
Face-Recognition: Cross-Correlation

 1

INDEX

Resumen en Español

1. Introducción…………………………………………………………..3

2. El Proyecto……………………………………………………………3

3. Conclusiones………………………………………………………..12

Face-Recognition: Cross-Correlation

 2

Proyecto en Inglés

1. Introduction……………………………………...………………….14

2. Methods of Face-Recognition………………………………..…..17

 2.1. The Direct Correlation Method………………………………………17

 2.2. The Eigenface Method………………………………………………..18

 2.3. The Fisherface Method……………………………………………….19

3. The Laboratory…………………………………………………...…21

4. Data Base…………………………………………………………….28

5. Equipment…………………………………………………………...29

6. My Project……………………………………………………………29

7. Tests………………………………………………………………….36

8. Conclusions…………………………………………………………40

“C” Code of the Functions:

Icon.c………….……………………………………………………...…42

Correlation.c……….…………………………………………………..48

Manual of Khoros Cantata……………………………………..56

Face-Recognition: Cross-Correlation

 3

1. Introduccion

 La memoria del proyecto esta dividida en 4 partes:

-La primera es un resumen en español de las 3 partes siguientes, que

componen el proyecto que se realizó en Munich para la Fachhochschule,

Universidad de Ciencias Aplicadas.

-La segunda es donde comienza el proyecto. Consta de una introducción, así

como de la explicación de todo lo realizado en el proyecto: contenido, dónde se

realizó, material utilizado, tests realizados, conclusiones, etc.

-La tercera parte la compone el código comentado de las 2 funciones

realizadas en el proyecto.

-La cuarta y última parte se compone de un manual de Khoros Cantata. De

este modo se puede entender un poco con que se realizo el proyecto. Se

adjuntan capturas del programa para que tener una idea de cómo aparece la

información en él. A parte será de mucha utilidad para el alumno que siga con

este proyecto. Le facilitará la toma de contacto con el programa.

2. El Proyecto

 Mi proyecto consistió en hacer un programa en “C” para reconocer

caras. El proyecto se realizó bajo entorno Linux, y con un programa dedicado al

tratamiento de imágenes Khoros Cantata. La técnica usada fue la correlación

cruzada. Esta técnica consiste en la comparación píxel a píxel de 2 imágenes.

En nuestro caso las imágenes eran fotografías de caras de personas. Con este

proceso de comparación se obtienen unos coeficientes. El valor de estos

coeficientes oscila entre “0” y “1”. Cuando el valor de los píxeles comparados

es el mismo, se obtiene un “1”. En caso contrario, cuando el valor de los

píxeles es opuesto pues se obtiene un “0”. Este valor que se obtiene se

denomina “Coeficiente de Correlación” y se representa con una “r”. Hay varias

fórmulas para realizar esta función. En este proyecto hemos elegido la

siguiente:

Face-Recognition: Cross-Correlation

 4

()()[]

() ()∑∑

∑

==

=

−−

−−

=
n

i

i

n

i

n

i

ji

YY
n

XX
n

YYXX
n

r

1

2

11

2

1

11

1

La variable “X” representa el valor de los píxeles de la Foto 1, e “Y” el

valor del píxeles de la Foto 2. La variable “X” con una barra en su parte

superior representa la media de la Foto. Es decir, la suma del valor de todos los

píxeles de la Foto, dividido por el número total de píxeles que tiene la Foto. El

valor del coeficiente de correlación se puede representar también con un

porcentaje. Para esto bastará con multiplicar por 100 el valor de “r”. Usamos

esta representación de “r” por considerar que era más clara.

 El primer paso es la toma de la Fotos para la realización de la Base de

Datos. En nuestro caso ésta estaba compuesta por 30 Fotos. De éstas cada 3

correspondían al mismo individuo. Las Fotos se tomaban en color con una

cámara Sony, pero para trabajar con ellas en el PC era necesario convertirlas a

256 tonos de gris. Este proceso de conversión se hacía con el programa KS-

400 bajo entorno Windows. El programa KS-400 pertenece a Carl-Zeiss. Esta

empresa es muy conocida por sus lentes para cámaras. La conversión se hace

con una función de este programa. Una vez están todas las fotos convertidas,

se la gira con un programa, de manera que aparezcan las caras en sentido

vertical. Esto último se realiza para facilitar el visionado de las Fotos.

 Una vez las fotos están en el ordenador con Linux, comenzamos a

comentar la primera de las funciones en “C” realizadas. La función se

denomina “Icon.c”. El propósito de esta función es recortar la cara de la foto

original. Pero lo más importante es que la cara estará centrada, porque puede

que en la foto original, el individuo no este en el centro de la imagen. El

funcionamiento del algoritmo lo podríamos dividir en 2 pasos. El primer paso

consiste en encontrar la cara y el segundo en extraer la porción de imagen

seleccionada. El tamaño de la zona recortada es fijo y es 310*410 pixeles. Este

tamaño se hizo probando diferentes tamaños y viendo cual de ellos se ajustaba

Face-Recognition: Cross-Correlation

 5

mejor. El segundo paso, consistente en recortar la zona deseada, se realiza

con una función ya programada del programa Khoros Cantata. El único dato

que hay que pasarle a la función es el punto de comienzo de la zona deseada.

En estas fotos se puede ver el resultado de la Función Icon:

Face-Recognition: Cross-Correlation

 6

La siguiente foto muestra la pantalla principal del programa Khoros Cantata

En ella se pueden apreciar diferentes “cajas”. Cada una de ellas representa

una función. En la parte superior de la foto aparecen 3 de estas “cajas”.

Corresponden con la entrada de la foto del individuo que se desea conocer su

identidad. El resto de las “cajas” se encargan de procesar la base de datos.

Volviendo a las 3 cajas de la parte superior, tienen como nombres: User

defined, Map Data y Extract Icon. La función User defined es usada para

introducir una foto en el programa. En el grupo de cajas de la parte superior,

esta función se encargará de cargar la foto de la persona desconocida. En los

otros grupos de cajas, irá cargando las fotos de cada uno de los miembros de

la base de datos. Podemos distinguir grupos de varias cajas, dispuestos de una

manera simétrica por toda la pantalla del programa. Cada grupo corresponde a

un individuo de la base de datos. En la ejecución del programa solo hay que ir

cambiando la foto del individuo desconocido, el resto ya se encuentra

configurado. Después de haber cargado todas las fotos, éstas pasan a través

de una función denominada Map Data. Como se comentó anteriormente las

Face-Recognition: Cross-Correlation

 7

fotos se encuentran en 256 tonos de grises. El problema surge cuando ese

valor entre 0-255 no aparece en la foto. En su lugar aparece otro número. Éste

hace referencia a una posición de memoria donde se encuentra en verdadero

valor del píxel. Para poder leer los valores correctos de los píxeles de una

forma eficaz y sin complicar mucho el algoritmo hay que invertir el proceso de

Mapeo. De esto se encarga esta función. A la salida ya tenemos las fotos listas

para ser procesadas por la primera función del proyecto. Las otras 2 funciones

ya vienen en el programa.

 La función Extract Icon se ejecuta 31 veces, 1 vez por cada Foto. A partir

de ahora nos referiremos con el nombre de Icono a la parte de foto que

extraeremos de la fotografía original. La función como ya comenté consta de 2

pasos: encontrar el Punto de Extracción y extraer el Icono. La búsqueda de ese

punto, se dividirá en encontrar sus 2 coordenadas.

La más fácil de las 2 es encontrar la coordenada Y. Consiste en

encontrar el primer píxel de la foto con un valor menor o igual a 175. En ese

momento se detiene la búsqueda. El motivo de la elección de ese valor es que

todas las fotos se realizaron sobre un fondo blanco (el blanco tiene un valor de

255). El valor de los píxeles del fondo de la foto oscila en torno a 200. En

resumen, se busca el pelo de la persona. Una vez, el algoritmo ha encontrado

ese punto, se le resta 10, porque deseábamos un poco de espacio entre la cara

y el borde del icono.

Face-Recognition: Cross-Correlation

 8

Y’ es el valor original de la coordenada y, donde se encontró el píxel con

un valor menor a 175. Y corresponde con el valor final de la coordenada y:

Y = Y’ – 10

Ahora el segundo paso: encontrar la coordenada x. Este paso es un

poco mas laborioso que la búsqueda de la coordenada y. Esta vez tendremos

que localizar 2 puntos, uno en el lado derecho de la cara (X’’) y otro en el lado

izquierdo (X’).

 X representa la diferencia entre estos 2 valores. En otras palabras, será

el ancho de la cara:

X = X’’ – X’

 Con este valor, calcularemos, lo que hemos denominado en el proyecto,

el off-set. Este valor será la distancia entre la cara y los bordes del icono. Todo

este proceso se hace para mantener la misma distancia a ambos lados de la

cara. Buscamos una simetría, de esta manera será más eficiente la correlación

posteriormente. La fórmula usada para calcular la coordenada x es la siguiente:

Width = X’’ – X’

Offset = (310 – Width)/2

X = X’ – Offset

Face-Recognition: Cross-Correlation

 9

El resultado del proceso es:

Z = Extraction Point

El siguiente bloque corresponde con la segunda función desarrollada en

el proyecto, la función correlación. Se puede ver en la siguiente foto, el aspecto

de la interfaz de la función:

Solo hay un parámetro modificable. Aparece con el nombre de “Coef r” y tiene

un valor en la foto de 85 (este valor es el que se puede modificar).

Face-Recognition: Cross-Correlation

 10

 Esta función tiene 4 entradas (4 iconos). 3 de estos iconos corresponden

con una persona de la base de datos. El otro icono es de la persona

desconocida que se desea identificar.

 La fórmula usada fue:

()()[]

() ()∑∑

∑

==

=

−−

−−

=
n

i

i

n

i

n

i

ji

YY
n

XX
n

YYXX
n

r

1

2

11

2

1

11

1

La variable “X” representa el valor de los pixeles de la Foto 1, e “Y” el

valor del pixeles de la Foto 2. La variable “X” con una barra en su parte superior

representa la media de la Foto. Es decir, la suma del valor de todos los píxeles

de la Foto, dividido por el número total de píxeles que tiene la Foto.

El primer paso es calcular la media de los iconos. Este proceso consiste

en sumar el valor de todos los píxeles de la foto y dividir entre el número total

de píxeles. Obtenemos un número de este proceso.

 El segundo paso es calcular el numerador y denominador de la función.

Este proceso se hace para cada una de los iconos. En total, hacemos 3

correlaciones por cada individuo de la base de datos. Y obtenemos 3

coeficientes de correlación. Estos valores obtenidos se comparan con el límite

fijado en la función. Cuando al menos 1 de estos valores es superior al límite,

tenemos una comparación positiva. En caso contrario, obtenemos una

comparación negativa.

Face-Recognition: Cross-Correlation

 11

El resultado del programa completo, se representa en pantalla de la siguiente

manera:

La persona desconocida en este caso era Jose Juan. Cuando el

programa encuentra una persona, cuyo coeficiente “r” es mayor que el límite

que nosotros impusimos, entonces el resultado de la comparación es positivo y

la foto de la persona de la base de datos es mostrada. En caso contrario,

aparece un cuadrado rojo. En total aparecen en pantalla un numero de objetos

(cuadrados o fotos) igual al número de individuos de la base de datos.

 Pusimos un valor de r = 85%. Con este valor, el programa no fallaba, y

solo mostraba al final la foto de un individuo. Se empezó el testeo del programa

con un valor de 75%. Pero con este valor, había fallos de identificación con

algunos individuos de la base de datos.

Face-Recognition: Cross-Correlation

 12

3. Conclusiones

 Con estos tests que hicimos llegamos a las siguientes conclusiones:

- La Base de Datos debe ser tan grande como se pueda.

- Las fotos que tiene cada individuo en la Base de Datos deben

representar diferentes situaciones de luz, proximidad del individuo a la

cámara, ángulos de ejecución de las fotos, etc…

Con estas 2 ideas, la identificación será mejor. Aunque conlleve un aumento

considerable en la carga computacional.

Face-Recognition: Cross-Correlation

 13

INDEX

1. Introduction……………………………………...……………………2

2. Methods of Face-Recognition………………………………..……5

 2.1. The Direct Correlation Method………………………………………..5

 2.2. The Eigenface Method………………………………………………….6

 2.3. The Fisherface Method………………………………………………...7

3. The Laboratory…………………………………………………...…12

4. Data Base…………………………………………………………….20

5. Equipment…………………………………………………………...20

6. My Project……………………………………………………………21

7. Tests………………………………………………………………….21

8. Conclusions…………………………………………………………23

“C” Code of the Functions:

Icon.c………….……………………………………………………...…25

Correlation.c……….…………………………………………………..30

Manual of Khoros Cantata……………………………………..38

Face-Recognition: Cross-Correlation

 14

1. Introduction

Humans have used body characteristics such as face, voice, etc. for

thousands of years to recognize each other. Alphonse Bertillon, chief of the

criminal identification division of the police department in Paris, developed and

then practiced the idea of using a number of body measurements to identify

criminals in the mid 19th century. Just as his idea was gaining popularity, it was

obscured by a far more significant and practical discovery of the distinctiveness

of the human fingerprints in the late 19th century. Soon after this discovery,

many major law enforcement departments embraced the idea of first “booking”

the fingerprints of criminals and storing it in a database. Later, the leftover

(typically, fragmentary) fingerprints (commonly referred to as latents) at the

scene of crime could be “lifted” and matched with fingerprints in the database to

determine the identity of the criminals. Although biometrics emerged from its

extensive use in law enforcement to identify criminals (e.g., security clearance

for employees for sensitive jobs, fatherhood determination, forensics, positive

identification of convicts and prisoners), it is being increasingly used today to

establish person recognition in a large number of civilian applications.

What biological measurements qualify to be a biometric? Any human

physiological and/or behavioural characteristic can be used as a biometric

characteristic as long as it satisfies the following requirements:

• Universality: each person should have the characteristic.

• Distinctiveness: any two persons should be sufficiently different in terms of the

characteristics.

• Permanence: the characteristic should be sufficiently invariant (with respect to

the matching criterion) over a period of time;

• Collectability: the characteristic can be measured quantitatively.

However, in a practical biometric system (i.e., a system that employs

biometrics for personal recognition), there are a number of other issues that

should be considered, including:

Face-Recognition: Cross-Correlation

 15

• Performance, which refers to the achievable recognition accuracy and speed,

the resources required to achieve the desired recognition accuracy and speed,

as well as the operational and environmental factors that affect the accuracy

and speed;

• Acceptability, which indicates the extent to which people are willing to accept

the use of a particular biometric identifier (characteristic) in their daily lives.

