
Appendix B

Matlab and TinyOS: getting
them to work together

B.1 Introduction

In this chapter we will go through the different aspects which are needed

to be taken into account when interconnecting Matlab and TinyOS, as well

as the way in which they have to be used. We will show why Matlab is a

suitable tool for interacting with WSNs.

Matlab is a scripting language in which large applications can be written

and is interpreted, which means that it is slower than other languages like

C or Java. However, being an interpreted scripting language is also part of

what makes Matlab an appealing way to interact with a sensor network:

the user can interact with the network by calling commands on the Matlab

command line. In contrast, once a java application is started, it can only be

controlled through a GUI.

It is possible to connect Matlab with the motes to receive and inject infor-

mation from and to the network. The system architecture will consist of a

sensor (or several) connected to the computer through the USB port, act-

ing as a data-gathering node, and many others sensing nodes. The sink

node will behave as base station receiving all the packets addressed to its

network address. From Matlab we will be able to connect to this mote, lis-

tening to the desired packets in the network and filtering the rest of them.

84

APPENDIX B. MATLAB AND TINYOS: GETTING THEM TO WORK
TOGETHER 85

We will also have full access to the message structure having the possibility

of accessing/editing the packets'fields in a java-oriented syntax. It will be

also possible to send packets to any sensor in the network, provoking reac-

tions (if programmed beforehand) which will make our network reactive.

Last but not least, Matlab is a complete programming development envi-

ronment having numerous tools for helping the developer in their work.

Thus, Matlab appears as an ideal environment for an easy and fast devel-

opment of a broad range applications.

B.2 Setting up the Matlab environment to use it with
TinyOS and Java

Step 1 The Matlab directory structure provided by TinyOS was meant to

mirror that of the tinyos-1.x directory. Each of the directories is meant

to serve the following purposes:

APPS holds Matlab functions that were built for a certain tinyOS ap-

plications, e.g. oscilloscopeRF.

CONTRIB contains subdirectories to mirror tinyos-x.x/contrib for

matlab applications.

LIB tools that correspond to tinyOS components in tos/lib.

TOOLS Matlab functions or apps that are generally useful but do

not relate specifically to one app (e.g. 'listen.m').

UTIL functions (not apps) that may be shared among several other

Matlab apps, eg. message processing utilities.

Add to your matlab directory in: your path to tinyos-1.x\tools\matlab

those directories above which are not present with the distribution.

Step 2 Create the file startup.m in the folder your path to Matlab\toolbox\local.
Edit the file with the following code:
flag=0;
global TOSDIR
TOSDIR='your path to UCB\cygwin\opt\tinyos-1.x\tos';

addpath your path to tinyos-1.x\tools\matlab;
addpath your path to tinyos-1.x\tools\matlab\comm;

APPENDIX B. MATLAB AND TINYOS: GETTING THEM TO WORK
TOGETHER 86

addpath your path to tinyos-1.x\tools\matlab\apps;
addpath your path to tinyos-1.x\tools\matlab\lib;
addpath your path to tinyos-1.x\tools\matlab\util;
addpath your path to tinyos-1.x\tools\matlab\tools;
addpath your path to tinyos-1.x\tools\matlab\contrib;

defineTOSEnvironment;

Basically, what we do in this Matlab script is to set up the Matlab path

and call the script defineTOSEnvironment.m, which in turn, will ini-

tialize the Matlab comm (communications)stack. By giving the script

the name startup.m and placing it in the aforementioned directory,

we ensure the file is executed when Matlab starts up.

Step 3 Edit the file defineTOSEnvironment.m that you can find in your path to tinyos-

1.x\tools\matlab so that it looks like:
global DEBUG
DEBUG = 0;

global COMM
COMM.TOS BCAST ADDR = 65535;
COMM.TOS UART ADDR = 126;
COMM.GROUP ID = hex2dec('7D');

defineComm;

Step 4 Copy the file comm.jar located in the following directory:

your path to UCB\jdk1.4.1 02\j2sdk1.4.1 02\jre\lib\ext to

your path to tinyos-1.x\tools\java

Step 5 Open the Matlab file classpath.txt and add the following pathes:
your path to tinyos-1.x\tools\java
your path to tinyos-1.x\tools\java\comm.jar
your path to tinyos-1.x\tools\java\net\tinyos\message

