
.- Chapter 4: STATE OF THE ART

4.1.- Functional Blocks
The next figure 4.1. shows the Functional Blocks (FB) developed into OPNET
simulation software. Each FB is related to a specific block of the Phoenix basic chain:

1) The Source Terminal is the source of the video bit-stream encoded and
eventually ciphered and protected by UEP. Moreover, it implements the JSCC
application layer controller.

2) The IP Network FB simulates the effect in terms of delay and loss on IP packets
by an IP cloud (the Internet). Also, this FB allows to simulate the effect of a
bottleneck in the wired part on the packet flow. Depending on the simulation
scenario, an IP cloud can be both at the sender side (from Source Terminal to the
radio transmitter) and at the receiver side (from the radio receiver to the destination
terminal).

3) The TX Radio and the RX Radio FBs represent the wireless transmitter and the
wireless receiver respectively. From the Opnet point of view, these FBs have been
modeled with the same FSM (considering the upstream packet flow a TX Radio is
also a wireless receiver while a RX radio is also a wireless transmitter). TX/RX
node is able to simulate both a WiFi interface and an UMTS interface. The FSM
will be a wireless receiver in case of an incoming packet the wireless interface
while it will be a wireless transmitter in case of an incoming packet from a wired
interface (to be forwarded to the wireless interface). They implement the physical
wireless functionality (both WiFi and UMTS technology) and the JSCC physical
layer controller.
4) The Receiver Terminal is the destination of the video flow and implements the
JSCC application layer controller.

Figure 4.1 : Functional Blocks

In the following paragraphs we will explain in detail how these nodes have been
modeled into OPNET simulator. A description of the state machine, the parameters-
mask and the collected simulation statistics will be given for every node. Some
parameters-mask can be not strictly related to a specific FB node but can be general for
all the systems. These parameters can be defined in a custom utility node named

CONFIG F.B.(Figure 4.2) It is a simple configuration node that allows sharing general
parameters between FBs.

Figure 4.2 : CONFIG FB

4.2.-Config F.B.

The CONFIG FB is a repository for all the general parameters that need to be
shared with all FBs.

4.2.1 Node Model
The node model of the configuration FB (Figure 4.3) is very simple and it is

composed by a single process called CONFIG_PROC.

Figure 4.3 : CONFIG Node Model

4.2.2 Parameters
Table 4.1 contains the list of the parameters that can be configured into the

CONFIG_PROC model.
Control/signaling information can be transported in several ways: by a well-

know protocol (e.g. ICMP v6, RTP/RTCP), by an ad-hoc protocol, as well as
encapsulated in IP packets (e.g. data payload and extension header). The first and the
second ways are referred as out-of-band signaling while the last way as in-band
signaling. In case of control/signaling information generated by the video source node,
the control/signaling encapsulation could be carry out inside the related video data
packet or inside the previous one in order to provide to the concerned nodes the
control/signaling information in advance. Moreover, In the case of a well-know or an
ad-hoc protocol, the whole control/signaling information related to a video packet could
be carry out by a single control/signaling packet or by multiple packets (e.g. a packet for
each SSI). The config FB defines also the format of control/signaling information in
terms of bit-size and in terms of frequency (e.g. send signaling every packet or every
defined timeout). Table 4.1. contains the default value of size and frequency.

In the following simulations we have used the schemes that have been selected
from the previous simulations because it gives us the best performance. They are the
following:

SSI e SRI: These two signals have a very similar nature, so we have considered
them together. Both signals must be sent synchronized with the video frame at which
they refer to. So it is clear that they must to be encapsulated in the same frame that

contains the multimedia flow. Since SSI and SRI is used in different points of the
Network (particularly in the Channel Coder/Decoder and in the Destination Node), the
more suitable Header Extension is the hop-by-hop extension. The added overhead is
related to video code (average rate), in the sense of each packet is sent with this
information.

CSI: This information is sent periodically by a programmed timer. There are
not especial requirements about synchronization so the possible mechanisms are
ICMPv6 and IP ad-hoc. There is not a flow to encapsulate this information because it is
a feedback information, so we have decided to use ICMPv6 that offers a good result
with a reduced overhead

NSI: This information is periodically created as well, therefore ICMPv6 packets
are a good mechanism. If time requirements are high, we can use RTP/RTCP streams,
which can assure QoS inside the IP Network. But thinking about the overhead, is better
ICMPv6.

SAI: This type of information is created in video Decoder at Destination Node
and analyzed at Radio Channel Receiver. Despite it travels in opposite direction from
video flow, is close related to received and decoded frames. This information has the
same frequency and dimensions as received video, so it is thought to generate a new IP
flow from the Destination Node to the Radio Receiver. It can be used an ICMPv6 flow
too, or encapsulate the information with IP hop-by-hop extension if an opposite data
flow existed, but it would be problems with MTU dimensions.

DRI: DRI information is related to “fuzzy” decoding or “soft” type, and
contains information about the certain value given by the Channel Decoder to a
particular bit. This information is the completion or the substitution of the bit value. The
flow must be matched to the transmitting video frame. Since the encapsulation is not
possible due to the dimensions of this information, it has been thought the possibility of
insert an ICMPv6 flow, in which insert also the Timestamp or the frame index of the
information that is referring to. We must control the impact on the efficiency between
Radio Receiver and Video Decoder that it can cause because of its dimension. If
Receiver and Destination agree, the problems will be minor.

Table 4.1 : Parameters mask of the CONFIG node

Parameter Name Description Default Values
Control/signaling Scheme Define how the signaling

will be sent out for each
control/signaling
information:

- Standard Protocol
(e.g. ICMPv6)

- Ad-hoc protocol
(e.g. RTP/RTCP)

- IP packet (payload)
IP extension headers

- hop-by-hop

SSI:
-scheme:IPv6 header encap
hop-by-hop
-clustering:0
-pre-encapsulation: current
data packet
-code_len(bits): 3
-size_len(bits): 13
SRI:
-scheme: IPv6 header encap
hop-by-hop

Destination -clustering: 0
-pre-encapsulation: current
data packet
-size_len: 16
SAI(priori):
-scheme:promoted
-clustering: promoted
-pre-encapsulation: current
data packet
-size: 4
CSI:
-scheme:stdICMPv6
-clustering: single packet
-pre-encapsulation: current
data packet
-size: 64
-timer: 1 (sec)
DRI:
-scheme:std ICMPv6
-clustering: promoted
-pre-encapsulation: current
data packet
-size: 4
-dri_ovrhead: 4
NSI:
-scheme: stdICMPv6
-clustering: single packet
-pre-encapsulation: current
data packet
-size:256
-timer:1 sec

Clustering of
control/signaling packets

Define if the
control/signaling
information related to a
video packet will be sent
by a single packet or by
multiple packets. No valid
if the control/signaling
information is
encapsulated into video
packet.