• Circumvention, which reflects how easily the system can be fooled using

fraudulent methods.

A practical biometric system should meet the specified recognition

accuracy, speed, and resource requirements, be harmless to the users, be

accepted by the intended population, and be sufficiently robust to various

fraudulent methods and attacks to the system.

A biometric system is essentially a pattern recognition system that

operates by acquiring biometric data from an individual, extracting a feature set

from the acquired data, and comparing this feature set against the template set

in the database. Depending on the application context, a biometric system may

operate either in verification mode or identification mode:

• In the verification mode, the system validates a person’s identity by

comparing the captured biometric data with her own biometric template(s)

stored system database. In such a system, an individual who desires to be

recognized claims an identity, usually via a PIN (Personal Identification

Number), a user name, a smart card, etc., and the system conducts a one

comparison to determine whether the claim is true or not (e.g., “Does this

biometric data belong to Jose Juan?”). Identity verification is typically used for

positive recognition, where the aim is to prevent multiple people from using the

same identity.

• In the identification mode, the system recognizes an individual by

searching the templates of all the users in the database for a match. Therefore,

the system conducts a one-to-many comparison to establish an individual’s

identity (or fails if the subject is not enrolled in the system database) without the

subject having to claim an identity (e.g., “Whose biometric data is this?”).

Face-Recognition: Cross-Correlation

 16

Identification is a critical component in negative recognition applications where

the system establishes whether the person is who he/she (implicitly or explicitly)

denies to be. The purpose of negative recognition is to prevent a single person

from using multiple identities. Identification may also be used in positive

recognition for convenience (the user is not required to claim an identity). While

traditional methods of personal recognition such as passwords, PINs, keys, and

tokens may work for positive recognition, negative recognition can only be

established through biometrics.

Given the requirement for determining people's identity, the obvious

question is what technology is best suited to supply this information? There are

many different identification technologies available, many of which have been in

wide-spread commercial use for years. The most common person verification

and identification methods today are Password/PIN (Personal Identification

Number) systems, and Token systems (such as your driver's license). Because

such systems have trouble with forgery, theft, and lapses in users' memory,

there has developed considerable interest in biometric identification systems,

which use pattern recognition techniques to identify people using their

physiological characteristics. Fingerprints are a classic example of a biometric;

newer technologies include retina and iris recognition.

While appropriate for bank transactions and entry into secure areas, such

technologies have the disadvantage that they are intrusive both physically and

socially. They require the user to position their body relative to the sensor, and

then pause for a second to `declare' themselves. This `pause and declare'

interaction is unlikely to change because of the fine-grain spatial sensing

required. Moreover, there is an `oracle-like' aspect to the interaction: since

people can't recognize other people using this sort of data, these types of

identification do not have a place in normal human interactions and social

structures.

While the “pause and present” interaction and the oracle-like perception

are useful in high-security applications (they make the systems look more

accurate), they are exactly the opposite of what is required when building a

store that recognizes its best customers, or an information kiosk that

Face-Recognition: Cross-Correlation

 17

remembers you, or a house that knows the people who live there. Face

recognition from video and voice recognition have a natural place in these next-

generation smart environments -- they are unobtrusive (able to recognize at a

distance without requiring a `pause and present' interaction), are usually

passive (do not require generating special electro-magnetic illumination), do not

restrict user movement, and are now both low-power and inexpensive. Perhaps

most important, however, is that humans identify other people by their face and

voice, therefore are likely to be comfortable with systems that use face and

voice recognition

Face recognition is a task that the human vision system seems to

perform almost effortlessly, yet the goal of building computer-based systems

with comparable capabilities has proven to be difficult. The task implicitly

requires the ability to locate and track faces through often complex and dynamic

scenes. Recognition is difficult because of variations in factors such as lighting

conditions, viewpoint, body movement and facial expression. Although evidence

from psychophysical and neurobiological experiments provides intriguing

insights into how we might code and recognise faces, its bearings on

computational and engineering solutions are far from clear. The study of face

recognition has had an almost unique impact on computer vision and machine

learning research at large. It raises many challenging issues and provides a

good vehicle for examining some difficult problems in vision and learning. Many

of the issues raised are relevant to object recognition in general.

2. Methods of Face-Recognition

In this section, we try to expose the principal methods to make Face-

Recognition. We explain the methods, what benefit has each method and the

algorithm used.

2.1. The Direct Correlation Method

The direct correlation method of face recognition involves the direct

comparison of pixel intensity values taken from facial images. We convert, for

example, bitmap images of 65 by 82 pixels into a vector of 5330 elements,

Face-Recognition: Cross-Correlation

 18

describing a point within a 5330 dimensional image space. By measuring the

distance between these points, we gain an indication of image similarity. Similar

images are located close together within the image space, while dissimilar

images are spaced far apart. Extending this idea to faces, calculating the

Euclidean distance d, between two facial image vectors (often referred to as the

query image q, and gallery image g), we get an indication of similarity. A

threshold is then applied to make the final verification decision.

d = ║q – g ║

d ≤ threshold → accept

d ≥ threshold → reject

2.2. The Eigenface Method

In this section we give a brief explanation of the eigenface method of

face recognition. We compute the covariance matrix C, of facial images from a

set of M (60) training images: { Γ1 Γ2 Γ3 ...)

T
M

n

T

nn AA
M

C =ΦΦ= ∑
=1

1

[]MA ΦΦΦΦ= ...321

Ψ−Γ=Φ nn

∑
=

Γ=Ψ
M

n

n
M 1

1

The eigenvectors and eigenvalues of this covariance matrix are

calculated using Standard linear methods and the M` eigenvectors with the

highest eigenvalues chosen to formulate the projection matrix u. For the sake of

consistency with the fisherface method, we use the first 59 principal

components when testing the eigenface method.

Face-Recognition: Cross-Correlation

 19

An ace-key ω (image vector projected into ace space) can then be

produced by the following equation.

()Ψ−Γ=
T

kk uω

for k = 1 to M

These face-keys (vectors of 59 principal component coefficients) can

then be compared using the Euclidian distance measure as with the direct

correlation method.

2.3. The Fisherface Method

The fisherface method of face recognition uses both principal component

analysis and linear discriminated analysis to produce a subspace project in

matrix, similar to that used in the eigenface method.

To accomplish this we expand the training set to contain multiple images

of each person, providing examples of how a person-face may change from one

image to another due to variations in lighting conditions, facial expressions and

even small changes in orientation. We define the training set as,

{ }MsetTraining ΓΓΓΓ=− ...321

Where Γi is a facial image and the training set is partitioned into c

classes, such that all the images in each class Xi are of the same person and

no single person is present in more than one class.

We begin by computing three scatter matrices, representing the within-

class (Sw), between-class (Sb) and total (St) distribution of the training set

throughout image space.

Face-Recognition: Cross-Correlation

 20

()()∑
=

Ψ−ΓΨ−Γ=
M

n

T

nnTS
1

()()∑
=

Ψ−ΨΨ−Ψ=
c

i

T

iiiB XS
1

()()∑∑
= ∈Γ

Ψ−ΓΨ−Γ=
c

i X

T

ikiKWS
1

Where ∑
=

Γ=Ψ
M

n

n
M 1

1
, is the average image vector of the entire training set, and

∑
∈Γ

Γ=Ψ

ii X

i

i

i
X

1
, the average of each individual class iX . By performing PCA on

the total scatter matrix tS , and taking the top M-c principal components, we

produce a projection matrix PCAU , which is used to reduce the dimensionality of

the within-class scatter matrix, ensuring it is non-singular, before computing the

top c-1 (in this example 59) eigenvectors of the reduced scatter matrices, fldU

as shown below.














=

UUSUU

UUSUU
U

pcaW

T

pca

T

pcaB

T

pca

T

U
fld maxarg

Finally, the matrix ffU is calculated as shown in next equation, such that

it will project a facial image into a reduced image space of c-1 dimensions, in

which the between-class scatter is maximised for all c classes, while the within-

scatter is minimised for each class iX

pcafldff UUU =

Once the matrix ffU has been constructed it is used in much the same

way as the projection matrix in the eigenface system, reducing the

dimensionality of the image vectors from 5330 to just (c-1) elements. Again, like

the eigenface system, the components of the projection matrix can be viewed

as images, referred to as fisherfaces.

Face-Recognition: Cross-Correlation

 21

3. The Laboratory

 This work has been performed in the IA Laboratory of Professor

Johannes Jaschul. This Laboratory was located in the Fachhochschule, in

Lothstrasse in München.

 The Laboratory has around 30 square meters. It has several computers

and other devices.

 We worked with a Sony camera. It is a colour camera, but after taking the

photographs, we transformed them into grey scale values in order to simplify

the work.

Face-Recognition: Cross-Correlation

 22

Some photos we took in the Laboratory are shown below:

In the last photo, we can see the part of our Laboratory, where we took the

photos. This corresponds to a corner of the Laboratory. The black structure is

where the camera is. With the crank we could adjust the height of the camera.

Face-Recognition: Cross-Correlation

 23

That depended of the person. The camera is not in the good position and took

the photos with a turn of 90º. We solved this problem with the Paint program in

the computer.

This photo shows where we took the photos too, but from other angle.

We worked with the screen used for the projections. This way we had a white

background in our photos and the face was shown clearly.

Face-Recognition: Cross-Correlation

 24

 This photo is quite interesting. Here we can appreciate the marks on the

floor that we had to make. This way all the photos that we took had the same

distance to the camera. For this project it represents the difference between a

positive or a negative result. We were very careful with this.

Face-Recognition: Cross-Correlation

 25

 Here is one of the lights of the Laboratory. To get good photographs,

which we could appreciate, all the details of the face, we needed more light

because only with natural light was not enough.

Face-Recognition: Cross-Correlation

 26

 This image represents the Spotlight used to take photographs. It is a

professional Focus with a lot of power.

Face-Recognition: Cross-Correlation

 27

 The Spotlight photographed from another angle.

Face-Recognition: Cross-Correlation

 28

4. Data Base

In this point we introduce the Date Base used to test the program. It

consists of ten people, and we took 3 different photos of each one. The sizes of

the photos were 512x512 pixels with 256 levels of grey. Here one photo of each

person is shown:

Face-Recognition: Cross-Correlation

 29

5. Equipment

We worked with a computer with Linux. The way we showed the results

in the Pc-Screen was very visual. When the program recognized the person, it

showed this person. And in the Screen was shown one of the photos of the

data-base. When the Recognition-Process was negative a little red frame was

shown. So, after each test, ten frames were in the screen. The best situation

was when only one photograph was shown and the rest of them were red

frames.

6. My Project

 My project consists in make a program to recognize Faces. I worked in

Linux with a program call Khoros Cantata. The technique used was Cross-

Correlation. This technique consists in compare pixel by pixel two pictures. In

our case this pictures were photos. And with this process it is obtained

coefficients. The value of these coefficients is between “0” and “1”. When the

value of the two pixels, that they are being compared, is the same, we obtained

a value of “1”. A value of “0” is obtained in the opposite case. This value that we

obtained is called “Correlation Coefficient” and it is represented wit a letter “r”.

There are several formulas to get the correlation coefficient. I used this:

()()[]

() ()∑∑

∑

==

=

−−

−−

=
n

i

i

n

i

n

i

ji

YY
n

XX
n

YYXX
n

r

1

2

11

2

1

11

1

Variable “X” corresponds with the values of the pixels of Photo 1, and “Y” of the

Photo 2. The variable “X” with a hyphen on it is the mean value of the entire

photo 1. The variable “Y” with a hyphen on it is the mean value of the entire

photo 2. We have to calculate them before use this formula. The parameter “r”

could be represented with a percent. To do this, we have only to multiply the

coefficient “r” with the number 100. I used this representation of “r” because I

think it is clearer.

Face-Recognition: Cross-Correlation

 30

We start with the photos that we took in the Laboratory. The first step is

to convert these photos in colour to grey-scale photos (256 tones of grey). We

do this with the program KS-400 in a PC with Windows. KS-400 is a program of

Carl-Zeiss. It is prepared to work with photos. There is a function to do this

process. Then we take the photos to the PC with Linux.

When we have the photos ready, we start with the first C-function. The

first function that I had to program is called Icon.c. The purpose of this function

is to take a frame (with a specific size) of the original photo. With this operation

we get only the face of the person of the photo. But the most important thing, it

is that we get the face centred. How works the algorithm? It does two steps.

The first step is to find the face and the second step is to extract the frame. The

size of this frame is set to 310*410 pixels. This size was chosen because it fits

very well whit the size of the faces of the Data Base. The second step is very

easy because the program Khoros Cantata gives us a function that it makes all.

The only thing that we have to get for this function is a point. I call this point

“Extract Point”. This point is in the left-upper corner of the frame.

In these photos we could see the result of the Function Icon.

(FOTO DEL ESPACIO DE TRABAJO DEL PROGRAMA, APARECE EN EL

RESUMEN EN ESPAÑOL)

This Photo shows how the workspace of the whole program is. But now I

will use to explain the Extract Icon Box.

Face-Recognition: Cross-Correlation

 31

In the upper side of the photo appear three boxes: User defined, Map

Data and Extract Icon. The User defined box is to put a photo in the program.

You have to choose which Photo you want to compare with the photos of the

Data Base. The Map Data Photo was not in the original program but I had to

use it. It is a function to transform the values that they appear in the pixel. In the

beginning the value of the pixel was not a number between 0 and 255. Instead

of these values there were the values of a memory position. With this function

we change this. After that is the Extract Icon Function. As can be see here we

used this function for each photo. Totally this function is used 31 times, one

time pro Photo.

Now I describe the function in detail. As I said before, the function has

two steps. The first step is to find the Extraction Point. This action takes 2 steps

more: to find “X” coordinate and “Y” coordinate.

The Search of the Y coordinate is easy. It consists in to find a pixel,

whose value is lower than 175. When this happens, it adds 10 to this value and

this is the final value of the coordinate Y of the Extraction Point.

 Y’ is the original value of the Y coordinate, where the value lower than

175 was found. Y is the final value of the Y coordinate and it is calculated:

Y = Y’ – 10

The number 10 was chosen because we wanted a bit of space between

the upper border of the frame and the face.