Step 6 Copy the files win32com.dll and getenv.dll located in

your path to UCB\jdk1.4.1 02\j2sdk1.4.1 02\jre\bin
and the folder your path to tinyos-1.x\tools\java\jni in the Matlab folder

your path to Matlab\sys\java\jre\win32\jre1.4.2\bin
Also copy the file javax.comm.properties located in the folder

your path to UCB\jdk1.4.1 02\lib to the destination folder:

your path to Matlab\sys\java\jre\win32\jre1.4.2\lib

APPENDIX B. MATLAB AND TINYOS: GETTING THEM TO WORK
TOGETHER 87

Step 7 Edit the file cygwin.bat to include in the system classpath the fol-

lowing pathes:

your path to Matlab\java\jar\jmi.jar

your path to UCB\cygwin\opt\tinyos-1.x\tools\java\comm.jar

your path to UCB\cygwin\opt\tinyos-1.x\tools\java

Step 8 The net.tinyos.matlab.MatlabControl class is needed to call

Matlab commands from Java. Previously to compilation is manda-

tory to fix a bug in the MatlabControl.java file, by using the provided

patch file.

Once it has been fixed, proceed to compile the folder

your path to tinyos-1.x\tools\java\net\tinyos\matlab by typing make matlab.

Please, note that you should have already included the jar file jmi.jar

in your CLASSPATH environment variable (otherwise it returns the

error: package comm.mathworks.jmi does not exist)

Step 9 Before you are able to use the Matlab functions (connect, receive,

send and stopReceiving) provided along the TinyOS distribution, you

will have to go through several typographical errors:

1. Edit the file receive.m as below:

• Delete line 52

(moteIFs = [COM.sourceMoteIF{TF}];) to place instead:
if isempty(TF)

TF=0;
else

TF=1;
end
if TF==0

moteIFs=[];
else

moteIFs = [COM.sourceMoteIF{TF}];
end

• In line 63 take the transpose away.

2. Edit the script stopReceiving.m as follows:

• Substitute the code lines:

COMM.globalFunction=COMM.globalFunction{~TF};

APPENDIX B. MATLAB AND TINYOS: GETTING THEM TO WORK
TOGETHER 88

COMM.globalMessageType=COMM.globalMessageType{~TF};
COMM.globalMessageName=COMM.globalMessageName{~TF};
by

COMM.globalFunction={COMM.globalFunction{~TF}};
COMM.globalMessageType={COMM.globalMessageType{~TF}};
COMM.globalMessageName={COMM.globalMessageName{~TF}};

• And the code lines:

for i=1:length(varagin)
receive(functionName, message, varargin{i})

by

for i=1:length(varargin)
stopReceiving(functionName, message, varargin{i})

Step 10 To finish with, it should be noticed that there still exist some bugs

in the Java code used by the Matlab scripts that will make necessary

to check the code carefully for every application.

B.3 Using the TinyOS java tool chain from Matlab

It is often easier to use an existing Java tool with TinyOS than to rewrite

it in Matlab. Thus, we can use Matlab to launch the Serial Forwarder, the

Oscilloscope application seen in the TinyOS tutorial [29], etc.

If we want to start the Oscilloscope application from Matlab, we should

enter the following command:

net.tinyos.oscope.oscilloscope.main('125')

You should see the Java GUI open and connect to your serial forwarder.

When using Java from Matlab the syntax remains basically the same, except

that there is no ”new” operator and functions with no arguments do not

terminate with empty parenthesis ”()”.

Every time a value is returned or passed to a Java method, a conversion of

types takes place automatically (according to the information provided in

APPENDIX B. MATLAB AND TINYOS: GETTING THEM TO WORK
TOGETHER 89

the Matlab help). Most of the arguments are passed by value except for the

Java objects which are passed by reference.

Using Java classes from Matlab reveals two common bugs that should be

fixed before you obtain a successful execution. While both of these bugs do

not appear as such when running the java program from the default Java

environment (i.e. starting a Java application from the command line), they

do it when the program is called from Matlab. Thus, you will find them in

many Java classes, including those in the TinyOS Java toolset.

A. Command Line Arguments In this section you will learn with a very

simple example how to pass arguments from the Matlab command

line to a Java method.

Imagine you want to run the Serial Forwarder to listen to packets

arriving at port COM7. If you are calling the program from your

default shell you should type the following command:

java net.tinyos.sf.SerialForwarder -comm serial@COM7:telos

To run the same program from the Matlab command line you should

write the command:

net.tinyos.sf.SerialForwarder.main({'-comm','serial@COM7:telos'})
From the previous example we can deduce that the shell automat-

ically packages up the command line arguments into string arrays

before passing them to the main function of the class being called.