Single packet
Multiple packets

Control/signaling pre-
encapsulation

Enable to send the
control/signaling
information related to the
n-nth packet inside the (n-
1)-nth packet. . Only valid
if the control/signaling
information is
encapsulated into video
packet.

No

Control/signaling information
size for each type

Size in bytes of each
control/signaling
information type

SSI: size 16 bit (3 code, 13
size) frequency (every
video packet)
CSI: size 4byte,frequency
200msec

code_rate A list of compound
attributes, where each
compound attribute has
two fields (code and rate),
one defining the
compression identifying
code and the other the
channel code rate.

4/5

header_compress_rates A list of compound
attributes, where each
compound attribute has
two fields (code and rate),
one defining the
compression identifying
code and the other the
header compression rate.

NO

umts_mac_header_size Size in bytes of UMTS
MAC frame header

40

header_compression_activate Defines if the IPv6 header
compression is activated at
the RX/TX level

NO

Scenario
configurator.node_desc

A description of JSCC
messages timeout (in terms
of packets or seconds) and
node type for all nodes
present in the scenario.
Each row represents a
node in the scenario. At
each row node type values
are coded as follows:

• 0= JSCC source
node

• 1= JSCC
destination node

• 2= non JSCC
source node

• 3= non JSCC
destination node

• 4=RX node
• 5=TX node

0

Scenario
configurator.SSI/channel
coding

Associate at each SSI
value a coding rate.
At present we have only
two coding rate values

4/5

used in the simulation of
the wireless interface are :
1/3 and 4/5

Use App Controller Indicates if the Application
Controller is Enabled or
Disabled

Enabled

App Cntr GOV Assigns an initial GOV
value. This parameter is
used to get the correct
input file

15

App cntr state Differs between the 7
possible states of the
Application Controller. It
is used to get the correct
input file too.

2

Appl cntr cycle It is the period of time in
which are applied all
parameters calculated by
the Application Controller
at the beginning of it.

1000 (msec)

4.2.3 Statistics

No statistics will be captured on this node.

 4.2.4 Finite State Machine
Also the FSM of the configuration node is very simple. It consists in a single

INIT state as depicted in Figure 4.4. Simulation enters in the INIT state only one time,
at simulation start.

Figure 4.4 : CONFIG FB FSM

The state performs the following tasks:
• INIT: load into the related global variables the values defined by the parameters

mask.

4.3 Simple Source F.B.

From the point of view of data traffic this FB is responsible to generate data
packets sent on the network. Two source models have been developed in the OPNET
simulator: a simple source and a JSCC compliant source.

The simple source realizes a traditional video source with the only feature to
import a video trace file and generate the related flow. The simple source doesn’t
receive any upstream traffic.

The JSCC compliant source generates a data stream according to the information
extracted from the above described Video Stream Input File. This process generates the
video flow and also the JSCC signaling, especially the SSI and SRI information.
Moreover, the JSCC source has to be able to receive and process the incoming JSCC
signaling. In the following, a detailed description of the two source model is given.

4.3.1 Node Model
Figure 4.5. shows the node model of the Source Terminal node. It is composed

by a Source Coder process linked to an OPNET standard transmitter process (source_tx)
and to a standard receiver process (source_rx).

Figure 4.5 : Simple Source Terminal Node Model

4.3.2 Parameter mask
Every node in the network (not the CONFIG node) needs to be univocally

identified in order to send and receive correctly both data and control packets. A
parameter mask defines the node identifier (ID) parameter that simulates the IP address
of a real network. When a node generates an IP packet, it stores its ID into the IP packet
header (IP source address) and the ID of the destination node into the IP destination
address. Intermediate nodes (like router in the IP cloud or wireless transmitter
connected to multiple receivers) can therefore route packets basing on their routing
table. The simple source can be configured to import any available video trace file
formatted with a packet defined for every line. Any entry in the video trace file must
include the timestamp and packet size information. A parameter mask allows the user to
set the video trace file name that need to be imported by the simple source.

The destination node of the video flow is a simple destination model. The source
selects its destination by a parameter mask indicating the destination ID of the target
node.

The source defines also its allocation on the wireless channel. For Wi-Fi it uses a
QoS level (as type of service) while for UMTS the source chooses the CDMA code rate
defined in kbps.
Table 4.2 summarizes the parameters mask.

Table 4.2 : Parameters mask of the Simple Source node

Parameter Name Description Default
IP source int ID of this node
Video Trace file Name of the video trace

file to be imported

IP destination int ID of the destination
node

Wireless Service
Option

Define the QoS required
by this source on a
wireless link: in case of
Wi-Fi this means a QoS
level in a shared
channel while in case of
UMTS this means to set
a WCDMA coding rate
on the channel to this
source

Wi-Fi: 0 = best
effort
UMTS: 64kbps

N.B. This node has not been used in the simulations, because of this, the parameter
masks have not been allocated.

4.3.3 Statistics
Statistics on this node are related to the video data flow generated at IP and

application layer.
Table 4.3 : Simple Source Statistics

Statistic Name Description
IPv6 Packet Sent (pck/sec) Rate of the IPv6 packet sent
IPv6 Traffic Sent (byte/sec) Throughput of the IPv6 packet sent
Application Packet Sent (pck/sec) Rate of the application packet sent
Application Traffic sent (byte/sec) Throughput of the application data

sent

4.3.4 Finite State Machine
The FSM of the Simple source is composed by two states: an INIT state processed

only at simulation start and an IDLE state processed every time an event happen on this
FSM.

• INIT: initialization of the Simple Source process:
o Loading parameter mask values into state variable
o Loading video trace file into a memory structure suitable for the

processing
o Initialization of the statistics
o Scheduling of the first event that will happen on this FSM (the fist packet

that will be sent according to the first timestamp)
• IDLE: this state is the core of the Simple Source. When a packet needs to be

sent out according to the timestamp of the loaded video trace file, the FSM
creates an IPv6 packet encapsulating a video data packet with the indicated size.