Face-Recognition: Cross-Correlation

 32

Now the second step, find the X coordinate. This step is a bit more

complicate than the Y coordinate. We find 2 points this time: the Minimum Value

in the Left Side of the Face (X’) and the Minimum Value of the Right Side of the

Face (X’’).

X represents the difference between X’ and X’’:

X = X’’ – X’

With this value we calculate the off-set (Distance between the face and the

border of the frame) that we will put in the frame. This way the face appears in

the centre of it. We make that to keep the same distance between the frame

and the face, in both sides of the Icon. All this process is to try to keep

symmetry in the Icon (This is the name that we use for the frame).

 The formula used to calculate the Final X Coordinate is:

Width = X’’ – X’

Offset = (310 – Width)/2

X = X’ – Offset

Face-Recognition: Cross-Correlation

 33

The result of this process is:

Z = Extraction Point

The next is the function Correlation.

(FOTO DEL ASPECTO DE LA INTERFAZ DE LA FUNCIÓN CORRELACION,

APARECE EN EL RESUMEN EN ESPAÑOL)

There is only one modifiable parameter. It appears in the photo with the label

Coef. r and it has a value of 85 (this value could be modified).

 This function hat four inputs (four icons). Three of these icons correspond

with a person of the data base (each person of the data base hat three different

photos). The other icon corresponds with the unknown person.

Face-Recognition: Cross-Correlation

 34

 The formula used was:

()()[]

() ()∑∑

∑

==

=

−−

−−

=
n

i

i

n

i

n

i

ji

YY
n

XX
n

YYXX
n

r

1

2

11

2

1

11

1

Variable “X” corresponds with the values of the pixels of Photo 1, and “Y”

of the Photo 2. The variable “X” with a hyphen on it is the mean value of the

entire photo 1. The variable “Y” with a hyphen on it is the mean value of the

entire photo 2.

The First Step is calculating the mean values of the Icons. This process

consists in add all the values of the pixels of the photo and then divide between

the total numbers of pixels. We get a number.

The Second Step is calculating the Numerator and Denominator of the

fraction.

This process does the same with the 3 photos of the Data Base. We do

three correlation pro person of the Data Base. At the end we have 3 correlation

coefficients. We compare these values with the limit that we have fixed. When

one of these values is bigger than the limit, we have a positive match. In other

case we have a negative match.

The result of the entire program (icon + correlation) has the following

representation:

(FOTO DEL RESULTADO DE LA EJECUCIÓN DEL PROGRAMA, APARECE

EN EL RESUMEN EN ESPAÑOL)

The person unknown was Jose Juan and the program recognised him. When

the program hat a person, whose “r” coefficient is bigger than the limit, that we

set, then the match is positive and the photo of this person of the Data Base is

Face-Recognition: Cross-Correlation

 35

shown. When the match is negative (lower than “r”) then a red frame is shown.

Totally always appear a number of frames that it corresponds with the number

of persons of the Data Base.

 We set r = 85%. With this value there are no mistakes, and the person

unknown is correctly identified. We started wit a value of 75%. We thought that

this value would be enough. But in the tests appeared mistakes of identification.

That means that we got more than 1 picture at the end. In the last test we had

to reduce the coefficient because due to the light conditions and the area of the

face the matching between the images was not too good.

 With these tests we probed that the Data Base hat to be as big as it can.

And the photos of this Data Base would be very different. With these two ideas

the matching will be bigger.

Face-Recognition: Cross-Correlation

 36

7. Tests

 The method was tested with the photographs of the Database. To make

these tests we introduce one of the three photos like a new one. Then I see the

results. Of course that one of the photos had 100 % of matching but we put

more attention in the other percentages.

 Before to introduce the results I explain how I present it:

-Name of the Person

 1st Photo: {Persons that they are not the person that I put like “new

person”, that is to say, when the program fails}.

 2nd Photo: {Persons that they are not the person that I put like “new

person”, that is to say, when the program fails}.

 3rd Photo: {Persons that they are not the person that I put like “new

person”, that is to say, when the program fails}.

 A “0” means that the recognition was successful.

a) Test with r = 75 % (r = coefficient of correlation)

-DAVID: {JOSE1, JOSE3, VICTOR2, VICTOR3}, {JOSE3, VICTO2,

VICTOR3}, {JOSE1, JOSE3, VICTOR2, VICTOR3}.

 -JASCHUL: {0}, {0}, {0}.

-JOSE: {DAVID1, DAVID3, JUAN1, JUAN3}, {0}, {DAVID1, DAVID2,

DAVID3}.

 -JUAN: {JOSE1}, {0}, {JOSE1}.

 -PAUL: {0}, {0}, {0}.

 -SCHNEIDER: {0}, {0}, {0}.

 -THOMAS: {0}, {0}, {0}.

-VICTOR: {0}, {DAVID1, DAVID2, DAVID3}, {DAVID1, DAVID2,

DAVID3}.

-VOLLMANN: {0}, {0}, {0}.

-WAHL: {0}, {0}, {0}.

Looking at these results, we increased the “r” coefficient. It was funny that we

only had problems with the Spanish people.

Face-Recognition: Cross-Correlation

 37

b) Test with r = 80 % (r = coefficient of correlation)

-DAVID: {0}, {0}, {0}.

 -JASCHUL: {0}, {0}, {0}.

-JOSE: {0}, {0}, {0}.

 -JUAN: {0}, {0}, {0}.

 -PAUL: {0}, {0}, {0}.

 -SCHNEIDER: {0}, {0}, {0}.

 -THOMAS: {0}, {0}, {0}.

-VICTOR: {0}, {0}, {0}.

-VOLLMANN: {0}, {0}, {0}.

-WAHL: {0}, {0}, {0}.

Face-Recognition: Cross-Correlation

 38

RESULTS OF TEST A (r = 75%):

D
A

V
ID

 1

D
A

V
ID

 2

D
A

V
ID

 3

J
A

S
C

H
U

L
 1

J
A

S
C

H
U

L
 2

J
A

S
C

H
U

L
 3

J
O

S
E

 1

J
O

S
E

 2

J
O

S
E

 3

J
U

A
N

 1

J
U

A
N

 2

J
U

A
N

 3

P
A

U
L

 1

P
A

U
L

 2

P
A

U
L

 3

S
C

H
N

 1

S
C

H
N

 2

S
C

H
N

 3

T
H

O
M

A
S

 1

T
H

O
M

A
S

 2

T
H

O
M

A
S

 3

V
II
C

T
O

R
 1

V
IC

T
O

R
 2

V
IC

T
O

R
 3

V
O

L
L

M
 1

V
O

L
L

M
 2

V
O

L
L

M
 3

W
A

H
L

 1

W
A

H
L

 2

W
A

H
L

 3

D1
D2
D3

Ja
1

Ja
2

Ja
3

Jo
1

Jo
2

Jo
3

Ju
1

Ju
2

Ju
3

P1

P2

P3

S1

S2

S3

T1

T2

T3

Vi
1

Vi
2

Vi
3

Vo
1

Vo
2

Vo
3

W
1

W
2

W
3

Face-Recognition: Cross-Correlation

 39

RESULTS OF TEST B (r = 80%):

D
A

V
ID

 1

D
A

V
ID

 2

D
A

V
ID

 3

J
A

S
C

H
U

L
 1

J
A

S
C

H
U

L
 2

J
A

S
C

H
U

L
 3

J
O

S
E

 1

J
O

S
E

 2

J
O

S
E

 3

J
U

A
N

 1

J
U

A
N

 2

J
U

A
N

 3

P
A

U
L

 1

P
A

U
L

 2

P
A

U
L

 3

S
C

H
N

 1

S
C

H
N

 2

S
C

H
N

 3

T
H

O
M

A
S

 1

T
H

O
M

A
S

 2

T
H

O
M

A
S

 3

V
II
C

T
O

R
 1

V
IC

T
O

R
 2

V
IC

T
O

R
 3

V
O

L
L

M
 1

V
O

L
L

M
 2

V
O

L
L

M
 3

W
A

H
L

 1

W
A

H
L

 2

W
A

H
L

 3

D1
D2

D3

Ja
1

Ja
2

Ja
3

Jo
1

Jo
2

Jo
3

Ju
1

Ju
2

Ju
3

P1

P2

P3

S1

S2

S3

T1

T2

T3

Vi
1

Vi
2

Vi
3

Vo
1

Vo
2

Vo
3

W
1

W
2

W
3

Face-Recognition: Cross-Correlation

 40

With this value of “r”, the program had no problem to recognize all the people.

The Test was successful.

The Last Test was to test new photos a probe the program. The problem

was that we could not do the photos similar like the photos from the data base.

The faces were a little bigger or smaller. Only we could test with Jose Juan and

me.

With my photo the Test was successful, but I had to reduce the limit of a

positive matching to 60%. With Jose Juan appeared five more persons. The

Test failed.

8. Conclusions

This method, alone, does not obtain good percentage of successful. With

the data base worked well, but these were taken at the same time, with the

same light conditions. With news photos the percentage falls. But this method in

combination with other methods can get better results.

Other problem was that you need a lot of power of calculation, with 10

people each test take a bit of time (1 min). With more people more time.

In short the project was very interesting and the software a good

surprise. Khoros Cantata is a very good suite to work with images. It allows you

a lot of freedom and many useful tools.

Face-Recognition: Cross-Correlation

 41

C Code

of the

Functions:

Icon
&

Correlation

Face-Recognition: Cross-Correlation

 42

ICON.C

With this function, we pretend to extract a frame of the image. This new image,
that we call Icon, will use to make the Correlation. It is easy to see with an
example:

1) Define Variables

int run_Icon(void)
{

These two variables aren't necessary, but sure are handy. Several
error/warning routines (kerror, kwarn, etc) expect two parameters which are the
library and function where the error occurred. Instead of passing them explicitly
in each call to kerror or kwarn, it is better to define them for the whole
program/routine so it will be easier to change them in case the name of the
program/routine changes. For this case (a main routine) we will the "lib" will be
the name of the program and the "rtn" will be "main".

 char *lib = "Icon";
 char *rtn = "main";

This is a kobject - a polymorphical data object that allows representation of data
in five dimensions with additional segments in different data types. Also a
kobject can be read/save in different formats. Every time you want to make an
input, output or processing of a data object, use a kobject. When first declaring
it, assign NULL to it, will make error checking easier.

 kobject in_obj = NULL;
 kobject out_obj = NULL;

The width and height of the input image, which will determine the size of the
output kobject

 int h,w,d,t,e;
 int ch,cw;

In “inplane”, we will store the image. This way we can manipulate it.

Face-Recognition: Cross-Correlation

 43

 double *inplane = NULL;
 double value;

A list of objects

 klist *objlist = NULL;

Several variables that we will use later

 int datatype;
 int flag = 0;
 int x_ext,y_ext;
 int temp = 0;
 int width= 0;
 int min1,min2 = 256;
 int offset = 0;

2) Create input object and check it

The kobjects must be created with special commands: for input, usually with
kpds_open_input_object, for output usually with kpds_open_output_object, and
you can create temporary kobjects with kpds_create_object. When a kobject is
open, all its data and attributes can be set or read. When a kobject is created,
you must define a minimum set of attributes to work with it. In the five lines
above, we attempt to open a kobject, and in case of failure we use kerror to
display an error message and kexit to finish the program (wouldn't make any
sense to continue if we cannot create the output object). The call to kexit with
KEXIT_FAILURE means an error, while calling it with KEXIT_SUCCESS means
that the program terminated successfully. Note the usage of the clui_info
structure to get the user interface parameter (clui_info->o_file).

 if ((in_obj = kpds_open_input_object(clui_info->i_file)) == KOBJECT_INVALID)
 {
 kerror(lib,rtn, "Cannot open input object %s",clui_info->i_file);
 kexit(KEXIT_FAILURE);
 }

3) Create output object and check it

 if ((out_obj = kpds_open_output_object(clui_info->o_file)) == KOBJECT_INVALID)
 {

 kerror(lib,rtn, "Cannot open outout object %s",clui_info->i_file);
 kpds_close_object(in_obj);
 kexit(KEXIT_FAILURE);
 }

Face-Recognition: Cross-Correlation

 44

4) Get & set some input parameters

Here we first get the original data type of the input object in the variable
datatype and then set the data type to double. This is done to simplify the
processing; otherwise we would need to duplicate the code to deal with the
several supported data types.

 kpds_get_attribute(in_obj,KPDS_VALUE_DATA_TYPE,&datatype);
 kpds_set_attribute(in_obj,KPDS_VALUE_DATA_TYPE,KDOUBLE);

This function gets the five parameters of the input object

 kpds_get_attribute(in_obj,KPDS_VALUE_SIZE,&w,&h,&d,&t,&e);

We copy the input object in the output object. This way, the output object hat
the same attributes. And we check it after that.

 if (!kpds_copy_object(in_obj,out_obj))
 {
 kerror(lib,rtn,"Unable to copy input to output object");
 kexit(KEXIT_FAILURE);
 }

5) Alloc memory for the planes

We use the k functions to guarantee portability. And we check it after that.

 inplane=(double *)kmalloc(w*h*sizeof(double));

 if (inplane == NULL)
 {
 kerror(lib,rtn,"Unable to alloc memory for plane");
 kexit(KEXIT_FAILURE);
 }

The List of objects is made to make easy free them at the end of the program.

 objlist = klist_add(objlist,inplane,"KMALLOC");

6) Get a plane of the input object

With this function we obtain a plane (the whole image) with only one function.
And the pointer is in the beginning of the image.

 kpds_get_data(in_obj,KPDS_VALUE_PLANE,(kaddr)inplane);

7) Search of the Coordinate Y of the Point of Extraction

This part of the code tries to find the Y coordinate of the punt of extraction. The
frame that we extract has a set size. We only need where begin this frame to

Face-Recognition: Cross-Correlation

 45

extract it. The process of the extraction will be made for a function of the
program. We find the first pixel whose value is lower than 175. When this
happens, we stop the search.

 for(ch=0;ch<h;ch++)
 {
 for(cw=0;cw<w;cw++)
 {
 value = inplane[PIXEL(cw,ch)];
 if ((value < 175)&&(flag == 0))
 {
 flag = 1;
 y_ext = ch-10;
 }

 }
 }

8) Search of the Coordinate X of the Extraction-Point

Step 1: Search of Minimum Value in the Left Side of the Face

The search of the X coordinate is a bit complicate. The first step is to find a
point in the left side of the face.

 for (ch=0;ch<h;ch++)
 {
 for(cw=0;cw<w;cw++)
 {
 if((ch>100)&&(ch<412))
 {
 value = inplane[PIXEL(cw,ch)];
 if(value<175)
 {
 temp = cw;
 if(temp<min1)
 min1 = temp;
 }
 }
 }
 }

Face-Recognition: Cross-Correlation

 46

Step 2: Search of the Minimum Value of the Right Side of the Face

After that we search a point in the other side of the face. And we save it.

 flag = 0;
 for (ch=0;ch<h;ch++)
 {
 for(cw=0;cw<w;cw++)
 {
 if((ch>(y_ext)+15)&&(ch<412)&&(cw>256))
 {
 value = inplane[PIXEL(cw,ch)];
 if((value>175)&&(flag==0))
 {
 flag = 1;
 temp = cw;
 if(temp>min2)
 min2 = temp;
 }
 }
 }
 flag = 0;
 }

Step 3: The Calculation of the Offset

Now we calculate the offset (Distance between the face and the border of the
frame). We make that to keep the same distance between the frame and the
face, in both sides of the Icon. All this process is to try to keep symmetry in the
Icon.

 width = min2-min1;
 offset = (310-width)/2;
 x_ext = min1-offset;

9) Extraction of the frame

To make the extraction of the frame, we use a function of the library. To use this
function we only need the coordinates of the point of beginning. This point is
already calculated.

 lkextract(in_obj,x_ext,y_ext,0,0,0,310,410,t,d,e,FALSE,out_obj);

10) Restore the original datatype from out_obj

 kpds_set_attribute(in_obj,KPDS_VALUE_DATA_TYPE,datatype);

Face-Recognition: Cross-Correlation

 47

11) Free memory

We free all the memory use in the function. We have to do only once, because
we use the function objlist.

