
Chapter 1

Distributed and Adaptive
Source Coding

1.1 Introduction

Advances on the electronics and wireless networking have enabled the ap-

pearance of new tiny devices endowed with many different types of sen-

sors and capabilities. They are going to make possible the beginning of new

exciting applications that will open doors previously closed to the human

being. This nodes are usually small in physical dimensions and operated

by battery power. Since in most cases access to the sensors once they have

been deployed is extremely hard or in many cases almost impossible, it is

easy to understand that any technology that make possible energy savings

is welcome. Thus, a big effort has been made by the research and scientific

community in order to reduce energy consumption in such networks. In

this chapter, a method proposed by Petrovic, Ramchandran and Chou [3]

is studied.

An implementation on a real Wireless Sensor Network (WSN) was also car-

ried out. Results are presented in Chapter 4.

The studied algorithm is based on the adaptive signal processing theory

as well as on distributed source coding. The main underlying idea con-

sists of taking advantage of the correlation brought about by the spatio-

temporal characteristics of the physical medium to reduce the amount of

9

CHAPTER 1. DISTRIBUTED AND ADAPTIVE SOURCE CODING 10

information requested to the sensors. Furthermore, this scheme is orthog-

onally different from other studies carried out in the area, allowing a total

integration with other energy-aware technologies like packet/data aggre-

gation (reduces the overhead in the network) [4][5][6], efficient information

processing [7][8].

Two factors of correlation should be highlighted and, consequently, consid-

ered for the correlation tracking algorithm:

• Measures taken by sensors closely located show a similar pattern.

• The signals being sensed (temperature, humidity,...) follow some ba-

sic rules of continuity and/or statistical properties.

Dense networks offer data samples highly correlated, because the sensors

used are physically placed closely, with the consequent redundance ob-

tained in the measures. An example of this can be a WSN deployed to

measure the temperature and humidity in the ecosystem created around a

tree, with the sensors measuring the evolution of these parameters in dif-

ferent parts of the tree. Another example can be the recording of audio data

[3] as the cry of the whales or even a concert. Audio is a very suitable data

source to apply this algorithm, due to the intrinsic presence of redundance

(echoes).

Petrovich’s algorithm is applied in a network consisting on two types of

nodes: many sensing nodes and one or more data-gathering nodes (see

Fig. 1.1). The former ones are supposed to be energy constrained, not so

the latter. One of the most appealing characteristics of this algorithm is that

no data exchange between sensors is needed, the compression takes place

in a fully blind manner, with the subsequent saving of energy. These sav-

ings are achieved by letting the data gathering node track the correlation

structure among nodes and process the information to effect distributed

sensor data compression. The correlation structure is determined by using

an adaptive prediction algorithm. The sensors, in turn, only need to know

the number of bits they are entitled to send to the data-gathering node.

It is obvious the complexity in the decoder is higher than that in the en-

coder, but it resides on the data-gathering node, which is assumed not to

CHAPTER 1. DISTRIBUTED AND ADAPTIVE SOURCE CODING 11

Sensor
Node

Sensor
Node

Sensor
Node

Sensor
Node

Sensor
Node

Sensor
Node

Sensor
Node

Query Data
Query

Data

Figure 1.1: An example of a WSN in which the laptop acts as the sink node gath-
ering the information requested to the sensors.

be energy constrained.

1.2 Distributed compression

Let us focus now in how distributed compression is achieved. Say we have

n + 1 nodes, where one of them behaves as a data-gathering node. The al-

gorithm works as follows: when the sink node starts to request information

it has no information at all which allows it to perform redundance elimina-

tion, thus, it begins asking for uncompressed data. Once it is in possession

of data coming from the sensors it is able to reduce the amount of infor-

mation requested to the sensors, since this information will be partially

redundant with the one previously received. The data-gathering node uses

this old information to obtain a prediction of the next value it is going to

request.

Let us imagine it is turn to query sensor j and we are at time instant k.