In the IPv6 header, the IPv6 destination and source address are then updated in
function to the source and destination node ID

Figure 4.6 : Simple Source FSM

4.4 .- JSCC/D Source F.B.

 This node includes the joint code system and the Application Controller. In the
following paragraphs we will explain in more details this complex node.

4.4.1.- Node Model

Figure 4.7. shows the node model of the JSCC/D Source terminal node. Like
previous Simple Source, it is composed by a Source Coder process linked to a standard
transmitter process (TX) and to a standard receiver process (RX).

Figure 4.7 : JSCC/D Node Model

4.4.2 Parameter mask
We have a set of Video Stream Input File related to different codec and rate. We

need therefore a mask parameter to select the Video file at simulation start. A possible
way to implement this could be to have a structure that ties the codec/rate specification
with the Video Stream Input File. The structure has been realized in order to have the
possibility to set a lot of video parameter: video codec (MPEG4, H264...), video size
(QCIF and CIF), frame rate (fps) and codec rate (kbps).
The video file could change during the simulation due to the received control/signaling
information like for example an incoming CSI informing of a change in the channel
condition. The JSCC Source needs therefore a list of all available video file classified
yet in terms of the above video parameters.

The file contains timestamp information used to generate the packets. It could be
useful to set the source to begin the packet delivery after a predefined interval time. A
parameter mask has been introduced to set the start-time. The start-time will be the
simulation time correspondent to the dispatching of the first video packet. If start-time
is set to 0 then the start time of the packet will be exactly that specified for the first
packet of the video input trace file.

In the JSCC/D chain, the source is responsible also to cipher the source data. For
the simulation scope, the ciphering can be expressed in terms of overhead percentage
added to the packet according to realistic value of existing ciphering algorithm. If the
source ciphering is applied at application layer, it could affect only a part of the data
(for example according to the SSI values). Hence, it is useful a parameter that indicates
the level of ciphering: it has been defined as an integer value indicating the last size
field that will be ciphered (e.g.: a value of N means that size1….sizeN will be ciphered
and sizeN+1….. will not be ciphered).

Similar to the ciphering case, a UEP overhead can be specified according to
realistic value of existing UEP algorithm.

Since the video streaming could be unicast or multicast, a parameter indicating
the list of destination node allows to set also more than one destinations.

Finally, similar to the Simple Source process, the JSCC source defines its
allocation on the wireless channel. For Wi-Fi it uses a QoS level (as type of service)
while for UMTS the source chooses the CDMA code rate defined in kbps.

Table 4.1. shows all the parameters mask of the JSCC/D source.

Table 4.4 : Parameters mask of the JSCC Source Terminal FB

Parameter Name Description Default Value
IP source int ID of this node 1
Codec name The name of the source video

codec
MPEG4

Video size Size of the source video CIF
Frame rate Rate of the frame sent in fps 30
Codec rate Rate of the source video in

kbps
370

Codec Choice Threshold Mapping between the channel
state (CSI) and the codec to be
used

Start-time The time the first video packet
will be sent

0

Ciphering overhead Added overhead percentage to
realize the ciphering

20%

Level of ciphering Indicate the size field that are
ciphered

Significance 4

UEP overhead for
significance

Added overhead percentage
due to the UEP for each SSI
field

UEP mode Off

Destination(s) Receiver or list of receivers of
the video stream

192.168.20.1

Wireless Service Option Define the QoS required by this
source on a wireless link: in
case of Wi-Fi this means a QoS

Wi-Fi: 0 = best effort
UMTS: 64kbps

level in a shared channel while
in case of UMTS this means to
set a WCDMA coding rate on
the channel to this source

BER Threshold Maximum value for BER (Bit
Error Rate)

0.3

PLR Threshold Maximum value for PLR
(Packet Loss Ratio)

0.05

MTU Maximum Size of the Transfer
Unit, in bytes.

1500

4.4.3 Statistics
The JSCC source collects throughputs at IP layer and at application layer related

to the video traffic flow sent on the network and control/signaling traffic sent and
received (signaling overhead). Table 4.5. shows all the simulation statistics collected by
this process.

Table 4.5 : JSCC/D Source Statistics

Statistic Name Description
Application Current File Index Level of codification for the

Application Controller. Possible
values from 1(minimum)to 6
(maximum)

Application ciphering overhead Overhead added because of the
ciphering

Application UEP overhead Overhead added because of UEP
CSI BER value BER value received in CSI packets

along the time
CSI packet received (pck/sec) Rate of the CSI packet received
Payload size before uep/ciphering Size of the payload before applying

uep/ciphering
Payload size after uep/ciphering Size of the payload after applying

uep/ciphering
IPv6 Traffic Sent (byte/sec) Throughput sent at IPv6 layer
IPv6 Packet Sent (pck/sec) Rate of the IPv6 packet sent
IPv6 Packet Received (pck/sec) Rate of the IPv6 packet received
IPv6 Traffic Receive (byte/sec) Throughput received at IPv6 layer
Application Packet Sent (pck/sec) Rate of the Application packet sent
Application Traffic Sent (byte/sec) Throughput sent at application layer
Total Control/Signaling Traffic Received
(byte/sec)

Total Throughput of control/signaling
information received

Total Control/Signaling Packet Received
(pck/sec)

Total packet rate of control/signaling
information received

Total Control/Signaling Traffic Sent
(byte/sec)

Total Throughput of control/signaling
information sent

Total Control/Signaling Packet Sent
(pck/sec)

Total packet rate of control/signaling
information received

SSI/SRI Traffic Sent (byte/sec) SSI/SRI Throughput sent

CSI/NSI Traffic Received (byte/sec) CSI/NSI Throughput received
Control/signaling information overhead Relative overhead of the

control/signaling information with
respect to the sent data (counting the
generated control/signaling only, or
also the received one)

PSNR estimated Value of PSNR calculated in
Application Controller Algorithm,
based on PER, CSI, BER

PLR received Estimation of PLR based on NSI
packets received

4.4.4 Finite State Machine
Figure 4.8. shows the JSCC/D Source Terminal node FSM. The FSM has mainly

two procedural flows: the first one related to an outgoing packet and the second one
related to an incoming packet (control/signaling feedback). When a video packet needs
to be sent, the FSM creates the IPv6 packet with the encapsulated video information.
The source sends also (if any) the JSCC/D control/signaling information according to
the configured scheme. On the other side, when the source gets an incoming
control/signaling packet from the network, it manages the packet according to the
current JSCC/D application layer controller policies.