 (void)klist_free(objlist,(kfunc_void)lkcall_free);

12) Close object

 kpds_close_object(in_obj);
 kpds_close_object(out_obj);

 return TRUE;
}

Face-Recognition: Cross-Correlation

 48

CORRELATION.C

This function does the Correlation between de Icon of an unknown person and
the three icons of a person of the data base. It does them and after that
compares the results. When the comparison is positive, the image of the person
is shown; when the comparison is negative a red frame is shown. The formula
used to do the correlation is:

()()[]

() ()∑∑

∑

==

=

−−

−−

=
n

i

i

n

i

n

i

ji

YY
n

XX
n

YYXX
n

r

1

2

11

2

1

11

1

int run_Correlation(void)
{

1) Define Variables

 char *lib = "Icon";
 char *rtn = "main";
 kobject icon_new = NULL;
 kobject icon_1 = NULL;
 kobject icon_2 = NULL;
 kobject icon_3 = NULL;
 kobject out_obj = NULL;
 int h,w,d,t,e;
 int ch,cw;
 int datatype;
 int datatype1;
 int datatype2;
 int datatype3;
 double *icon_plane = NULL;
 double *photo1_plane = NULL;
 double *photo2_plane = NULL;
 double *photo3_plane = NULL;
 klist *objlist = NULL;
 double aver_i = 0;
 double aver_ph1 = 0;
 double aver_ph2 = 0;
 double aver_ph3 = 0;
 double value1,value2;
 double var1,var2;
 double num=0;
 double den=0;
 double r1,r2,r3;
 double den1=0;
 double den2=0;
 int h1=100;
 int w1=100;
 unsigned char map[3]; /* a map entry = row */
 unsigned char pix=0; /* a value for the value segment */
 int r;

Face-Recognition: Cross-Correlation

 49

1) Create input objects and check them

This first corresponds with the icon of the person unknown

 if ((icon_new = kpds_open_input_object(clui_info->i_file)) == KOBJECT_INVALID)
 {
 kerror(lib,rtn, "Cannot open input object %s",clui_info->i_file);
 kexit(KEXIT_FAILURE);
 }

Now the three icons of a person of the data base

 if ((icon_1 = kpds_open_input_object(clui_info->i0_file)) == KOBJECT_INVALID)
 {
 kerror(lib,rtn, "Cannot open input object %s",clui_info->i0_file);
 kpds_close_object(icon_new);
 kexit(KEXIT_FAILURE);
 }

 if ((icon_2 = kpds_open_input_object(clui_info->i01_file)) == KOBJECT_INVALID)
 {
 kerror(lib,rtn, "Cannot open input object %s",clui_info->i01_file);
 kpds_close_object(icon_new);
 kpds_close_object(icon_1);
 kexit(KEXIT_FAILURE);
 }

 if ((icon_3 = kpds_open_input_object(clui_info->i012_file)) == KOBJECT_INVALID)
 {
 kerror(lib,rtn, "Cannot open input object %s",clui_info->i012_file);
 kpds_close_object(icon_new);
 kpds_close_object(icon_1);
 kpds_close_object(icon_2);
 kexit(KEXIT_FAILURE);
 }

The variable “r” contains the value of the correlation coefficient. This value will
be the limit between a positive or a negative result

r=clui_info->int1_int;

3) Create output object and check it

 if ((out_obj = kpds_open_output_object(clui_info->o_file)) == KOBJECT_INVALID)
 {
 kerror(lib,rtn, "Cannot open outout object %s",clui_info->o_file);
 kpds_close_object(icon_new);
 kpds_close_object(icon_1);
 kpds_close_object(icon_2);
 kpds_close_object(icon_3);
 kexit(KEXIT_FAILURE);
 }

Face-Recognition: Cross-Correlation

 50

4) Get & set some input parameters

We obtain some information of the Icon of the unknown person and we save it
in variables

 kpds_get_attribute(icon_new,KPDS_VALUE_DATA_TYPE,&datatype);
 kpds_set_attribute(icon_new,KPDS_VALUE_DATA_TYPE,KDOUBLE);

 kpds_get_attribute(icon_new,KPDS_VALUE_SIZE,&w,&h,&d,&t,&e);

 kpds_get_attribute(icon_1,KPDS_VALUE_DATA_TYPE,&datatype1);
 kpds_set_attribute(icon_1,KPDS_VALUE_DATA_TYPE,KDOUBLE);

 kpds_get_attribute(icon_2,KPDS_VALUE_DATA_TYPE,&datatype2);
 kpds_set_attribute(icon_2,KPDS_VALUE_DATA_TYPE,KDOUBLE);

 kpds_get_attribute(icon_3,KPDS_VALUE_DATA_TYPE,&datatype3);
 kpds_set_attribute(icon_3,KPDS_VALUE_DATA_TYPE,KDOUBLE);

Here we copy the structure of the input icon into the output object

 if (!kpds_copy_object(icon_new,out_obj))
 {
 kerror(lib,rtn,"Unable to copy input to output object");
 kexit(KEXIT_FAILURE);
 }

5) Alloc memory for the planes

Now, we alloc memory for the planes. We use one plane for each input object.
We work with planes.

 icon_plane=(double *)kmalloc(w*h*sizeof(double));

 if (icon_plane == NULL)
 {
 kerror(lib,rtn,"Unable to alloc memory for plane");
 kexit(KEXIT_FAILURE);
 }

 objlist = klist_add(objlist,icon_plane,"KMALLOC");

 photo1_plane=(double *)kmalloc(w*h*sizeof(double));

 if (photo1_plane == NULL)
 {
 kerror(lib,rtn,"Unable to alloc memory for plane");
 kexit(KEXIT_FAILURE);
 }

 objlist = klist_add(objlist,photo1_plane,"KMALLOC");

 photo2_plane=(double *)kmalloc(w*h*sizeof(double));

 if (photo2_plane == NULL)
 {

Face-Recognition: Cross-Correlation

 51

 kerror(lib,rtn,"Unable to alloc memory for plane");
 kexit(KEXIT_FAILURE);
 }

 objlist = klist_add(objlist,photo2_plane,"KMALLOC");

 photo3_plane=(double *)kmalloc(w*h*sizeof(double));

 if (photo3_plane == NULL)
 {
 kerror(lib,rtn,"Unable to alloc memory for plane");
 kexit(KEXIT_FAILURE);
 }

 objlist = klist_add(objlist,photo3_plane,"KMALLOC");

6) Get a plane of the input objects

We obtain the plane of the input objects; all the work with the pointer is very
easy with this program

 kpds_get_data(icon_new,KPDS_VALUE_PLANE,(kaddr)icon_plane);

 kpds_get_data(icon_1,KPDS_VALUE_PLANE,(kaddr)photo1_plane);

 kpds_get_data(icon_2,KPDS_VALUE_PLANE,(kaddr)photo2_plane);

 kpds_get_data(icon_3,KPDS_VALUE_PLANE,(kaddr)photo3_plane);

7) Calculate the average of the input objects

We calculate the average of the four Icons. The process consists in to sum the
values of all the pixels and after that divide between the total numbers of pixels.

 for(ch=0;ch<h;ch++)
 {
 for(cw=0;cw<w;cw++)
 {
 aver_i+=icon_plane[PIXEL(cw,ch)];
 }
 }
 aver_i=aver_i/(w*h);
 kprintf("media icon = %g\n",aver_i);

 for(ch=0;ch<h;ch++)
 {
 for(cw=0;cw<w;cw++)
 {
 aver_ph1+=photo1_plane[PIXEL(cw,ch)];
 }
 }
 aver_ph1=aver_ph1/(w*h);
 kprintf("media foto1 = %g\n",aver_ph1);

Face-Recognition: Cross-Correlation

 52

for(ch=0;ch<h;ch++)
 {
 for(cw=0;cw<w;cw++)
 {
 aver_ph2+=photo2_plane[PIXEL(cw,ch)];
 }
 }
 aver_ph2=aver_ph2/(w*h);
 kprintf("media foto2 = %g\n",aver_ph2);

 for(ch=0;ch<h;ch++)
 {
 for(cw=0;cw<w;cw++)
 {
 aver_ph3+=photo3_plane[PIXEL(cw,ch)];
 }
 }
 aver_ph3=aver_ph3/(w*h);
 kprintf("media foto3 = %g\n",aver_ph3);

8) Calculate the correlation-coefficient

First we calculate the numerator and then the denominator

 for(ch=0;ch<h;ch++)
 {
 for(cw=0;cw<w;cw++)
 {
 value1=icon_plane[PIXEL(cw,ch)];
 value2=photo1_plane[PIXEL(cw,ch)];
 var1=value1-aver_i;
 var2=value2-aver_ph1;
 num+=(var1*var2);
 }
 }

 num=num/(w*h);

 for(ch=0;ch<h;ch++)
 {
 for(cw=0;cw<w;cw++)
 {
 value1=icon_plane[PIXEL(cw,ch)];
 value2=photo1_plane[PIXEL(cw,ch)];
 var1=value1-aver_i;
 var2=value2-aver_ph1;
 den1+=(var1*var1);
 den2+=(var2*var2);
 }
 }
 den=sqrt(den1*den2);
 den=den/(w*h);

 r1=(num/den)*100;
 kprintf("coef r1 (%)= %g\n",r1);

 num=0;

Face-Recognition: Cross-Correlation

 53

 den1=0;
 den2=0;
 for(ch=0;ch<h;ch++)
 {
 for(cw=0;cw<w;cw++)
 {
 value1=icon_plane[PIXEL(cw,ch)];
 value2=photo2_plane[PIXEL(cw,ch)];
 var1=value1-aver_i;
 var2=value2-aver_ph2;
 num+=(var1*var2);
 }
 }
 num=num/(w*h);

 for(ch=0;ch<h;ch++)
 {
 for(cw=0;cw<w;cw++)
 {
 value1=icon_plane[PIXEL(cw,ch)];
 value2=photo2_plane[PIXEL(cw,ch)];
 var1=value1-aver_i;
 var2=value2-aver_ph2;
 den1+=(var1*var1);
 den2+=(var2*var2);
 }
 }
 den=sqrt(den1*den2);
 den=den/(w*h);

 r2=(num/den)*100;
 kprintf("coef r1 (%)= %g\n",r2);

 num=0;
 den1=0;
 den2=0;
 for(ch=0;ch<h;ch++)
 {
 for(cw=0;cw<w;cw++)
 {
 value1=icon_plane[PIXEL(cw,ch)];
 value2=photo3_plane[PIXEL(cw,ch)];
 var1=value1-aver_i;
 var2=value2-aver_ph3;
 num+=(var1*var2);
 }
 }
 num=num/(w*h);

Face-Recognition: Cross-Correlation

 54

 for(ch=0;ch<h;ch++)
 {
 for(cw=0;cw<w;cw++)
 {
 value1=icon_plane[PIXEL(cw,ch)];
 value2=photo3_plane[PIXEL(cw,ch)];
 var1=value1-aver_i;
 var2=value2-aver_ph3;
 den1+=(var1*var1);
 den2+=(var2*var2);
 }
 }
 den=sqrt(den1*den2);
 den=den/(w*h);

 r3=(num/den)*100;
 kprintf("coef r3 (%)= %g\n",r3);

9) Moment of the Comparison

When the comparison is negative we create a red frame

 if((r1<r)&&(r2<r)&&(r3<r))
 {

 kpds_create_value(out_obj);

 kpds_set_attributes(out_obj,KPDS_VALUE_SIZE,w1,h1,1,1,1,KPDS_VALUE_DATA_T
YPE,KUBYTE,NULL);

 kpds_create_map(out_obj);

 kpds_set_attributes(out_obj,KPDS_MAP_SIZE,3,6,1,1,1,KPDS_MAP_DATA_TYPE,KU
BYTE,NULL);

 map[0]=255;
 map[1]=0;
 map[2]=0;

 for(ch=0;ch<h1;ch++)
 {
 for(cw=0;cw<w1;cw++)
 {
 kpds_put_data(out_obj,KPDS_VALUE_POINT,(kaddr)&pix);
 kpds_put_data(out_obj,KPDS_MAP_LINE,(kaddr)map);
 }
 }
 kpds_close_object(out_obj);
 }

Face-Recognition: Cross-Correlation

 55

When the comparison is positive, we copy the Photo of the Data Base which
obtained a positive result

 if(r1>r)
 {
 if(!kpds_copy_object(icon_1,out_obj))
 {
 kerror(lib,rtn,"Unable to copy icon1 in out_obj");
 kexit(KEXIT_FAILURE);
 }
 }
 else if(r2>r)
 {
 if(!kpds_copy_object(icon_2,out_obj))
 {
 kerror(lib,rtn,"Unable to copy icon2 in out_obj");
 kexit(KEXIT_FAILURE);
 }
 }
 else if(r3>r)
 {
 if(!kpds_copy_object(icon_3,out_obj))
 {
 kerror(lib,rtn,"Unable to copy icon3 in out_obj");
 kexit(KEXIT_FAILURE);

