
Appendix A

Source Coding Basics

A.1 Introduction

Communication systems are designed to transmit information from sources

to destinations. Sources of information can be analog or discrete. An exam-

ple of the former case can be a phone call, where generally, the source is an

audio signal. The output of this source is analog and, hence, they are called

”analog sources”. On the other hand, we have ”discrete sources” which

have discrete values as outputs, as can be the daily stock market index,

computer files. . .

Whether the source is analog or discrete, a digital communication system

is designed to transmit information, consequently, the output of a source

must be conveniently treated to be transmitted digitally. This function is

performed by the source encoder at the transmitter side, whose task is not

only to quantize the signal, but also to make an efficient representation of

the information in digital form (note we haven’t established yet what we

mean by efficient).

Obviously, the smaller number of bits is used to represent the signal (dur-

ing quantization), the less capacity of the channel is used, but the worse

fidelity is achieved. In general, we will permit a given level of distortion

in quantization and we will try to make the most efficient representation of

the levels the signal can take.
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A.2 Mathematical models for information sources

Any information source has an output that can be described statistically. In-

deed, if we knew the output of a source in advance (deterministic output),

there would be no need to transmit it.

Therefore, we need now to model each of the sources described before:

• The output of a discrete source is a sequence of letters belonging to a

finite alphabet of L possible letters: xi ∈ {x1, x2...xL}.
Each letter has a probability of occurrence:

pk = P (x = xk) (A.1)
L∑

k1

pk = 1 (A.2)

If every letter satisfies statistical independence among all past and

future outputs, we say it is a discrete memoryless source (DMS). On

the other hand, if the discrete output shows statistical dependence,

we should construct a mathematical model which fits this depen-

dence. For instance, a discrete source is said to be stationary if the

joint probabilities of two sequences of length n, say a1, a2, ..., an and

a1+m, a2+m, an+m are identical for n ≥ 1 and all possible shifts of m.

• An analog source can be modelled as one whose output presents a

waveform x(t), which is a sample function of a stochastic process

X(t). We assume that X(t) is stationary with correlation φXX(τ) and

power spectral density ΦXX(f) and bandlimited,ΦXX(f) = 0 ∀ |f | ≥
B. The sampling theorem helps us to transmit the samples of the ana-

log signal ( xn = x(n) = x(nTs) = x(n 1
2B )) for further reconstruction

at the receiver side as:

X(t) =
∞∑

n=−∞
X(

n

2B
)Sa(2πB(t − n

2B
)) (A.3)

Where Sa(x) = sin(x)
x .

Our previous analog signal is now a discrete-time signal.
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Finally, we should observe that the result of sampling an analog source

is usually a discrete-time continuous-amplitude signal, being neces-

sary to perform quantization to obtain a digital signal.

Where {X( n
2B )} denote the samples of the process X(t) taken at the Nyquist

rate ( fs = 2B samples/s ).

A.3 A logarithmic measure of information

Now we know the information provided by a source can be measured, we

should find an appropriate way to do it.

Suppose we have two random variables which can take values from a finite

alphabet each:

xi ∈ {x1, x2, ..., xn}
yi ∈ {y1, y2, ..., yn}

If both are statistically independent, the information about X provided by

an event in Y is zero. On the other hand, if the occurrence of Y = yj

determines completely the occurrence of X = xj , then, the information the

event Y provides about X is the same as the information provided by xi.

Any measure of information we devise must fulfil the previous two condi-

tions; the following function appears to be suitable:

I(xi; yj) = log
P (xi|yj)
P (xi)

, known as mutual information (A.4)

If we take log2 the units of the mutual information are called bits.

Let us check if it really satisfies the two conditions previously exposed:

1. If there is independence between both events,

I(xi; yj) = log
P (xi|yj)
P (xi)

= log
P (xi)
P (xi)

= 0
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2. If occurrence of Y totally determines the occurrence of X , then

I(xi; yj) = log
P (xi|yj)
P (xi)

= log
1

P (xi)
= I(xi), called self-information

(A.5)

We observe that a high-probability event conveys less information than

other with lower probability.

It is also truth that the information about xi provided by yj is identical than

the information provided by xi about the occurrence of yj .

I(xi; yj) = log
P (xi|yj)
P (xi)

= log
P (xi,yj)
P (yj)

P (xi)
= log

P (yj |xi)
P (yj)

= I(yj ; xi)

We can also define the conditional self-information as:

I(xi|yj) = log
1

P (xi|yj)
(A.6)

Therefore, the following relation holds true:

I(xi; yj) = I(xi) − I(xi|yj)

A.4 Average mutual information and entropy

We can step further and define the average mutual information between X

and Y as:

I(X; Y ) =
n∑

i=1

m∑

j=1

P (xi, yj)I(xi; yj) =
n∑

i=1

m∑

j=1

P (xi, yj) log
P (xi, yj)

P (xi)P (yj)

(A.7)

It holds that I(X; Y ) ≥ 0 ∀ {X, Y }.

Identically, we can obtain the average self-information as:

H(X) =
n∑

i=1

log
1

P (xi)
(A.8)
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Where X represents the alphabet of possible output letters from a source,

H(X) represents the average self-information per output and it is called

the entropy of the source.

H(X) is always less or equal than log(n) , where the equality holds when

symbols are equally probable.

Finally, we can define the average conditional self-information (or condi-

tional entropy) as:

H(X|Y ) =
n∑

i=1

m∑

j=1

P (xi, yj) log
1

P (xi|yj)
(A.9)

Again it is true: I(X; Y ) = H(X) − H(X|Y ) ≥ 0.

The results previously exposed can be generalized to more than two vari-

ables as:

H(X1X2...Xk) =
k∑

i=1

H(Xi|X1X2...Xi−1) (A.10)

That satisfies:

H(X1X2...Xk) ≤
k∑

m=1

H(Xm)

This information measures can easily be extended for continuous random

variables by simply applying some little changes.