Figure 4.8 : FSM of the JSCC/D Source

In the following bullets, an exhaustive description of the task performed by each

state is given.

• INIT: the init state initializes all the data structure that will be used during the
simulation into the FSM. Especially the following actions been carry out:

o Load the data from the parameter mask into internal static variables
o Initialize the simulation statistics
o Open the related Video Streaming Input file according to the value set in

the parameter mask
o Generate the first event (a self event).The first event of the Source

Terminal will be to send the first Video Packet according to the Video

Stream Input File (timestamp, field and related size). The start time
parameter mask, if not zero, can delay this event.

• IDLE: in the idle state the source does nothing. It waits for an event and when
event happen, it moves to the next state. The next state depends on the event
type. If the event is an incoming packet the FSM moves to the RECEIVE state
while if the event is a transmission of a video packet the FSM moves to the
CREATE_PAYLOAD state.

• CREATE_PAYLOAD: this state is triggered every time the source terminal
has to send a data packet (when the simulation time is equal to the next packet
timestamp) or when a signaling packet must be sent. According to the size of the
packet, a payload packet is generated. The state moves then to the CIPHER
state.

• CIPHER: the cipher state applies the ciphering to the just created payload
packet according to the value stored the parameter mask. After the ciphering, a
ciphered packet is generated with a size evaluated according to the different
significance in the packet and the ciphering overhead in the parameter mask.
The state moves then to the UEP state.

• UEP: this state simulates the behaviour of the UEP mechanism. According to
the significance of the current packet and to the value stored in the UEP
parameter mask, a packet is generated with the evaluated size.

• IPv6: the payload packet has been created, eventually ciphered and protected by
UEP. Now it can be encapsulated into an IPv6 packet. The IPv6 state creates an
IPv6 packet according to the IPv6 protocol specification and encapsulates the
payload packet. If some JSCC/D control/signaling information is related to the
current video packet, the state moves to the OUT_OF_BAND state else it moves
to the SEND_DATA state.

• OUT_OF_BAND: this state checks the parameter mask of the CONFIG node to
know if the control/signaling information that need to be carried (related to the
current packet) uses an out-of-band mechanism (like sent in an ICMPv6 packet
or as payload in a new IPv6 packet). If this is the case, then the new packet is
created. The state moves then to the ENCAP state.

• ENCAP: similar to the previous state but in this case the state check if the
control/signaling information need to be carried by an in-band mechanism (like
IPv6 hop-by-hop and destination option header). The state moves then to the
SEND_DATA state

• SEND_DATA: this state can be triggered both in the case that a
control/signaling information has to be carried related to the current video
packet and in the case that only the video data packet needs to be sent out. A
check on which packets are present at the moment allow to send out all the
information. The state moves then to the IDLE state.

• CNTRL_ALGORITM: This state does the Application Controller Algorithm.
If Application Controller is activated, then this will be executed each control
cycle (secs). For more information see the paragraph before [3.6]

• RECEIVE: the FSM moves in this state in case of an incoming packet. The
JSCC/D source can receive control/signaling information, mainly the CSI (or
reduced CSI) and the NSI. After the reception of the packet, the state checks the
destination IP address to report eventually some problem on the delivery of the
packet. Then it checks if the packet contains control/signaling information. If
this is the case, the state moves to the CNTRL state.

• CNTRL: this state checks the type of the control/signaling information (CSI or
NSI) then extracts the information according to the used mechanism (in-band or
out-of-band). The CNTRL state implements also the JSCC/D application
Controller functionalities. Basing on the received control/signaling information
and the value of some parameters mask (like the codec choice threshold), it can
for example change the source video codec or the codec rate. For the simulation
this means to load the video source data from a different input file. The states
moves then to the IDLE state

4.5.- IP Network F.B.

The IPv6 network is analytically modeled by a configurable number of N router,
each one introducing a variable delay and a loss probability; reasonably, no bit errors
or re-ordering occur. For the latest thanks to the minimum allocated resources. In
further steps, such an assumption can be relaxed taking into account of possible network
failure that imply routing table re-calculation; in this case a further index in the output
file should be inserted to uniquely identify a single packet and hence its position in the
initially generated sequence. The network receives a data (with possibly control
information inside) or a signaling packet from one side and transmits the same entity on
the other side, introducing delay and loss; possible replications of the packets can
happen in case of multicasting. Congestion on the wired network needs to be simulated:
a bottleneck can be represented by two IP clouds concatenated by a link. A FIFO queue
manages the transmission on the bottleneck link.

4.5.1 Node Model
Figure 4.9. shows the node model of the IP Network node. It is composed by an

IP Network process that elaborates the packets traversing this node. Multiple transmitter
and receiver couples represent multiple interfaces.

Figure 4.9 : IP Network Node Model

4.5.2 Parameters Mask
The number of the router, the delay and the loss that each one introduces are the

main parameters that the user can define on the IP Network Node. The probability loss
has been defined in terms of average packet loss on each router while the delay in terms

of average following a defined distribution. The one-way Internet delay is modeled
using a shifted gamma distribution with scale parameter α=1. The lower the average
delay and loss, the higher the QoS on the network. To consider QoS on the wired
network, two default settings are available_ without QoS and with QoS. If an incoming
packet carries control/signaling information inside the ipv6 hop-by-hop option header, a
further delay due to the processing on each router has to be evaluated.

One parameter indicates if packets traversing the IP Network need tunnelling or
not (it depends on the applied IPSec mode).

Another parameter is used to consider the ciphering and deciphering overhead
introduced by the network.

To simulate a bottleneck in the wired network a FIFO queue length and a
bottleneck rate have been introduced. These attributes effects the simulation only if a
bottleneck between two IP network nodes have been defined. An attribute allows also to
enable or to disable the FIFO behaviour (that is, enabling or disabling the bottleneck).

Finally, an IP network node can be linked to more than two FBs: for example in
the case more sources or destinations (both JSCC and non JSCC). A routing mechanism
has to be implemented on the IP network node in order to forward packets to the right
port. A static routing table allows mapping destination IP addresses (node IDs) into the
right forwarding port.