 }
 }

10) Free Memory

We free the memory used

 (void)klist_free(objlist,(kfunc_void)lkcall_free);

11) Close the objects

 kpds_close_object(icon_new);
 kpds_close_object(icon_1);
 kpds_close_object(icon_2);
 kpds_close_object(icon_3);

 return TRUE;

}

Face-Recognition: Cross-Correlation

 56

Manual

Of

Khoros

Cantata

Face-Recognition: Cross-Correlation

 57

INDEX

1. What is Khoros?

1.1. Organization of the Khoros Software.

1.1.1. The Design Tool.

1.1.2. The Datamanip Toolbox.

1.2. Khoros Applications.

1.2.1. Cantata.

1.2.2. Craftsman.

1.2.3. Composer.

1.2.4. Guise.

1.2.5. Kman.

1.2.6. Editimage.

 1.3. The Software Development System.

 1.3.1. The Graphical User Interface.

 1.3.1.1. GUI Representations of the CLUI.

 1.3.1.2. Kroutines vs. Xvroutines.

 1.3.1.3. Toolbox Design and Implementations.

 1.4. Overview of the Data Models

 1.4.1. The Polymorphic Data Model.

 1.4.2. Value Data.

 1.4.3. Location Data.

 1.4.4. Time Data.

 1.4.5. Mask Data.

 1.4.6. Map Data.

 1.4.7. Object containing Value&Map.

Face-Recognition: Cross-Correlation

 58

2. Visual Programming: Cantata.

 2.1. Introduction.

 2.2. Overview of Graphical User Interface.

 2.3. The Visual Programming Workspace.

 2.3.1. Introduction tit h Glyph.

 2.3.2. Standard Glyph Components.

 2.3.2.1. Input Data Connection Node.

 2.3.2.2. Output Data Connection Node.

 2.3.2.3. Data Available (DAV) Input

 2.3.2.4. Data Available (DAV) Output

 2.3.2.5. Pane Access Control.

 2.3.2.6. Run Button.

 2.3.2.7. Input Control Connection Node.

 2.3.2.8. Output Control Connection Node.

 2.3.2.9. Operator Name.

 2.3.2.10. “Selected” Indicator.

 2.3.2.11. Open Workspaces.

 2.3.2.12. Control Structure Pixmap.

 2.3.2.13. Error Indicator.

 2.3.2.14. Info Indicator.

 2.3.3. Basic Glyph Operations.

 2.3.3.1. Selecting a Glyph.

 2.3.3.2. Moving a Glyph.

 2.3.3.3. Destroying a Glyph.

 2.3.3.4. Executing a Glyph.

Face-Recognition: Cross-Correlation

 59

 2.3.3.5. Renaming a Glyph.

 2.3.3.6. Creation of the Glyph.

 2.3.3.7. Customizing which Operators are …

 2.3.4. Input/Output: Glyph Connections.

 2.3.4.1. Data Connections.

 2.3.4.2. Control Connections.

 2.3.4.3. Manipulating Connections.

 2.3.4.4. Delete Connections.

 2.3.4.5. Save Data to File.

 2.3.4.6. Operator Execution.

3. Toolbox Programming.

 3.1. Introduction.

 3.2. Creating a Software Object on a Toolbox.

 3.2.1. Creating the Kroutine for the First Programme.

 3.2.2. Modifying the User Interface for the F. P.

 3.2.3. Editing the First Kroutine’s User Interface.

 3.2.4. Examining the Code of the First Programme.

 3.3. Short Introduction to the Polymorphic Data Model.

This manual is a resume of the manuals which appear in:

http://www.cab.u-szeged.hu/local/doc/khoros/Tutorial/index.html

http://rab.ict.pwr.wroc.pl/khoros_root/topmost_toc.html

Face-Recognition: Cross-Correlation

 60

1. What is Khoros?

Khoros is a software integration and development environment that

emphasizes information processing and data exploration. The goal of the

Khoros software is to provide a complete application development environment

that redefines the software engineering process to include all members of the

project group, from the application end-user to the infrastructure programmer.

Khoros is a comprehensive system that may be viewed in different ways,

depending on your scientific needs and objectives.

Figure 1: Khoros provides a large variety of programs for information processing, data
exploration, and data visualization.

For those who need end user solutions to scientific problems, Khoros

may be used as it stands, providing a rich set of programs for information

processing, data exploration, and data visualization. Multidimensional data

manipulation operators include point wise arithmetic, statistic calculations, data

conversions, histograms, data organization, and size operators; image

processing routines and matrix manipulation are also provided. Interactive data

visualization programs include an image display and manipulation package, an

animation program, a 2D/3D plotting package, a colormap alteration tool, and

an interactive image/signal classification application. In addition, 3D

visualization capabilities are also offered; a number of data processing routines

for 3D visualization are provided, along with a software rendering application.

The Khoros operators are generalized, such that each can solve problems in a

variety of specific areas such as medical imaging, remote sensing, process

control, signal processing, and numerical analysis.

Face-Recognition: Cross-Correlation

 61

All information processing and visualization programs in Khoros are

available via the visual programming environment, Cantata. Cantata is a

graphically expressed, event-driven, data flow visual language which provides a

visual programming environment within the Khoros system. Data flow is a

"naturally visible" approach in which a visual program is described as a directed

graph, where each node represents an operator or function and each directed

arc represents a path over which data flows. By providing a natural environment

which is similar to the block diagrams that are already familiar to practitioners in

the field, the visual language provides support to both novice and experienced

programmers. Cantata supports coarse grain distributed processes; it can

handle both stream and block data. Its visual hierarchy, iteration, flow control,

and expression-based parameters make it a powerful simulation and

prototyping system.

For application developers, the Khoros Toolbox Programmer's system

consists of programming services and software development tools that support

all aspects of developing new engineering and scientific applications.

Applications written to Khoros can take advantage of the same capabilities

offered by the Khoros data processing and visualization routines, including the

ability to transparently access large data sets distributed across a network,

operate on a variety of data and file formats without conversion, simultaneously

support different widget sets, and maintain a consistent presentation with a

standardized user interface. The software development environment provides

developers with a direct manipulation graphical user interface design tool,

automatic code generation, standardized user interface and documentation, and

interactive configuration management. The Khoros software development

system can also be used for software integration, where existing programs can

be brought together into a consistent, standardized, and cohesive environment.

Khoros provides a powerful working environment for the engineering and

scientific communities, addressing many of the issues associated with quickly

developing X Window based applications, prototyping solutions to complex

problems, and utilizing the resources of a distributed network. The layered

approach of the Khoros infrastructure and the concept of program services

Face-Recognition: Cross-Correlation

 62

provide developers with the flexibility to create complex applications, while at

the same time hiding the intimidating details of operating systems and X

Window systems.

A common misperception is that there is a single application named

"Khoros." In fact, "Khoros" is the name referring to hundreds of programs and

thousands of library calls, available in several discrete sets which are referred to

as "toolboxes." Khoros is a complete data exploration and software

development environment that reduces time in solving complex problems,

allows free sharing of ideas and information, and promotes portability.

1.1. Organization of the Khoros Software

This section introduces concepts used by all of the application toolboxes

and describes the data model used in Khoros and how the application toolbox

operators behave with respect to the model. It also contains information on

useful Khoros utilities, instructions for invoking the operators from the command

line, and instructions on how to access and use the operators within the visual

programming language.

Each toolbox section contains an introduction consisting of more specific

information which applies to that toolbox and tables listing the available

operators. In some toolboxes, such as Envision and Geometry, full chapters are

devoted to the interactive applications in the toolbox.

Operator tables are provided in each toolbox in two formats. The first

shows the hierarchical organization of the operators by category and

subcategory. The second lists operators alphabetically. The Khoros software

system is divided into several toolboxes. A toolbox is a collection of programs

and/or libraries that are managed as a single entity, or object. A toolbox

imposes a predefined directory structure on its contents, to provide consistency

and predictability in software and documentation organization.

Face-Recognition: Cross-Correlation

 63

Typically, a toolbox contains programs and libraries which have a similar

function or common objective. The Application Toolboxes contains six

application-specific toolbox chapters for the Khoros data processing and

visualization software. These toolboxes are Datamanip, Envision, Geometry,

Image, Matrix, and Retro.

Khoros Application Toolboxes

• DATAMANIP -- Polymorphic Data Processing Operators

• ENVISION -- Interactive Data Exploration Tools

• GEOMETRY -- 3D Scalar and Vector Visualization

• IMAGE -- Image Processing & Analysis Operators

• MATRIX -- Matrix Operators

• RETRO -- Khoros 1.0 Image Processing & Analysis Operators

• SAMPLE DATA -- Sample Workspaces and Data

Note that the only required toolboxes are Bootstrap, Dataserv, and Design;

however, the Datamanip toolbox is essential for doing any kind of information

processing, while the Envision toolboxes is necessary for data visualization..

1.1.1. The Design Toolbox

The Design toolbox contains the applications that make up the Khoros

toolbox programmer's system. It also contains the libraries that comprise GUI

and Visualization Services. In contrast to the Bootstrap and Dataserv toolboxes,

the Design toolbox requires that X11 (revision 5, or 6) be installed. All

applications and libraries in the Design toolbox depend on X Window.

The major applications in the Design toolbox include: Cantata, the visual

programming language; Craftsman, the toolbox management program;

Composer, the software object editor; Guise, the direct manipulation user

interface design tool; and khelp, which displays online help pages.

The GUI and Visualization Services libraries, all dependent on X11, are

also included in the Design toolbox. These libraries handle creation and

Face-Recognition: Cross-Correlation

 64

management of graphical user interfaces, as well as creation and management

of all GUI and visual objects.

The Design toolbox requires the Bootstrap and Dataserv toolboxes to be

installed.

1.1.2. The Datamanip Toolbox

The Datamanip toolbox contains general data manipulation operators.

Data manipulation operators include point wise arithmetic, statistics

calculations, data conversion, histogram, data organization, and size operators.

All Datamanip programs are written to support the relationships defined

by the polymorphic data model. This data model provides for general 5-

dimensional data (width, height, depth, time, elements), with any combination of

value, map, mask, location, and time data components. The Datamanip

operators are implemented using polymorphic data services, which is a part of

the kappserv library in the Dataserv toolbox.

1.2. Khoros Applications

There are hundreds of programs included in the various toolboxes that

make up the Khoros scientific software environment. This section provides a

few highlights of the Khoros system, by briefly summarizing some of the top

level applications that are available.

1.2.1. Cantata

The Cantata visual language is one of the main applications offered in

the Design toolbox. Cantata is a graphically expressed, data flow visual

language which provides a visual programming environment within the Khoros

system. Its visual hierarchy, iteration, flow control, and expression based

parameters make it a powerful simulation and prototyping system. Workspaces

can be captured into a customizable, simple front end graphical user interface

that hides the complexity of the data flow diagram, and allows the encapsulated

workspace to be delivered as a new, interactive application for a production

environment.

Face-Recognition: Cross-Correlation

 65

1.2.2. Craftsman

The Craftsman toolbox management application, distributed in the

Design toolbox, is used to create, delete, and copy toolboxes as well as libraries

and programs.

1.2.3. Composer

The Composer software object editor, also distributed in the Design

toolbox, works in conjunction with Craftsman to provide you with convenient

access to all of the software object components and can invoke all of the

operations needed to modify, compile, debug, and document software objects.

Composer can be run directly from the command line, or can be accessed via

Craftsman.

1.2.4. Guise

The Guise direct manipulation graphical user interface design tool

(located in the Design toolbox) works in conjunction with Composer to allow you

to interactively create and modify the GUI of your program. Guise outputs a

User Interface Specification (UIS) file, which defines both the graphical user

interface (GUI) and/or command line user interface (CLUI) of your program.

Guise can be run independently, or can be accessed via Composer.

1.2.5. Kman

The Khoros version of man, distributed as part of the Bootstrap toolbox,

this command allows you to access man pages for any Khoros program. The [-

k] argument to kman allows you to search for programs based on a key word.

1.2.6 . Editimage

The Envision toolbox contains editimage, which is an interactive image

display, examination, and manipulation tool. Its capabilities include zooming in

on the image, printing of pixel values and map data values, direct manipulation

of the image colormap, and region of interest operations. Editimage operates on

images of any data type, including complex data. It can operate on very large

data sets, in which case a viewport is used to display a portion of the image,

and a pan icon is used to navigate about the image. In this case, the only

portion of the image currently being displayed is read into memory. A variety of

file formats are supported without the need for conversion.

Face-Recognition: Cross-Correlation

 66

1.3 The Software Development System

The concepts of toolbox object and software object are important for the

use of the Khoros software development system.

A toolbox object is an encapsulation of programs and libraries that are

managed as an entity. The toolbox imposes a predefined directory structure on

its contents to provide consistency and predictability to software configuration.

If a toolbox object is an encapsulation of programs and libraries, the

programs and libraries themselves can be also be considered objects. A

software object consists of the files associated with a particular library or

program. A software object is composed of source code, documentation, and a

user interface specification (if applicable). There are different types of software

objects: program objects, library objects, pane objects, and script objects.

These objects encapsulate Khoros programs, libraries, wrappers for other

programs, and differently on the graphical user interface.

1.3.1. The Graphical User Interface

1.3.1.1. GUI Representations of the CLUI (Panes of Programs)

While the CLUI of a program is sufficient to execute a program directly

from the command line, a graphical user interface is required to execute the

same program from the Cantata visual programming language.

Every argument of a program must have representation on both its CLUI

and its GUI; thus, each program in the Khoros system has a graphical user

interface which is the graphical counterpart of its command line user interface.

The GUI counterpart to a program's CLUI is frequently referred to as the pane

of the program, so called for the ".pane" postfix convention which is used in

naming the User Interface Specification (UIS) files that define both the GUI and

the CLUI of a program.

Face-Recognition: Cross-Correlation

 67

As mentioned previously, the graphical user interface for a program is

also used when the program is accessed via the Cantata visual programming

language.

1.3.1.2. Kroutines vs. Xvroutines

The majority of the programs in Khoros are data processing routines,

called kroutines. While these programs may have a graphical user interface

(their pane) displayed (with the use of the [-gui] option, or when they are

accessed via cantata) they do not require use of a GUI. These programs may

be run solely from the command line on a non-X Windows terminal at home, for

example.

