
.- Chapter 2: SIMULATION INSTRUMENTS : OPNET Modeler

2.1.- About OPNET Modeler

OPNET Modeler was first demonstrated at MIT in 1987. It was designed for
predictive network management software, which can boost R&D productivity, improve
product quality and reduce time to marker. OPNET Modeler contains many models of
existing hardware and allows also quick deployment of test's environment, networks
and protocols. OPNET features include graphical specification of models; a dynamic,
event scheduled simulation kernel; integrated data analysis tools and hierarchical object
based modeling. The three primary editors included in the OPNET Modeler package
and used to construct the simulation scenario are the Network Editor, the Node Editor
and the Process Editor. Many other editors are available to guide the simulation steps
(i.e. Probe Editor, Simulation Editor, Analysis Editor, etc.)
 OPNET Modeler is classified as an “Event Driven” simulator, in which the
execution of each process is activated by a specified event. Each modeled component in
OPNET is specified using at least one FSM (Finite State Machine), formed by states
and transitions. The programmer can associate C or C++ code at the beginning or at the
end of the state and also at the transitions between states. In this mode, the clarity of the
diagrams and the power of the language are joint, making OPNET a powerful tool.

2.2 Network Editor
The Network Editor graphically represents the topology of a communications

network. Networks consist of node and link objects, configurable via dialog boxes. In
the Network Editor we can drag and drop nodes and links from the editor's object
palettes to build the network, or use import and rapid object deployment features. We
can also use objects from OPNET's extensive Model Library, or customize palettes to
contain your own node and link models. The Network Editor can provide geographical
context, with physical characteristics reflected appropriately in simulation of both
wireline and mobile/wireless networks.

This is a graphical example:

 Figure 2.1: Graphical example of Network Editor

Nodes are selected from a palette and placed within the network to represent
each of the communicating entities. Each node has a set of attributes, accessible via its
dialog box. Reasonable default settings are already in place. For example, a router's

attributes may include its routing protocol, packet forwarding rates, interface addresses,
buffer sizes, and routing table information.

Links are used to represent communication facilities between nodes. Link
models can account for effects such as delays, transmission errors, and collisions. All
versions of OPNET support point-to-point and bus links. OPNET Modeler/Radio adds
mobile and satellite nodes and allows communication via radio channels. OPNET link
models are highly customisable, if necessary.

SubNetworks are container objects that provide hierarchy to break down
complexity in the network model. Within each subnetwork, you can deploy an
arbitrarily complex collection of nodes, links, and other subnetworks as needed.
Subnetworks can be nested to any depth.

Every object in the simulated scenario (Node or Process, see below) has model

attributes useful to set its configuration. For example, considering the process model of
the TCP protocol, an attribute can be set to choose the maximum congestion window
size. Model attributes are called “parameters-mask”.

2.3.Node Editor
The Node Editor captures the architecture of a network device or system by

depicting the flow of data between functional elements, called "modules". Each module
can generate, send, and receive packets from other modules to perform its function
within the node. Modules typically represent applications, protocol layers, and physical
resources, such as buffers, ports, and buses. Modules are assigned process models
(developed in the Process Editor) to achieve any required behaviour.

2.4.Process Editor
The Process Editor uses a powerful finite state machine (FSM) approach to

support specification, at any level of detail, protocols, resources, applications,
algorithms, and queuing policies.

“No forced States”, transitions and “Forced States” can be represented in the
Process Editor. “Forced States” are not just a State for the process because remaining on
them is not permitted. This type of state is useful for the separation of control flow
actions or decisions. That means a higher modularity and a clearer definition of the
process evolution.

States and transitions graphically define the progression of a process in response
to events. Each state of a process model contains arbitrary C/C++ code, supported by an
extensive library of functions designed for protocol programming. Each FSM can define
private state variables and can make calls to code in user-provided libraries. FSM's are
dynamic and can be spawned (by other FSM's) during simulation in response to specific
events. Dynamic FSM's dramatically simplify specification of protocols that manage a
scalable number of resources or sessions, such as TCP or ATM. We can use the Process
Editor to develop entirely new process models, or use the models in OPNET's Model
Library as a starting point.
 The transitions between the different states are produced by established
conditions and are according to the events that are sensible to.

2.5.Analyse results
The OPNET Analysis Engine provides a graphical environment that allows users

to view and manipulate data collected during simulation runs. Standard and user-
specified probes can be inserted at any point in the model to collect statistics.

Simulation output collected by probes can be displayed graphically, viewed
numerically, or exported to other software packages. First and second order statistics
on each trace as well as confidence intervals can be automatically calculated. OPNET
supports the display of data traces as time-series plots, histograms, probability density
and cumulative distribution functions, and scatter graphs. Graphs (as with models at any
level in the OPNET modelling hierarchy) may be output to a printer or saved as bitmap
files to be included in reports or proposals.

	2.2 Network Editor
	2.3.Node Editor
	2.4.Process Editor
	2.5.Analyse results