Table 4.6 : IP Network Parameters mask

Parameter Name Description Default Values
Number of Router Number of router in the IP

Network.
10

Delay Distribution, average and
variance of the delay
introduced on the forwarded
packet by each router

Without QoS
- mean 10msec
- max 50msec

With QoS
- mean 3msec
- max 10msec

Loss Probability that a router loss
a packet

With QoS = 0.01%
Without QoS = 1%

IPv6 option processing
delay

A constant defining the
processing delay on each
router to process the
control/signaling
information inside the IPv6
hop-by-hop option header
(if any).

Uniform (0,0)

Tunneled Specification of the
working mode of Ipsec
(tunneled or transport)

Transport

Network ciphering Overhead due to the
ciphering on the network

0%

Network deciphering Overhead due to the
deciphering on the network

0%

FIFO bottleneck Enable or disable the
bottleneck effect on the IP

Enabled

network
FIFO queue len (pck) Maximum capacity of the

FIFO queue length
0

Bottleneck Rate (bps) Available throughput on the
bottleneck

2Mbps(%50free)

Static Route Table A static routing table to
forward incoming packets
on the right outgoing port.
A number of port is
associated to a int IP(IP
address int,Port)

(1,1)
(2,0)
(3,0)
(4,0)
(5,3)
(6,2)
(7,0)

Subqueue Capacity of the subqueue 400.000 (bits)
Infinity (packets)

4.5.3 Statistics
The relevant statistics are related to the delay and the loss introduced by the

network. These statistics are useful also to validate the model behaviour.
Table 4.7 : IP Network Statistics

Statistic Name Description
Loss Rate (pck/sec) Loss packet Rate
Traffic loss (byte/sec) Traffic loss in byte/sec
Packet forwarded (pck/sec) Forwarded packets Rate (packet that

traverse the whole IP Network)
Traffic forwarded (byte/sec) Forwarded traffic rate in byte/sec
Average Delay (sec) Average delay of forwarded packets
Average queue length (pck) Average packet number in the FIFO

queue
Average delay in the queue (sec) Average packet delay in the FIFO

queue

4.5.4 Finite State Machine
Figure 4.10. shows the FSM of the IP Network node. The FSM behaviour is

different if a bottleneck is active or not on the IP cloud. If it is not active, the FSM apply
the loss and the delay to the packet according to parameters mask configuration. On the
other hand, if bottleneck is active, the FSM inserts packets (forwarded to the bottleneck
link) into the FIFO queue.

Figure 4.10 : IP Network FSM

The tasks performed by each state are:

• INIT: the init state initializes all the data structure that will be used during the
simulation into this FSM. Especially the following action will be carry out:

o Load the data from the parameter mask into static variables
o Initialize the simulation statistics

• IDLE: the idle state wait for an incoming packet. When an incoming packet
event occurs, the FSM moves to the PROCESS state if the packet has been
received from the bottleneck link or it moves to the
NOT_FROM_BOTTLENECK in the other case.

• PROCESS: if the packet has been received from the bottleneck, the IP network
first checks if the packet has to be dropped. If this is the case the state moves to
the DISCARD state. If this is not the case, then the state computes the delay to
apply to the packet and schedules the packet transmission. A FIFO scheme
allows the packet ordering of delivered packets. The state moves then to the
SEND state.

• DISCARD: the packet has to be dropped. The state updates statistics and
destroys the packet.

• SEND: the packet has to be forwarded. The state checks in the right routing
table the outgoing port number and schedules the transmission of the current
packet according to the evaluated delay.

• NOT_FROM_BOTTLENECK: In this case the packet comes from a not
bottleneck link. If the outgoing link of the packet is a bottleneck link and the
FIFO behaviour has been enabled then the states move in the QUEUE state,
otherwise it moves to PROCESS state

• QUEUE: insert the packet in the tail of the FIFO queue and schedule the
transmission of the packet basing on the bottleneck rate and the packet ready in
the queue.

• SEND_HEAD: this state is triggered every time a packet has to be removed
from the FIFO queue. After removing, the states move to the PROCESS state in
order to apply network delay and loss to the packet.

4.6.-TX/RX RADIO F.B.

 The TX/RX Radio FB binds the traditional IP network (fixed network) to the
wireless network (such as UMTS, Wi-Fi, Bluetooth). Moreover, it prepares the packet
to the transmission on a wireless link (channel coding and modulation). The main goal
of this node is therefore to forward IP packet from one side to the other and vice-versa.
Since TX and RX Radio modules have similar functionalities and mechanisms like
channel coding and modulation, we chose to integrate TX and RX Radio in a single
functional block. This choice is also driven by the goal to reduce the effort in case of
enhancement or modification to the code of these similar features. The similar features
include:

• Packet forwarding
• Introduce the packet delay due to

o channel coding/decoding processing
o packet queuing and transmission
o IPv6 option header processing in the case the control/signalling

information is carried on the IPv6 option header.
o ad-hoc protocol processing in the case the control/signalling

information is carried out in an ad-hoc protocol
o adopted coding scheme and interleaving, if present

An important difference between TX and RX Radio is due to the fact that we will

simulate video streaming application running between a source and one or multiple
destinations in case of multicast. Therefore, the video data will be delivered only in a
single way and the TX Radio should have the following added functionalities:

• Multicast transmission on the wireless link (duplication of packets to multiple
RXs)

• Resize of traversing video data packet according to channel coding based on
SSI

In case of multicast transmission the TX radio has to able to manage different

wireless link at the same time. The TX radio should maintain the association between
TX and RX couples to manage the signalling control information.

On the other hand, the RX Radio should be able to:
• Resize the arriving packets from the wireless interface to their original size (de-

coding)
• Model the wireless channel introducing errors into packets according to the

following factors:
o wireless technology
o modulation scheme
o channel coding scheme
o mobility
o interleaving, if present
o channel condition
o ARQ mechanism, if present

• Generate the control/signalling information like CSI and NSI.

A set of input files (a file for each combination of these factors) should be provided

in order to properly model the wireless channel. An item of the said sets is represented
by a couple of files of bits, as the transmitted and received sequence of bits, for the
corresponding combination of factors. The transmitted and received sequence of bits
should be related to the sequence of bits before and after the channel coding and
channel de-coding respectively.

For properly read the bit error files, the channel coding rates and IPv6 header
compression rates must be chosen according to those used while obtaining the channel
bit error files.

The IPv6 header compression algorithm used for the simulation was ROHC(Robust
header compression).