In contrast, Khoros X-Window-based interactive applications, or

xvroutines, must always display a graphical user interface; they cannot be run

without a workstation supporting the X Window system. Furthermore, the

graphical user interface that they display when executed from the command line

is not simply the graphical representation of their command line arguments, as

when the [-gui] option is used; rather, the graphical user interface that will be

displayed is almost always considerably more extensive and complicated than

the graphical representation of their command line arguments (which may also

be displayed, as they too have the [-gui] option).

1.3.1.3. Toolbox Design and Implementation

The objective of Khoros Pro application toolboxes is to facilitate domain-

specific work while simultaneously enabling cross-domain collaboration. When

designing the data processing and visualization operators for Khoros Pro, we

addressed several issues that we feel are critical to increasing the productivity

of the scientist in solving data processing and analysis problems. These issues

include providing domain interoperability, which will promote the reuse of

software solutions over diverse domains; providing format and system

independence, including the capability to process very large data sets; providing

the ability not only to visualize data using traditional methods, but to allow for

data exploration; and instilling confidence in these tools by ensuring reliability

Face-Recognition: Cross-Correlation

 68

and stability. This approach provides flexibility & power to the end user, and

promotes collaboration within and across application domains.

Figure 2: The data operators in the Khoros application toolboxes are designed to address the
needs of many application domains, from image processing to signal processing; from geometry
visualization to numerical analysis.

1.4. Overview of the Data Models

In order to better understand the functionality of the different Khoros

operators, it is helpful to understand the data models to which the operators are

written. The following two sections explain the polymorphic data model and the

geometry data model.

1.4.1. The Polymorphic Data Model

The polymorphic data model is based on the premise that data sets are

usually generated to model, or acquired from, real-world phenomena. The

polymorphic model thus consists of data which exists in three-dimensional

space and one-dimensional time. The model can be pictured most easily as a

time-series of volumes in space. This time-series of volumes is represented by

five different data segments. Each segment of data has a specific meaning

dictating how it should be interpreted. Specifically, these five segments are

value, location, time, mask, and map. All of these segments are optional; a data

object may contain any combination of them and still conform to the

polymorphic model.

The value segment is the primary data segment, consisting of data

element vectors organized implicitly into a time-series of volumes. The value

data may be given explicit positioning in space and time with the location and

Face-Recognition: Cross-Correlation

 69

time segments. The remaining two segments mask and map are provided for

convenience. The mask segment is used to mark the validity of each point of

value data. The map segment is provided as an extension to the value data; the

value data can be used as an index into the map data. Figure 3 provides an

overview of the polymorphic model. Each data segment is described in more

detail below.

Figure 3: An overview of the Polymorphic Data Model. The polymorphic model consists of five
data segments, with each segment serving a specific purpose. The value segment consists of
data element vectors organized into a time-series of volumes. The volume of value data can be
given explicit locations in space with the location segment; one location vector is provided for
each value vector in a single volume. The volumes of value data can be given explicit locations
in time with the time segment; a time-stamp may be given for each volume in time. A mask
segment is available for marking value data validity. A map segment is also provided; the value
data can be used as an index into the map data.

1.4.2. Value Data

The value data segment is the primary storage segment in the

polymorphic data model. Most of the operators are specifically geared toward

processing the data stored in this segment. For example, in an imaging context,

Face-Recognition: Cross-Correlation

 70

the individual pixel RGB values would be stored here. In a signal context,

regularly sampled signal amplitudes would be stored here.

1.4.3. Location Data

The value points in the value segment are stored implicitly in a regularly

gridded fashion. Explicit location information, such as longitude or latitude for

map data, can be added using the location segment. If the value data is

irregularly sampled in space, the explicit location of each sample can be stored

here. Specifically, the information stored in this segment serves to position each

of the value data in explicit space. Note that the location data only explicitly

positions a single volume; the position then holds for each volume through time.

A curvilinear grid allows for an independent position to be stored for each value

vector in a volume. A rectilinear grid allows for explicit locations to be given for

the width, height, and depth axes. A uniform grid allows for explicit location

corner markers to be specified.

1.4.4. Time Data

Explicit time information can be added using the time segment. If each

volume of value data is irregularly sampled in time, an explicit timestamp for

each volume can be stored here. This is useful in animations where each frame

of the animation occurs at a different time.

1.4.5. Mask Data

The mask segment is available for flagging invalid values in the value

segment. If a processing routine produces invalid values, such as NaN or

Infinity, these values can be flagged in the mask data so that later routines can

avoid processing them. A mask point of zero is used to mark invalid value

points, while a mask point of one is used to mark valid value points. The mask

segment identically mirrors the value segment in size; that is, there is one mask

point for each value point.

Face-Recognition: Cross-Correlation

 71

1.4.6. Map Data

In cases where the value data contains redundant vectors that are

duplicated in different positions, the map segment may be used. The value

vectors are replaced with values which are then indexed into the map. The map

then contains the actual data vectors. Where representing the data explicitly in

the value segment would mean that a redundant value could be represented

many times, mapping allows the value to be represented once with indices to

the relevant value vectors. In this sense, the map is an extension of the value

segment.

1.4.7. Object Containing Value & Map

If the input object contains both map and value data, the program will

operate exclusively on the map data whenever possible to maintain the

compression provided by the map (see Figure 4). If there are multiple inputs,

the data will most often be mapped before processing occurs. Also, operations

that depend on data size, such as histogram or statistics calculations, must

usually map the data before processing.

Figure 4: This figure illustrates the scaling operation performed on an object that has both map
and value data. Since the value data acts as an index into the map data, the scaling operation
should be performed on the map. Note that if the value data were scaled, indexing into the map
would be corrupted. The output data object has the same dimensions as the input object.

Face-Recognition: Cross-Correlation

 72

2. Visual Programming: Cantata

Figure 5: The cantata visual language allows you to build graphically expressed, data flow
visual programs within the Khoros system.

2.1. Introduction

Cantata is a graphically expressed, data flow visual language which

provides a visual programming environment within the Khoros system. Data

flow is a "naturally visible" approach in which a visual program is described as a

directed graph, where each node represents an operator or function and each

directed arc represents a path over which data flows. The purpose in providing

a visual language interface to the programs included in the Khoros system is to

increase the productivity of researchers and application developers. By

providing a more natural environment which is similar to the block diagrams that

are already familiar to practitioners in the field, the visual language provides

support to both novice and experienced programmers.

In Cantata, the icons (called glyphs) typically represent programs from

the Khoros system. However, given the Khoros software integration

Face-Recognition: Cross-Correlation

 73

environment, they can also be used to represent non-Khoros programs that

have been integrated into Khoros (see The Toolbox Programming Manual for

information on creating a Khoros object and bringing the object into Cantata).

Each of the hundreds of stand-alone data processing and scientific visualization

programs in the Khoros system can be represented in the Cantata visual

language as glyphs. To create a Cantata visual program, the user selects the

desired programs (and control structures, as needed), places the corresponding

glyphs on the Cantata workspace, and connects these glyphs to indicate the

flow of data from program to program, forming a network within a workspace.

Such workspaces can be executed, saved, and restored to be used again or

modified later. Workspaces may also be encapsulated into stand-alone

applications with a very simplified graphical user interface so that they may be

treated as independent Khoros applications.

The visual hierarchy, iteration, flow control, and expression-based

parameters make Cantata a powerful simulation and prototyping system.

Cantata interprets the visual network dynamically to schedule glyphs and then

dispatch them as processes. The Cantata scheduler is event driven rather than

data driven or demand driven. Glyphs are referred to as coarse grained

because each glyph corresponds to an entire process, not a code segment or a

sub-procedure. Once a glyph has been scheduled, the dispatcher is responsible

for determining the data transport, the communication protocol, and the process

execution mode. Communication protocol between Cantata and the different

glyphs can be as simple as just initiating process execution or more

complicated if glyph parameters must be continuously updated as the process

executes continuously.

Glyphs may be executed locally or remotely to efficiently utilize a

heterogeneous network of computers. Cantata utilizes a network execution

daemon to negotiate the remote data transport and to spawn processes on

remote machines. The visual programmer assigns operators to specific

machines interactively; this may be done both to optimize execution speed and

to fully utilize available hardware. Note that the remote machines to be utilized

need not have a full Khoros installation, but must at least have a copy of the

Face-Recognition: Cross-Correlation

 74

network execution daemon running in order to work with the remote transport

mechanism.

Application specific domains, such as image processing and geometry

visualization, typically process data as blocks. However, the domains of

telecommunications and process control tend to process data as streams.

Cantata glyphs can process data in both blocks and streams.

The Cantata visual language extends the basic data flow paradigm to

make it a more powerful application prototyping or simulation environment. Data

and control-dependent program flow is provided by flow control glyphs such as

if/else, while, count, and trigger. Visual subroutines, or procedures, are

available to support the development of hierarchical data flow graphs. Variables

may be set interactively by the user, or calculated at run time via mathematical

expressions tied to data values or control variables.

2.2. Overview of Graphical User Interface

The graphical user interface of the visual language consists of the

Cantata master form surrounding a canvas, in which networks of connected

glyphs may be created, as described in the following sections.

The Cantata workspace consists of a large canvas in which the visual

programming network is constructed. By default, it is a gridded surface,

although the screen images in this document show a plain canvas for clarity;

glyphs will snap to the grid when created or moved, even if the grid is not

visible. The actual Cantata workspace is several times larger than the size of

the visible viewport. You can control which part of the workspace is visible in the

viewport by moving the scroll bars on the left and bottom sides of the

workspace frame. Along the top of the workspace is the workspace command

bar, which contains icons on which you can click to perform certain operations.

The workspace command bar provides easy access to the most frequently used

Cantata features. It can be optionally hidden via the "Hide Command Bar" item

on the Options menu, or by setting the command line option [-commandbar] to

FALSE at startup.

Face-Recognition: Cross-Correlation

 75

The master form, which appears on the screen when Cantata is executed,

consists of the following components:

1) The main Cantata menus, which provide access to the Khoros programs and

utilities as well as Cantata utilities.

• "File" menu

• "Edit" menu

• "Workspace" menu

• "Options" menu

• "Control" menu

• "Glyphs" menu

• "Help" menu

2) The workspace command bar which contains icons representing the most

commonly used commands from the Cantata inventory. The icons are displayed

just below the main Cantata menu bar. The set of icons that appear is variable.

You can choose to display just those icons you wish (including the entire set

available), or you can make them all disappear.

3) The main workspace canvas. This is the area where the visual program is

constructed. It takes up most of the surface area of the Cantata GUI. More than

one workspace canvas can be open at a time. When new workspaces are

created, the different canvases can be brought to the foreground by clicking on

the Area tabs at the top-left of the canvas. By default, all actions will be

performed on the top (i.e., current) workspace canvas.

Face-Recognition: Cross-Correlation

 76

2.3. The Visual Programming Workspace

Figure 6: The visual programming workspace is made up of a viewport containing a canvas
with a grid. A visual program, made up of a network of glyphs, can be placed on the canvas,
either by restoring a saved program, or by creating a new one. To the right and bottom of the
canvas are scrollbars (not pictured) which can be used to control the portion of the grid that is
visible within the viewport. Along the top of the workspace is a workspace command bar,
containing buttons displaying icons. These buttons provide shortcuts to a variety of visual
programming operations that are also available from the main Cantata menus, shown at the top
of the Cantata window.

There are a variety of functions supported by the Cantata workspace.

Procedure creation and loop construct creation are accessible from the Control

menu. Editing capabilities are accessed from the Edit menu. File manipulation

features are accessed through the File menu. The Workspace menu provides

control for starting, stopping, resetting, and checking visual programs. The most

commonly used functions are also accessible from buttons/icons on the

workspace command bar. With only a few exceptions (where the concept

simply does not apply), the workspace functions always operate on the currently

selected glyphs.

Functions in Cantata are available from several sources, such as the

menus, the command bar, and keyboard accelerators. However, the most basic

interface to Cantata functionality is through the menus; while only a subset of

operations may be available through the command bar, for example, all

functionality is available through the menus. It makes sense, then, to discuss

menus first.

Face-Recognition: Cross-Correlation

 77

The following sections explain the general organization of the Cantata

menus, with an explanation of the functionality provided by each item.

Command bar counterparts to the menu items are provided where appropriate,

as are keyboard accelerators. In those cases where a more detailed discussion

is provided elsewhere, a reference to that discussion is given.

2.3.1. Introduction To The Glyph

A glyph is simply a visual representation of a program available from

within Cantata. Typically, these are the programs in one of the Khoros 2

toolboxes you have installed at your site, but they can also be non-Khoros

programs you have developed that have been given a Khoros pane interface

(see The Toolbox Programming Manual for information on creating a Khoros

object and bringing the object into Cantata). Each program may be run

independently from the command line, or may be executed via Cantata. When

accessed from Cantata, the program itself is referred to as an operator; the icon

that represents the operator in the Cantata workspace is called a glyph. As

stated earlier, a visual program simply consists of a number of glyphs

connected together in a network.

2.3.2. Standard Glyph Components

A glyph has a number of components. Each component provides some

sort of information about the glyph. In addition, many of the components are

also buttons which you may use to perform an operation on the glyph. A

summary of the various glyph components follows.

Face-Recognition: Cross-Correlation

 78

2.3.2.1. Input Data Connection Node

Each glyph may have one or more input data connections. The input data

connection node is represented by a colored square at the left edge of the

glyph. When a data input connection is required, the square will appear in

yellow; when it is optional, it will appear in blue. Some operators are provided

for the express purpose of providing input for other operators; their glyphs will

have no input data connections, as they take no input.

2.3.2.2. Output Data Connection Node

Each glyph may have one or more output data connections. The output

data connection node is represented by a colored square at the right edge of

the glyph. When a data output connection is required, the square will appear in

yellow; when it is optional, it will appear in blue. Some operators are provided

specifically to visualize data produced by other operators; their glyphs will have

no output data connections, as they produce no output.

2.3.2.3. Data Available (DAV) (associated with Input Data Connection)

When there is data available to the operator from a previous glyph

connected to the input data connection, the input data connection will change to

green. Read this as, "data has been made available to the glyph at this input

data connection."

2.3.2.4. Data Available (DAV) (associated with Output Data Connection)

When data is made available by the operator to a subsequent glyph

connected to the output data connection of the glyph, the data connection

indicator will change to green. Read this as, "data has been made available by

the glyph at this output data connection."

