 friction without rotors (estimated)

fT 0.15 kg
ms2 friction of tail for y-axis (estimated)

ωrA 1150rpm=̂120 rad
s main rotor speed for hovering in operating point

ϕxA 0.092rad slope

MgA 0.7Nm torque due to friction in gear (estimated)

pcA 1030− pc0 collective pitch of main rotor

ptA 335− pt0 pitch of tail rotor

thA 830− th0 throttle

pc0 0 value of servo at zero pitch

pt0 540 zero pitch for tail rotor (less is more)

th0 100 idle throttle (no torque on rotor)

15

B. Sensor Constants

Sensor Measurements per second Standard deviation

GPS position 5 0.01m

GPS velocity 5 0.03m
s

GPS antenna position in HCS: −925mm

Ultrasonic altitude 2.5 0.05m

Ultrasonic only works reliable between 0.41m and 4.5m.

Acceleration 20 0.059m
s2

Rotational velocity 20 0.021 rad
s

Magnetic field 20 700nT =̂1.5%

Main rotor velocity once a cycle 120µs

References

[1] John S. Decker. See how it flies. http://www.monmouth.com/ jsd/how/, 2001.

[2] R. Lux. Manuskript ”Aerodynamik”. TU Dresden - Institut für Luftfahrt, 2002.

[3] Detlef Steinhausen. Simulationstechniken -Das Buch-. http://www.fh-
muenster.de/FB9/person/steinha/buch/default.shtm, 1993.

16

	Introduction
	Basic Concept
	Application Flow
	Helicopter State

	Physics of Flight
	Basics
	Translation
	Rotation

	Forces and Torques caused by a Rotor
	Lift
	Torques
	Drag

	Implementation
	Numerical Integration (Runge-Kutta)
	Simulation of Flight
	Servos
	Wind
	Rotor
	Translation
	Rotation

	Simulation of Sensors

	Conclusion
	Helicopter Constants
	Sensor Constants