A mapping between SSI codes and channel coding rates was done in order to adapt
channel coding and decoding according to the SSI information. The channel coding
rates values chosen were those used during the modelling of the wireless channel:

• 1/3
• 4/5

A way to get these files could be to concatenate the bits of the packet at data-link

layer at the transmitting and receiving side (MAC and LLC header included). The
correct item is selected depending on the analysed scenario. A way to exploit each item
is to consider a subsequence of bits of the same length of the transmitted part of the data
packet (i.e. different items are in general picked up for the transmission of a single
packet, for example for different values of the SSI). The item will be accessed in a
sequential way (e.g. two sequent fields SSI1 of size size1 and size2 respectively will
access sequent bit stream of size size1 and size2 respectively both in the bound tx file
and in rx file) and in a cyclic manner (to ensure the continuity of the stream).

The result of the comparison among the transmitted and the received bits
sequences of a packet are stored into the packet itself to provide the Video Stream
Output file.

The right item is also chosen according to the transported control information
into the packets and the configuration decisions taken by the JSCC/D controller. For
example, if DRI is provided, multiple bits for the data payload are generated; in this
case, more items must be available and selected for the same part of the transmitted
packet (several IP packets could be created for a single one, some way associated; for
example with the same packet identifier).

The channel conditions can be configured a priori by a given sequence of the
form

<channel condition, validity interval>.

In order to investigate a representative set of cases, the following options will be
considered:

• wireless technology: at least 3 different radio technology should be evaluated
(UMTS, Wi-Fi and Bluetooth)

• modulation scheme: at least 3 different types of modulations
• channel coding scheme: at least 3 different types
• mobility: fixed or mobile Rx
• interleaving: applied or not
• channel condition: 4 conditions good, fair, poor and very poor

• ARQ: applied or not (if possible indicating also the maximum number of
retransmission attempts).

Choosing a suitable nomenclature can be helpful, e.g.:

technology_modulation_coding_mobility_interleaving_condition_ARQ

4.6.1 Node Model
Figure.4.11. shows the node model of the TX/RX Radio FB. It is composed by a

TX/RX Process that elaborates the packets traversing the node. The node model has two
or more interfaces: the first one is the wired interface while the second is the wireless
interface.

Figure 4.11 : TX/RX Radio node model

4.6.2 TX/RX process Parameter Mask
The parameters mask includes all the parameters needed to evaluate the delay

introduced in the packet by the TX/RX Radio node: packet queuing, IPv6 option header
processing, Ad-hoc processing, channel coding processing.

A compound parameter is used to define the delay due to different coding
schemes. For each coding scheme the input/output size for coded block is given
together to the delay needed to code a single block. A similar compound attribute is
used also for interleaving parameters: the block size and the delay for a single block
have to be specified.

One parameter allows setting the coding scheme for header field (IP header,
UDP header etc….). Two options are available: header coded with the strongest coding
scheme used for the current data transmission or coded with a defined coding scheme.

Two compound parameters allow the selection of right files at RX side in order
to evaluate the transmission delay and the bit error respectively. The compound
attributes should be composed by an attribute for each of the above listed factors
(excluding the channels and modulation schemes that are run-time selected by the
JSCC/D controller).

A parameter defines the channel condition (good, fair poor or very poor) during
the simulation in the form of a list of <condition, interval> couples.

Table 4.8 :TX/RX Parameter Mask

Parameter Name Description Default Values
Header Coding Scheme Define coding scheme used

to encode protocol headers
- Strongest data

coding scheme
Transmission Delay File Compound attribute that

define which file will be
loaded in order to compute
the transmission delay on
the related wireless link It
contains the specification
of the wireless technology,
modulation scheme,
channel coding scheme,
mobility, interleaving and
ARQ.

Bit Error File Compound attribute that
define which file will be
loaded in order to compute
the bit error on the received
packets. It contains the
specification of the
wireless technology,
modulation scheme,
channel coding scheme,
mobility, interleaving, and
ARQ.

Channel Conditions Compound attribute that
defines the channel
conditions during the
simulation at specific
interval time.

0-20(sec) good
20-30(sec)poor
30-40(sec)good
40-50(sec)good
50-60(sec)very poor

IP address int A integer value that permit
to identify univocally the
node in the network

3 TX Node
4 RX Node

FIFO activate Permit to enable or disable
the FIFO queue attached to
the node

ENABLED

Header compress rates A compound attribute
which map each header
compression rate to a
channel status

30
20
10

DRIs Compound attribute that
specifies if the DRI is
generated and the related
overhead

Do not generate DRIs

bit_error_pattern_pos Defines by where the cyclic
error bit file must be read
for the next packet arriving

NO

at the wire-less interface

bit_error_pattern_length Defines the length of the
error bit file.

NO

4.6.3 Statistics
Statistics on TX/RX Radio FB refers to the traffic received and traffic

forwarded, packet-by-packet or average delay introduced by queuing, processing,
coding, interleaving and transmission, number of errors on bits of different fields. This
last should be registered both in the TX side (on packet received from the wired link)
and in RX side (on packets received from wireless link). In fact, it could be useful to
compare the number of errors on bits between the TX Radio and the RX radio on the
concerned air interface in the case the source-to-destination path contains two or more
wireless links.

Table 4.9 : TX/RX Statistics

Statistic Name Description
Packet received (pck/sec) Received packets Rate at IP level
Traffic received (byte/sec) Received traffic rate in byte/sec at IP

level
Packet forwarded (pck/sec) Forwarded packets Rate at IP level
Traffic forwarded (byte/sec) Forwarded traffic rate in byte/sec at IP

level
Queuing Delay (sec) Packet-by-packet and average Delay

due to queuing
IPv6 Option Header Delay (sec) Packet-by-packet and average Delay

due to IPv6 Option Header processing
Ad-hoc Delay (sec) Packet-by-packet and average Delay

due to Ad-hoc control/signalling
protocol

Encoding Delay (sec) Packet-by-packet and average Delay
due to the encoding process

Decoding Delay (sec) Packet-by-packet and average Delay
due to the decoding process

Transmission Delay (sec) Packet-by-packet and average Delay
due to the transmission over the
wireless link (it includes the delay
related to the ARQ, if deployed).

total Delay (sec) Total packet-by-packet and average
delay of forwarded packets

Errors on bits Number of bit errors. This statistic is
customized for every field in the
packet (header and in the payload) and
for the whole packet as well

BER on channel Bit Error Rate in the Channel, this is
given by the CSI packets

BER on payload Bit Error Rate on the Payload of the
packet received.