2.3.2.5. Pane Access Button

Every glyph has a pane access button in the upper-left corner in the

shape of a black triangle. This button is used to display the graphical user

interface, or pane, of the operator. The pane is used to specify values for the

arguments of the operator. These values correspond to command line

arguments when the operator is run outside of Cantata.

Face-Recognition: Cross-Correlation

 79

2.3.2.6. Run Button

Most glyphs have a square run button in the centre that is used to

execute the operator represented by the glyph. The few glyphs that cannot be

executed (i.e., the ones whose purpose is simply to provide input for other

glyphs) will not have a run button. Note that the square run button glows red

when the operator is executing.

2.3.2.7. Input Control Connection Node

Every glyph can have a input control connection, which is used to delay

execution of the glyph until another glyph is executed. This control is

represented by the small, grey square above the input data connection(s).

2.3.2.8. Output Control Connection Node

Every glyph can have an output control connection, which is used to

delay execution of another glyph until this glyph is executed. This control is

represented by the small, grey square above the output data connection(s).

2.3.2.9. Operator Name

Every glyph will display beneath it the name of the operator that it

represents. The name can be changed by clicking on it, and then making the

desired edits in the edit pop-up window.

2.3.2.10. 'Selected' Indicator

When a glyph has been selected, it will appear depressed and darker in

colour than when not selected.

Face-Recognition: Cross-Correlation

 80

2.3.2.11. Open Workspace

Glyphs representing procedures and loop control structures have a

special "Open Workspace" button which is used to open up the workspace

associated with the procedure or the loop. The open workspace button is the

white triangle that appears in the upper-right corner of the glyph.

2.3.2.12. Control Structure Pixmap

Glyphs representing procedures and control structures have a special

pixmap displayed in the middle to indicate that the glyph in question is a

procedure or a control structure; this helps to differentiate them from "regular"

glyphs. Note that the pixmap is inside the square marking the run button.

2.3.2.13. Error Indicator

The error icon will appear under the glyph when the operator has

encountered an error during execution. Clicking on the icon displays a message

window that contains information on the error.

2.3.2.14. Info Indicator

The information icon will appear under the glyph when the operator has

encountered information during execution. Clicking on the icon displays the

glyph information window containing any message concerning execution of the

glyph. When the mouse is moved slowly over the glyph, an identifier for each

component of the glyph is printed in the status window below the workspace.

When the text references an input or an output connection, the title of the input

or output parameter is printed.

2.3.3. Basic Glyph Operations

Face-Recognition: Cross-Correlation

 81

2.3.3.1. Selecting a Glyph

Many of the workspace manipulation and editing capabilities in Cantata

(see Section D) work on the currently selected glyph(s). By selecting a glyph (or

a set of glyphs), you are indicating to which glyphs you want a particular

operation to be applied. In general, if no glyphs are selected when such an

operation is initiated, the operation will apply to all glyphs in the workspace. For

example, the "copy" operation will copy all the currently selected glyphs; if no

glyphs are selected when the "copy" action is initiated, all the glyphs in the

workspace will be copied.

Figure 7: You can select a single glyph by clicking on it. Select a set of glyphs by outlining them
with a box.

Figure 8: Selected glyphs will appear depressed and darker in color than unselected glyphs.

You can select a single glyph by clicking on it. You can select multiple

glyphs by rubber banding (i.e., outlining with the mouse) a box around a set of

glyphs. To rubber band a box, click in the workspace at the upper left corner of

the area containing the glyphs that you wish to select. Holding the mouse button

down, drag the mouse to the lower right hand corner of the area containing the

glyphs that you wish to select; a box will appear following the cursor as you

move the mouse. A glyph will appear depressed and darker in colour than other

glyphs when selected

Face-Recognition: Cross-Correlation

 82

You can unselect selected glyphs by clicking anywhere in the workspace

surface area. This will unselect all selected glyphs in the workspace. All glyphs

in the workspace can be selected or unselected at once by choosing "Select All"

or "Unselect All" from the Edit menu.

2.3.3.2. Moving A Glyph

First select the glyph(s) to be moved. Then, hold down the left mouse

button while dragging the glyph to the desired position. Releasing the mouse

button will place the glyph(s) at the new location. When moving a set of

selected glyphs, simply choose one glyph to drag to the new location; all the

other selected glyphs will follow along, maintaining their relative position.

2.3.3.3. Destroying A Glyph

To eliminate a glyph from the workspace, select it and then click the

"Delete Selected Glyphs" button on the command bar. Multiple glyphs can be

selected and deleted at the same time. You can also use the Delete item on the

Edit menu. If the operator represented by the glyph is currently executing, the

process will be interrupted. If you destroy a glyph by mistake, you can recover

the glyph by using the "Undo Delete" feature of the Edit submenu. All the glyphs

in a workspace can be deleted by clicking the Clear Workspace button in the

menu bar.

2.3.3.4. Executing a Glyph

To execute the operator represented by a particular glyph individually,

click on the run button of the glyph.

2.3.3.5. Renaming a Glyph

You can sometimes improve the readability of the visual program by

renaming a glyph. To change the name of a glyph, click on the current name

that appears underneath the glyph; a prompt in which you can enter a new

name will pop up. Enter the desired name in the text box that appears in the

pop-up prompt, and click "OK." The name that appears under the glyph will

immediately change to the new name. While copies of the glyph will reflect the

Face-Recognition: Cross-Correlation

 83

name change, note that the change is valid only for a single instance. That is,

the name for the glyph in the menu will not change.

2.3.3.6. Creation of the Glyph

Each Khoros program has an assigned category, subcategory, and

operator name (also called the icon name). The use of the

category/subcategory/name convention imposes a hierarchy on the Cantata

operators and makes the process of finding a particular operator from the

hundreds of available operators a much easier task. There are three ways to

create a glyph for an existing operator in Cantata. The first way uses the

category/subcategory/name approach to finding the desired operator; the

second way uses a combination of category/subcategory/name organization

with alphabetization; the third way uses a combination of alphabetization and

key word scanning. This section explains the three methods of glyph creation in

Cantata, and then goes on to describe how you can customize operators that

are available as glyphs. Keep in mind that the operators available to you as

glyphs in Cantata will vary according to which Khoros toolboxes you have

installed at your site.

2.3.3.7. Customizing Which Operators are accessible as Glyphs

The operators available from the Glyph Menu, Accelerated Routines List,

and Accelerated Finder List are dynamic. The list of available operators will

change according to which toolboxes you have installed at your site. Each time

Cantata is run, the items that appear in the Glyph Menu are dynamically created

according to the contents of the Toolboxes file. For example, if the Design,

Bootstrap, Datamanip, Envision, Geometry, Image, and Retro toolboxes are

listed in the Toolboxes file, only operators from those toolboxes will be

accessible from Cantata. You did not plan to use any of the programs in the

Retro toolbox, for instance, deleting the Retro entry from your Toolboxes file

would eliminate all references to programs in the Retro toolbox from within

Cantata. Note that the categories and subcategories used by the Glyph Menu

and the Accelerated Routines List can span toolboxes; the appearance of a

particular category does not necessarily imply that its contents will come from

Face-Recognition: Cross-Correlation

 84

only one toolbox (although this is often the case). For example, the Retro and

Image toolboxes both have operators in the "Image Proc" category and the

"Transforms" subcategory. Thus, if you deleted the retro entry from your

Toolboxes file, the "Image Proc" submenu button would still appear, since that

category would still be referenced by the Image toolbox. If there are no

toolboxes listed in your Toolboxes file which reference a particular category,

that category will disappear from both the Toolbox Menu and the Accelerated

Routines List.

2.3.4. Input/Output: Glyph Connections

2.3.4.1. Data Connections

Figure 9: To become part of a network, two glyphs are connected with a data connection. Here,
the data connection between the two glyphs causes the output of the "Images (Misc)" operator
to become the input of the "Display Image" operator.

Data connections are an integral part of the visual program, and are

required for the program's construction. Glyphs contain input and output data

connection nodes, represented by colored squares located on the left and right

sides of the glyph. To create a data connection between two glyphs, click with

the mouse on the output data connection node of one glyph, and then on the

input data connection node of another glyph (or vice versa). When a successful

data flow connection is made, a connection line (yellow by default) will be drawn

between the two glyphs. When two glyphs are connected with a data

connection, it is implied that the output of the first will become the input of the

second. As such, the data connection represents data flow in the visual

program. If a data connection square is yellow, then its corresponding

input/output parameter is a required argument for that operator. Data

connection nodes representing required arguments of operators must always be

connected to other glyphs with data connections. The "Check" item available on

Face-Recognition: Cross-Correlation

 85

the Workspace menu may be used to check a network for any missing

input/output data connections.

2.3.4.2. Control Connections

Figure 10: A control connection is made between two glyphs to prevent the second glyph from
executing until the first glyph has already done so.

A visual program requires data connections between glyphs in order to

form the network and to define where each process will obtain its data. In

contrast, control connections are not necessary as part of a fully operational

network. They do, however, allow you to constrain the operation of a visual

program and provide additional control over the order in which processes are

executed. Glyphs contain input and output control connection nodes,

represented by small, grey squares just above the input/output data connection

squares at either edge of the glyph. To create a control connection between two

glyphs, click with the mouse on the output control connection node of one glyph,

and then on the input control connection node of a second glyph. When a

successful control flow connection is made, a connection line (purple by default)

will be drawn between the two glyphs; the second glyph will now be controlled

by the first glyph. Control connections simply cause the second, or controlled

glyph, to "wait" on the execution of the operator represented by the first glyph.

Thus, control connections provide a simple way of specifying an order for

process execution when one is not already dictated by the data flow, as is

frequently the case in networks with a number of parallel paths. Note that

control connections can be created independently of data connections. In other

words, a glyph that does not feed data to a second glyph can still have a control

connection to that glyph.

Face-Recognition: Cross-Correlation

 86

Figure 11: Without control connections, there is no way to predict the order in which the
"Display Images" operators will be executed.

Figure 12: With the control connections in place, the second "Display Image" operator will not
be scheduled for execution until the first "Display Image" operator has displayed its image, and
the user has killed the image. In the same way, the third "Display Image" operator will be forced
to wait for the second to be displayed and destroyed before it can display its image.

2.3.4.3. Manipulating Connections

Once a data flow or control connection has been made between two

glyphs, it can be changed either by connecting that glyph to a different glyph or

by deleting the connection altogether. Clicking the left mouse button on the

connection between two glyphs will bring up a menu which you may use to

delete the connection, save the file associated with that connection (for data

flow connections only), or set connection options.

Face-Recognition: Cross-Correlation

 87

Figure 13: Clicking the left mouse button on a data flow or control connection between two
glyphs will display a menu with which you may delete the connection, save the file associated
with that connection (for data flow connections only), or set connection options.

2.3.4.4. Delete Connection

Choosing this selection from the menu will remove the connection.

2.3.4.5. Save Data to File

Offered as an option with data flow connections only, this item will bring

up a prompt where you can enter the filename in which to save a copy of the file

associated with that connection. Note that this option can only be used with

permanent data transport mechanisms, specifically shared memory, standard

UNIX files, or memory mapped files.

2.3.4.6. Operator Execution

Figure 14: A single operator can be executed by clicking on the run button of its glyph.
Alternatively, the entire visual program can be run by clicking on the "Run" button that appears
at the far left of the workspace command bar, or by selecting "Run" from the Workspace
submenu. Regardless of how the execution is initiated, both the "Run" button of the workspace
command bar and the run button of the currently executing glyph(s) will be switched to the "on"
position (the button on the glyph turns red) during execution.

Once a visual program has been constructed, there are two ways in which you

can execute the operators represented by the glyphs:

Face-Recognition: Cross-Correlation

 88

1. You can run the entire visual program at once, where order of operator

execution is determined by the data connections (and control

connections, if any) of the network.

2. You can execute individually one or more glyphs of the visual program

"manually".

3. Toolbox Programming

3.1. Introduction

You may interact with the Khoros software system on one or more of

several levels. Each level represents a different interaction or level of

programming. For example, an application user who simply wants to visualize a

2D data set will interact with the system at a different level than a toolbox

programmer who will actually implement an imaging application or a data

processing routine. Figure 1 below depicts the various programming or "user

interaction" levels available within the Khoros development environment.

Depending on the task at hand, the level at which you work with the Khoros

system will vary.

This chapter will provide the toolbox programmer with an introduction to

the software development tools available to facilitate the development of

programs and applications within Khoros. The Khoros software development

tools provide a complete environment which supports the iterative process of

developing, maintaining, delivering, and sharing software. These tools act as

the programmer's assistant by providing automation where possible, enforcing

consistency as necessary, and hiding underlying complexity of software

configuration, code generators, and documentation formatters.

Each program and library in the Khoros system is contained within a

toolbox. A toolbox is a collection of programs and libraries that are managed as

an entity. A toolbox imposes a predefined directory structure on its contents to

provide consistency and predictability to software configuration. Typically, a

toolbox contains programs and libraries that are characteristic of a given

application domain. For example, programs that perform image processing

operations might be contained within one toolbox, while programs that perform

signal processing operations are contained within another toolbox.

Face-Recognition: Cross-Correlation

 89

A toolbox object is an encapsulation of programs and libraries; similarly,

the programs and libraries themselves can also be considered as objects. A

software object consists of the files associated with a particular library or

program. There are several categories of software objects: program objects

(which are categorized as kroutines or xvroutines), library objects, pane objects,

and script objects.

The different types of software object are classified according to their

purpose, the types of files associated with them, and the types of operations

that can be performed on them. For example, a program object such as a

kroutine embodies a program that the user will execute to perform a task; it has

a user interface, source code, and documentation; operations that can be done

on the program object include code generation, user interface design, source

code modification, and so on. A library object, on the other hand, is simply a

collection of functions which are used by programs; it has source code and

documentation but there is no user interface involved; operations that can be

performed on the library object exclude code generation and user interface

design. The differences between the various types of software objects will be

explained later in this chapter.

The Khoros software development environment supports the

organization depicted above in a way that is designed to reduce the detail and

complexity inherent in a large-scale software system. This environment is

comprised primarily of two high-level tools, craftsman and composer, for

managing toolbox and software objects respectively. Craftsman is used to

create, delete, and copy toolbox objects and software objects; Composer

provides the toolbox programmer with convenient access to all of the software

object components and can invoke all of the operations needed to edit, and

manage existing software objects. These two tools work together to provide a

high level, visual environment in which toolboxes can be created and software

can be written, documented, and installed..