In Matlab this has to be explicitly done by directly passing the argu-

ments as string arrays.

In case we do not want to pass any argument, we should send a null

array, which is done as:

net.tinyos.sf.SerialForwarder.main({ })
We get a null pointer exception! This is because the static main func-

tion in the main class of the SerialForwarder uses the string before

checking if it is null. Since sending no command-line arguments from

the shell does not result in a null string being passed, this normally

does not cause an error. However, this should be fixed if this class

were to be used from Matlab.

APPENDIX B. MATLAB AND TINYOS: GETTING THEM TO WORK
TOGETHER 90

B. Virtual Machines You will have already realized that when we run a

program in Matlab we do not use the command java. This is due to

the fact that in Matlab we instantiate the objects within the same JVM

(Java Virtual Machine) in which the Matlab session is running. This

is only important for the java.lang.System class, which directly

refers to the JVM you are running in; java.lang.System.exit()

will kill your JVM, and therefore all the classes and your Matlab ses-

sion! You will see this if you close the SerialForwarder window, be-

cause this causes a call to System.exit(). Hence, System.exit()

should never be called.

B.4 Using Matlab with TinyOS

B.4.1 Preparing the message

Prior to connecting the computer to the network we need to build the mes-

sages to which we want to listen to. To illustrate this we will go through a

simple example and we will make use of the available tools we have.

Let us imagine we have a network in which the base station is polling the

nodes one by one and asking them to send back an application-specific

data.

We need to construct two kinds of messages, one carrying the request for

data to the sensors (SimpleCmdMsg) and another one carrying the data sent

back by the sensors (DataMsg).

We can build two header files each one with the message structure we have

devised, for example, if we list the code corresponding to the file Sim-

pleCmdMsg.h:

enum {
AM SIMPLECMDMSG = 18

};

typedef struct SimpleCmdMsg {
uint16 t dst;
uint16 t source;
uint16 t seqno;

APPENDIX B. MATLAB AND TINYOS: GETTING THEM TO WORK
TOGETHER 91

uint8 t type;
uint8 t focusaddr;
uint8 t newrate;
uint8 t hop count;
uint8 t bitsT;
uint8 t bitsH;
uint8 t bitsLtsr;
uint8 t bitsLpar;

} SimpleCmdMsg;

Once we have the messages in the header files, we can use the MIG tool (see

[29] for further information) to automatically generate Java classes which

take care of the cumbersome details of packing and unpacking fields in

the message's byte format. Using MIG saves you from parsing message

formats in your Java application.

Once we have the output from MIG: SimpleCmdMsg.java and DataMsg.java

we can proceed to compile them, obtaining the respective .class files.

Now we can easily instantiate these objects in Matlab.

B.4.2 Connecting Matlab to the network

This subsection does not intend to be a detailed guide of how to use Mat-

lab with TinyOS because it would be a redundant work over that present

in [29]. We will just try to provide a basic understanding of the overall

working by continuing with the example we started in section B.4.1.

The first step is to connect your Matlab session to your network (namely to

your base station). If you are working with Tmotes this can be done as:

connect('serial@COM7:telos');

Where, same as before, we are assuming that your base station is identified

by the serial port COM7 (you can use the command motelist in your cyg-

win environment to check what devices are connected to your computer).

Once you have done this, you can instantiate the MIG message, which is a

Java class that is a subclass of net.tinyos.message.Message. In Mat-

lab you can instantiate Java objects on the command line as follows:

APPENDIX B. MATLAB AND TINYOS: GETTING THEM TO WORK
TOGETHER 92

dataMsg=net.tinyos.report.DataMsg

Now you are prepared to start receiving packets:

receive('handleMsg',dataMsg)

This command specifies the Matlab function handleMsg as the one in charge

for handling the received messages, and the DataMsg messages as the ones

to which the base station is listening to. Any other arriving packet will be

discarded.

If we want to send a packet to a node:

send(3,simpleCmdMsg)

Where simpleCmdMsg is an instance of the class SimpleCmdMsg sent to the

node with network address 3.

At this point, the DataMsg objects should be printed to your screen every

time a message of this type is received. To stop this behaviour you can

use the stopReceiving command to deregister your Matlab function as

a message handler:

stopReceiving('handleMsg',dataMsg)

Finally, you can disconnect yourself from the sensor you are connected to

with the command:

disconnect('serial@COM7:telos')