BER value on CSI Bit Error Rate sent on CSI packet
Channel Status Value Level of the channel condition : Good,

fair , poor, very poor.
IPv6 Packet Received IPv6 packet rate received (pck/sec)
IPv6 Traffic Received IPv6 packet rate received (byte/sec)
Errors on payload Number of bit errors on payload
Payload size(bits) Size of payload (bits)
Wireless to Wired Delay (sec) Delay from wireless to wired interface
Total Bit Errors on Payload
Total Bit errors on Packet
Total Bit errors on Header
TX/RX Total control/signalling trafficSent
(byte/sec)

TX/RX SSI_Traffic Sent (byte/sec)
TX/RX SRI_Traffic Sent (byte/sec)
TX/RX SAI_Traffic Sent (byte/sec)
TX/RX NSI_Traffic Sent (byte/sec)
Physical Traffic Received
Packet Error Rate
TX/RX JSCC Traffic Received Traffic Received of JSCC information

(byte/sec)
TX/RX NO_JSCC Traffic Received Traffic Received No JSCC (byte/sec)
TX/RX CSI_Traffic Sent (byte/sec)
TX/RX DRI_Traffic Sent (byte/sec)

4.6.4 Finite State Machine

Figure 4.12 shows the FSM of the TX/RX Radio process.

Figure 4.12 : TX/RX FSM

 The tasks performed by each state are:

• INIT: the init state initializes the static variables importing the value from
related parameters mask, load the bit error file and set-up the local statistics.
Then it moves to the IDLE state.

• IDLE: this state waits for an incoming interrupt (event). In the TX/RX radio
process the incoming interrupt can be of five types: an incoming packet from a
wired interface, an incoming packet from a wireless interface, the sending of a
packet stored in the local queue, the generation of a control/signalling packet
(such as the CSI) and finally the change of the channel status. If the incoming
packet arrives from the radio interface (PCK_FROM_WIRELESS), then the
FSM moves to the ERROR state. If the incoming packet arrives from the wired
interface (PCK_FROM_WIRED), then the FSM moves to the IF_CNTRL state.
If a control/signalling packet needs to be created the FSM moves to the
SEND_NSI or SEND_CSI states. If the wireless channel status changes, the
FSM moves to the CHANGE_CH_STATUS state. The IDLE state updates the
statistics related to incoming traffic.

• CHANGE_CH_STATUS: this state updates the wireless channel condition
according to the related parameter mask value. The FSM enters in this state
every time the wireless channel state is defined by a different error pattern file
than the current one. Note that the state of the wireless channel can take the
following values:

 Good
 Fair
 Poor
 Very Poor

It loads the new error pattern file if the channel status changes.

• IF_CNTRL: in this state the incoming packet from the wired link is checked in

order to capture control/signalling information (if any) that could be useful for
the joint controller of the physical level. From the wired link a TX/RX node can
receive two type of control/signalling information, either SSI and SRI (source a
priori information) from the source controller or SAI (Source A-posteriori
Information) from the destination controller. Since control/signalling
information can be carried by different schemes (Standard Protocol like
ICMPv6, Ad-hoc protocol like RTP/RTCP, payload of IP packets or IP
extension headers), this state checks the presence of control/signalling
information according to the scheme selected for the specific scenario. If the
check is positive then the control/signalling information is extracted from the
packet in order to allow the joint controller to take the right action. The FSM
moves therefore then to the SND DELAY state.

• SND_DELAY: this state applies the delay to the packets according to
parameters mask value (queuing, IPv6 processing, ad-hoc processing) and delay
just evaluated in ENCODE state due to encode processing. The state updates
also the related statistics.

• SEND_CSI: In this state we send a packet with CSI information, and then , the
next interrupt to send this type of information is scheduled, based on the CSI
timer. Then, we turn to IDLE state.

• SEND_NSI: In this state we send a packet with NSI information, and then , the
next interrupt to send this type of information is scheduled, based on the NSI
timer. Then, we turn to IDLE state.

• ERROR: This state checks if the packet is received in TX node or is received
in RX node. If it is received on RX side, it adds errors according to the bit error
pattern and SSI info, while if it is received on TX side, it writes statistics about
delay and traffic received. Then, the FSM moves through the RCV_DELAY
state, that do not do anything.

• RCV_DELAY: this state computes and applies the delay to the packets at
receiver side. This delay includes the de-coding (hence, also the interleaving)
and transmission delay. The last is reading the packet size-delay association
from the right file. If the packet-size doesn’t mach exactly with any entry of the
input file, a delay interpolation will be conducted between the two nearest
(higher and lower) packet-size entry. The state update also the statistics related
to all the computed delays. The FSM moves then to the SEND state.

• SEND: this state forwards the packet to the right interface. The state updates the
traffic forwarding statistics. There is a case where the forwarding is not
necessary: if the packet is an SSI coming from the wireless interface in an ad-
hoc or standard protocol it has not to be forwarded to the wired interface but it is
useful only to the joint controller (this is not true for SAIs, source a priori
information). In case of multicast transmission the packets have to be duplicated
and delivered to all the RX interfaces.

4.7.- Simple Destination F.B.
The destination terminal FB is the final destination of the video data flow.

Similar to the case of the Source model, we have implemented two destination terminal
types: a Simple Destination node that implements a traditional sink and a JSCC/D
compliant node able to manage incoming video data packets and to send back the
control/signalling SAI information. Moreover, it has to be able to manage
control/signalling information like DRI, SAI (source a priori information), SAI (Source
A posteriori Information) and NSI (Network State Information).

4.7.1 Node Model
Figure 4.13. depicts the node model of the Destination Terminal FB. Like the

previously described Source Node Model, it has a standard transmitter (TX) and a
receiver (RX) process. The Destination process (over the TX and RX node) receives
from the RX process the video data packets and the control/signalling information (DRI
and SAI – source a priori information) as well as transmits to the TX process the
control/signalling information (NSI and SAI – Source A posteriori Information)
backward. Especially, the SAI will be delivered to a wireless channel decoder (a
TX/RX node) while the NSI to the SOURCE terminal node.