A toolbox object provides a convenient way of presenting Khoros users

with an encapsulated collection of information processing programs, interactive

applications, and/or libraries designed for a specific application area. The

toolbox object enforces a pre-defined directory structure in which its software

objects are located; it manages both itself and its software objects via an object-

Face-Recognition: Cross-Correlation

 90

based interface to a software database. It should be noted that some of the

directories below will not be created until they are needed.

A toolbox contains the following directories:

Bin

This directory is where all the executable programs from your toolbox are

located.

Data

Data files that can be used with the programs in the toolbox are stored in this

directory. Often, this directory may contain subdirectories indicating general

categories of data, such as "images," "sequences," "signals," and so on. See

the data directory in the sampledata toolbox for a good example of data

directory organization.

Examples

This directory contains unsupported example programs that can be distributed.

Example programs are generally used to demonstrate the proper use of public

library calls for a library contained in the toolbox. Note that these programs are

not formalized program objects created with composer, but simply manually-

created directories containing a main program (no code generation involved),

Imakefile (created with kgenimake), and Makefile (created with kgenmake).

They generally have no documentation other than comments inside the code.

For examples of the layout and implementation of example programs, see the

design toolbox.

Include

This directory stores the public include files associated with libraries in the

toolbox. The include directory contains one include file named "toolbox.h" for

the entire toolbox. It will also have one subdirectory for each library object in the

toolbox; the subdirectory is named for the respective library. Public include files

for the library objects are located Inside the subdirectory. See the design

toolbox for a model.

Lib

This directory contains the compiled archives and *.so's of any library objects

that may exist in the toolbox.

Face-Recognition: Cross-Correlation

 91

Manual

This directory contains the manual for the toolbox. It will contain one

subdirectory for each chapter in the manual, plus a README, an Imakefile, a

Makefile, and directories for the glossary, index, and hardcopy. For examples of

toolbox manuals, see the envision or the datamanip toolboxes. Do not use the

bootstrap, dataserv or design toolboxes as models as they have a specialized

configuration.

Objects

Software objects are located in this directory. There will be one "type" directory

(named after the type) for each type of software object that exists in the toolbox;

thus, there may be one or more of the kroutine, xvroutine, script, library or pane

directories. Under the "type" directories will be one subdirectory for each

software object of that type, named after the software object itself.

Repos

This directory is a repository for various files that need to be associated with

your toolbox. Configuration files and the toolbox object database file are located

here.

Testsuite

This directory is the location for any test suites that are created in order to test

the correctness of programs or libraries in the toolbox.

3.2. Creating a Software Object (Kroutine) on a Toolbox

You will be creating a software object on a toolbox, so this toolbox must

be selected in craftsman’s left list. The right list will show the objects already in

that toolbox (if any). To select the toolbox just click with the left mouse button on

its name, then craftsman will show the toolbox objects in the right list.

3.2.1. Creating the kroutine for the first program

To create a software object in a toolbox, after selecting the toolbox click

the craftsman's menu button "Object Operations" and select "Create Object".

The following window will appear:

Face-Recognition: Cross-Correlation

 92

Figure 15: Creating a new object in a toolbox

First you must select which kind of object you want to create, using one

of the five buttons (Kroutine, Xvroutine, Pane, Library, Script) on the top of the

window. For this tutorial, we will be creating only a kroutine, so the default is

OK. Please note that the options for the form changes depending on the object

you're creating.

Face-Recognition: Cross-Correlation

 93

Select the Kroutine button and fill the form with the following information:

• Object Name: enter a single-string name for the object

• Binary Name: enter a single-string name for the binary (executable)

object (hint: can be the same as the Object Name)

• Icon Name: enter a string for the glyph name for Cantata

• Author: your name

• Email Address: your e-mail

• Category: main menu for Cantata. Will appear when the "glyphs" button

is pressed.

• Subcategory: main submenu for Cantata. Will appear when the "glyphs"

button is pressed and the value entered in "Category" above is selected.

• Short Description of Object: enter a description of the object, will be

useful for man pages and the finder in Cantata

• Generated Language? If you selected "Alpha C++ support" when

compiling Khoros, it will allows you to select between C and C++,

otherwise only C will be available (at least in version 2.1). For the

examples in these pages, use always C.

• Install in Cantata? Select "Yes" so the object will be installed in

Cantata.

• Create Library Routine? Useful if you want your object functionality to

be callable from other objects. In other words, your kobject will be just an

interface to a library function, and this library function will be available for

other objects as well. If you select "Yes" craftsman will ask which library

you want to create/add this object into. For this tutorial, select "No".

Face-Recognition: Cross-Correlation

 94

Entering some values in the fields the window will look like:

Figure 16: Creating a new object in a toolbox (filled)

To create the object, click on the "Create KROUTINE" button. After some

seconds, the software object will be created and you can click the "Close"

button.

Face-Recognition: Cross-Correlation

 95

With this step the object is created, with an user interface and skeleton C

program. On the next step we will edit the object to add functionality to it.

3.2.2. Modifying the User Interface of the first program

The object created with craftsman can be compiled and executed - it just won't

do nothing. To add functionality to the object, you must change (if needed) its

user interface and add code to the skeleton code generated by craftsman and

ghostwriter .

To edit an software object you need to select it (left-click the mouse on it) and

select the option "Edit Object (Composer)" from the menu button "Object

Operations" in craftsman. It will call composer, which will looks like:

Figure 17: Composer editing the tutconvert kroutine

Face-Recognition: Cross-Correlation

 96

The left part shows a column of buttons that controls which kind of files will

appear on the file list on the middle. The buttons and corresponding file types

are:

• UIS: User Interface Specification files - files which are related to the

graphical user interfaces of the programs. For panes, scripts and

kroutines there will be a single file in this list (a pane file) for the user

interface specification. For xvroutines, there will be at least two files, one

for the user interface for parameter selection (pane) and other for the

user interaction (form). For more details about user interfaces, see the

User Interface section.

• Source: Source code for the software objects. Will depend on which kind

of object is being created/edited, usually will be a list of .c and .h files for

kroutines, libraries and xvroutines.

• Doc: The documentation for the software object. Will list man pages and

help files for the objects.

• Config: Will list the makefiles for the object plus a configuration file (cms)

with several keywords and information but the object that can be viewed

but not edited.

• Info: Will contain a changelog file for the object.

• Misc: Will contain miscellaneous files associated to the object.

• All: Will list all files in all categories.

A "File Operation" button on the bottom of the list will allow you to view or

edit these files (not all files can be edited or viewed). Depending on the object, it

will be edited/viewed with a text editor or with a special program.

3.2.3. Editing the first kroutine's user interface

The first thing we can do is change the user interface of the object, which

by default contains one input and one output object. For our sample kroutine,

let's suppose we need another input, to allow the user the selection of which

kind of data will be generated. For this, must change the default generated user

interface that is defined in the file tutconvert.pane.

Face-Recognition: Cross-Correlation

 97

To edit the user interface, it must be highlited in the file list (the button

"UIS" must be selected to show the list of user interface objects, click on the

name of the object you want to edit). If it is selected, just click the "File

Operations" button an select "Guise" to visually modify the user interface of the

object. That should call guise , the Graphical User Interface Speficication Editor,

and bring two different windows:

Figure 18: Guise Controls

Face-Recognition: Cross-Correlation

 98

Figure 19: Initial pane for the tutconvert kroutine

As mentioned before, when the kroutine was created automatically, the

user interface was also created automatically with only one input and output

object. Of course, depending on the functionality of the program, there can be

several (or none) input and output objects and other parameters that can be set

from the pane. It is possible to add integers, flags, doubles, strings, toggles,

lists, multiple choice items, input and output files, etc. objects to the user

interface.

In our case, let's consider another parameter, which will control the data

type of the KDF output object, which can be either integer or double. For this,

we can either add a toggle or list variable. Let's choose a toggle - click on the

"Toggle Variables" button on the Guise Controls window and select "Flag". A

pop-up window will appear and ask how many options you want on the flag -

enter 2 instead of the default 3 and click "OK". A Flag Toggle variable will

appear on the pane of the object:

Face-Recognition: Cross-Correlation

 99

Figure 20: Pane for the tutconvert kroutine after adding a flag toggle variable

Note that the Flag Toggle object is marked on the pane - meaning that it can be

moved, changed, etc. To mark another field in the pane just click with the left

mouse on it. To edit a field click with the middle button on it. Clicking with the

middle button on the Flag Toggle field will bring the window:

Face-Recognition: Cross-Correlation

 100

Figure 21: Toggle Selection Menuform

In this window we can change several of the parameters of the flag

toggle field. For example, we will change the title of the field (Title), the variable

that will be generated in the source code for that field's value (Variable), the

description (Desc) and the toggle values (which appears as default as Choice 1

and Choice 2) (Set Values). Clicking the "Set Values" button will allow us to

change the values, bringing the window:

Face-Recognition: Cross-Correlation

 101

Figure 22: Set values window – default

On which we will enter the desired values:

Figure 23: Set values window - filled with our choices

Face-Recognition: Cross-Correlation

 102

Clicking the button OK will bring another window with the strings that will be

used for the toggle values, fill this window too:

Figure 24: Set values window - filled with descriptions of our choices

Clicking the button OK will return us to the flag toggle field parameters editor, on

which we can enter/modify the other parameters:

• Title: the title that will appear on the user interface

• Variable: the name of the variable that will be used for code generation

• Desc: the description of what is the variable

All these fields are important either for the user interface or for code generation,

I suggest you fill all of them so your generated user interface and code will be

easy to understand.

Face-Recognition: Cross-Correlation

 103

After filling the fields above the window should looks like:

Figure 25: Toggle Selection Menuform filled with our choices

Click the Close button and the pane will be updated with the new information for

the flag toggle object. After marking and dragging the fields so one will not

overlap the others (or for aesthetic reasons), our pane should look like:

Face-Recognition: Cross-Correlation

 104

Figure 26: Pane for the tutconvert kroutine after edition

Note that you could also change the titles, variable names and descriptions of

the variables associated with the input and output files, but this will not be

necessary for our example.

If all modifications are done, we can close guise now - click on the "Save

(Needed)" button on guise and after confirmation, click on the "Close" button on

the guise panel - not on the software pane we were editing. We should be back

on the composer window.

At this point, the code generated when the object was created is not

synchronized with the modifications we made on the pane (user interface). To

synchronize them, you must click the "Commands" button which will bring the

window:

Face-Recognition: Cross-Correlation

 105

Figure 27: Composer commands

And then click on the button "Generate Code". It will regenerate all related code

so the object will be synchronized - messages will be displayed in the

Commands window. The next steps will cover examining and modifying the

source code of the object to add functionality.

3.2.4. Examining the code of the first program

Composer / ghostwriter automatically generate the code for our kroutine.

To see which files are generated, click on the "Source" button of composer's

panel - three files will appear on the file list, as the image shows:

Face-Recognition: Cross-Correlation

 106

Figure 28: Source codes in Composer

The automatically generated files are:

• convert.c - the main program

• usage.c - routines for getting the command line or use interface

parameters

• convert.h - header file

We will need to modify the main C program only, or possibly add some

minor stuff on the header file. Before modifying any program, let's see the

concept of tag - tags are predetermined strings on the code that are recognized

by some programs to be of special significance. In this case, some tags allows

the user to modify parts of the code that will not be touched case composer

(actually ghostwriter, the code writer) need to rewrite the code. It means that

you must write your code between the ghostwriter tags or it will be lost when

the code is regenerated. It also means that almost all the code you will have to

Face-Recognition: Cross-Correlation

 107

write is located between the tags and that everything outside the tags was

written by ghostwriter and should be left as is.

3.3. Short Introduction to the Polymorphic Data Model

This page is just a short introduction to the Polymorphic Data Model

(PDM). The PDM can represent data in up to 5 dimensions, where three are

spatial (width, height and depth), one is temporal (time) and each point of data

can be considered as a vector of elements. This is shown in the figure below,

where W=width, H=height, D=depth, T=time and E=elements:

Figure 29: 5 dimensions of the Polymorphic Data Model

The data is represented in segments in the PDM: the value segment

represents the data itself, the mask segment corresponds in dimensions to the

value segment and serve to identify which points in the value segment are valid

or not. The map segment serves to associate vectors of data to indexes, so a

value in the value segment will be an index in the map table. The location

segment explicitly locates a vector in space while the time segment explicitly

Face-Recognition: Cross-Correlation

 108

locates a volume in time. Not all segments has the same dimensions due to the

information they are meant to represent:

• The value segment uses the 5 data dimensions of the PDM.

• The mask segment also uses the 5 data dimensions of the PDM since

every point in the value segment can be masked as valid (1) or non-valid

(0).

• The map segment will have independent dimensions of the value

segment. The map segment can be considered as a table which entries

(rows) can have several elements (columns). When using a map

segment, each value in the value segment will point to a row in the map

segment.

• The location segment will use the width, height and depth dimensions to

explicitly locate a point in the value segment in space.

• The time segment will be a single vector with the same time dimension

as the value segment, to explicitly locate a time volume in time.

Face-Recognition: Cross-Correlation

 109

Bibliography

“A wavelet-based Framework for Face Recognition” Christophe Garcia,
Giorgos Zikos, Giorgos Tziritas.

“Face Recognition using the Discrete Cosine Transform” Ziad M.Hafed,
Martin D. Levine.

“Face Recognition: A comparison of Appearance-Based Approaches”
Thomas Heseltine, Nick Pears, Jim Austin, Zezhi Chen.

“Evaluation of Image pre-processing techniques for eigenface based face
recognition” Thomas Heseltine, Nick Pears, Jim Austin.

“An efficient LDA Algorithm for Face Recognition” Jie Yang, Hua Yu,
William Kunz.

“Face Image Resolution versus Face recognition performance based on
two global methods” Jingdong Wang, Changshui Zhang, Heng-Yeum
Shum.

“Thesis: Elastic Bunch Graph Matching” David S. Bolme.

“Three Approaches for Face recognition” V.V. Starovoitov, D.I. Samel,
D.V. Briliuk.

“Information Access using Speech, Speaker and Face Recognition” M.
Viswanathan, H.S.M. Beigi.

“Look who’s talking: Speaker Detection using Video and Audio
correlation” Ross Cutler, Larry Davis.

“Towards robust Face Recognition from Video” Jeffery R. Price, Timothy
F. Gee.