Figure 4.13 : Destination Terminal Node Model

4.7.2 Parameter Mask
The only relevant attribute of the simple destination node is its IP address (node

ID). Setting this parameter the destination can receive data and control/signalling traffic
and send control/signalling information.

Table 4.10 : Simple Destination Parameter Mask

Parameter Name Description Default Values
IP destination int ID of the destination node

4.7.3 Statistics
Table 4.11 shows collected statistics of noJSCC destination terminal. They are

mainly the throughput and the delay received by this node.
Table 4.11 : Simple Destination Statistics

Statistic Name Description
Application Packet received (pck/sec) Received video packets rate at

application layer
Application Traffic received (byte/sec) Throughput received at application

layer
IPv6 Packet received (pck/sec) Received packets at IP layer
IPv6 Traffic received (pck/sec) Throughput received at IP layer
IPv6 Packet sent (pck/sec) Sent packets at IP layer
IPv6 Traffic sent (pck/sec) Throughput sent at IP layer
End-to-end data delay End 2 end delay of data packet
End-to-End packet loss End-to-End loss of data packets

4.7.4 Finite State Machine
Figure 4.14. shows the FSM of the Destination process.

Figure 4.14 : Simple Destination FSM

The tasks performed by each state are:

• INIT: the init state initializes the static parameters according to the parameters
mask. Moreover, it registers the statistics in order to collect simulation results.
The FSM moves then to the IDLE state.

• IDLE: this state waits for an incoming interrupt (event). The event could be
related to the reception of a video data packet. In this case the FSM moves to the
RECEIVE state

• RECEIVE: this state processes the just received video data packet and update
the statistics. Since the FSM behaviour is similar to a sink process, the packet is
then destroyed.

4.8.-JSCC/D Destination F.B.

4.8.1 Node Model
The node model is similar to the node model of the Simple Destination and is

depicted in Figure 4.15. It is composed by a transmitter (destination_tx) and receiver
(destination_rx) and a process that implement the JSCC/D FSM
(JSCC_destination_process).

Figure 4.15 : JSCC/D Destination Node Model

4.8.2 Parameter Mask

Unlike the Simple Destination, the JSCC/D Destination Node has to manage
received and transmitted control/signalling information. The control/signalling
parameter are stored in the CONFIG node so, like the Simple Destination, the only
relevant parameter is the IP destination address (node ID).

Table 4.12 : JSCC/D Destination Parameters Mask

Parameter Name Description Default Values
IP destination int ID of the destination node 2
MTU Maximum Transfer Unit 1500

4.8.3 Statistics
Data and control/signalling statistics are collected by the JSCC/D Destination

Node.
Table 4.14 : JSCC/D Destination Statistics

Statistic Name Description
Application Packet received (pck/sec) Received video packets rate at

application layer
Application Traffic received (byte/sec) Throughput received at application

layer
IPv6 Packet received (pck/sec) Received packets at IP layer
IPv6 Traffic received (pck/sec) Throughput received at IP layer
End-to-end data delay End 2 end delay of data packet
End-to-End packet loss End-to-End loss of data packets
Control/signalling packet received (pck/sec) Received control/signalling packets

rate at IP level
Control/signalling traffic received (byte/sec) Received control/signalling traffic rate

in byte/sec at IP level
Control/signalling packet sent (pck/sec) Control/signalling packet sent
Control/signalling traffic sent (byte/sec) Control/signalling traffic sent in

byte/sec
Control/signalling information overhead Relative overhead of the

control/signalling information with
respect to the received data (counting
the received control/signalling only, or
also the generated one)

SSI Packet Received (pck/sec) SSI packet rate Received by this node
SRI Packet Received (pck/sec) SRI packet rate Received by this node
DRI Packet Received (pck/sec) DRI packet rate Received by this node
QoS Level Indicator SAI Traffic Sent (byte/sec)

4.8.4 Finite State Machine
Figure 4.16. depicts the FSM of the JSCC/D Destination node.

Figure 4.16 : JSCC/D Destination FSM

The tasks performed by each state are:

• INIT: initialization of the state variable and statistics
• IDLE: this state wait for an incoming interrupt like the packet reception or the

packet delivery.
• DATA: the received packet can contain only video data, control/signalling

information (in the case of out-of-band scheme) or video and control/signalling
information (in-band case). This state check for the packet content. In case of
video data update the related statistics while, in case of control signalling
information the state moves to the CNTRL/SIGN state. If the packet contains
only video data the state moves to the IDLE state

• CNTRL/SIGN: the packet contains control/signalling information. The state
extracts and processes this information. Finally it updates the statistics and
moves to the IDLE state.

• TYPE: the destination has to send out a packet. It can be both a data packet (for
example RTCP report) or control/signalling information (SAI). This state check
what type of information will be sent out. If it is control/signalling then it moves
to the SCHEME state, else if it is a data packet it moves to the SND_DATA
state

• SCHEME: a control/signalling packet need to be sent out. If the scheme is in-
band, the states moves to the IDLE (the control/signalling information will be
encapsulated into the next data packet that will be delivered). If the scheme is
out-of-band the state creates the packet and moves to the SEND state.

• SND_DATA: this state creates the data packet that will be sent out then it
moves to the ENCAP state.

• ENCAP: This state check if there is some pending control/signalling
information to encapsulate into data packet. Then it moves to the SEND state.

• SEND: send the just created packet out.

 N.B: Here , we must say that SAI and DRI information have not been
implemented yet, in further scenarios and development it will be made

	4.2.1 Node Model
	4.2.2 Parameters
	 4.2.4 Finite State Machine
	4.3.1 Node Model
	4.3.2 Parameter mask
	4.3.3 Statistics
	4.3.4 Finite State Machine
	4.4.2 Parameter mask
	4.4.3 Statistics
	
	4.4.4 Finite State Machine
	4.5.1 Node Model
	4.5.2 Parameters Mask
	4.5.3 Statistics
	4.5.4 Finite State Machine
	4.6.1 Node Model
	
	4.6.2 TX/RX process Parameter Mask
	4.6.3 Statistics
	
	4.6.4 Finite State Machine
	Figure 4.12 shows the FSM of the TX/RX Radio process.
	
	4.7.1 Node Model
	4.7.2 Parameter Mask
	4.7.3 Statistics
	
	4.7.4 Finite State Machine
	4.8.1 Node Model
	4.8.2 Parameter Mask
	4.8.3 Statistics
	4.8.4 Finite State Machine