The desired data can be represented by X
(j)
k . The corresponding estimate

is denoted by Y
(j)
k and is calculated by means of the correlation tracking

algorithm. This algorithm uses previous measures of sensor j as well as

measures belonging to neighboring sensor nodes. All measures are con-

veniently weighted to yield the optimal estimate in terms of a particular

criterion (in this case we chose to minimize the mean square error). Based

CHAPTER 1. DISTRIBUTED AND ADAPTIVE SOURCE CODING 12

on the accuracy of this prediction and some other parameters as the desired

probability of error, the sink node will require a specific number of bits (say

m) to sensor j which, in turn, will transmit the data sensed (converted by

the ADC to n bits) compressed to those m bits. The decoder will have to

decode this compressed sequence of bits to the desired data message, X(j)
k ,

for what it uses the value Y
(j)
k previously calculated.

The correlation tracking algorithm must address an important issue: data

statistics might be time-varying and consequently, the amount of correla-

tion can change. This has two consequences, first, the correlation tracking

algorithm can not be static and the coefficients weighting the different data

have to be updated with the sufficient frequency. Second, it is mandatory

to have one unique underlying codebook that it is not changed among the

sensors and can also support multiple compression rates. This concept can

be pictured as having several codebooks forming a tree structure as shown

in Fig. 1.2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

D=0.1

X=0.9

r
0
r
2
r
4
r
6
r
8
r
10
r
12
r
14

2D

r
1
r
3
r
5
r
7
r
9
r
11
r
13
r
15

r
4
r
8
r
12

r r r r
2
r
6
r
10
r
14

r
1
r
5
r
9
r
13

r
3
r
7
r
11
r
15

2D

4D4D 4D 4D

Y=0.8

0 10 1

0 1

0.1 0.5 0.9 1.3

LEVEL

l=0

l=1

r
0

l=2

Figure 1.2: An example for the tree based codebook. The encoder is asked to encode
X using 2 bits, so it transmits {01} accordingly to the decoder. The decoder will
use the bits {01} in an ascending order from the least-significative-bit (LSB) to
determine the path to the subcodebook to use to decode Y .

CHAPTER 1. DISTRIBUTED AND ADAPTIVE SOURCE CODING 13

During the remaining of the chapter we will repeatedly talk about code-

words and codebooks, so the reader should have a clear understanding of

what is meant by these two terms. By codeword we denote the binary rep-

resentation for each of the symbols coming out from the quantizer. The

codebook is just the set of all possible codewords. Using the same nomen-

clature as in Appendix A, we can say that the codebook is the binary repre-

sentation of the alphabet whereas the codewords are the binary represen-

tations of the letters. Some times, we talk about codebooks at a particular

level, this is an abuse of language by which we denote the set of possible

codewords in that determinate level. For example, in Figure 1.2, a code-

word is represented by rj (j ∈ {0, · · · , 15}) while the codebook at level

0 is the set {r0, r1, r2, r3, · · · , r14, r15}. In Figure 1.2, the distance between

codewords at level i is 2iΔ.

Let us briefly illustrate, now, how encoder and decoder work:

• Encoder: The encoding operation is carried out by the sensing nodes.

It is preceded by the computation (in the sink node) of the number of

necessary bits i that are going to be requested to the sensors for the

data to be compressed. Once this number is computed (based on dif-

ferent parameters as probability of error, accuracy of previous predic-

tions,...) the sensor is asked to send its information compressed down

to this number of bits. Suppose the ADC returns the data sensed,

X
(j)
k , with n bits. The mapping from X

(j)
k to the compressed message

with the specified number of bits can be done through the following

deterministic mapping (1.1), resulting in new codewords belonging

to a subcodebook at level i.

f(X(j)
k) = index(X(j)

k)mod2i (1.1)

What we basically do with this mapping is to keep the i least sig-

nificative bits of the original data X
(j)
k . That is, we assume that the

estimated value of X
(j)
k is sufficiently accurate to predict the overall

behavior of the sensed data so that it is only needed a small amount

of information from the nodes to precisely determinate the value X
(j)
k .

This way of proceeding is called decoding with side-information, where

the side-information is the predicted value of X
(j)
k , Y (j)

k , computed at

CHAPTER 1. DISTRIBUTED AND ADAPTIVE SOURCE CODING 14

the decoder (the interested reader can find more information on this

topic in Appendix A).

• Decoder: The decoding operation is, obviously, performed at the data-

gathering node. When this node receives the requested data it starts

to traverse the tree using the information received to locate the ap-

propriate subcodebook S among all the possible ones at the level i at

which the data has been compressed to. This process starts with the

least-significant-bit (LSB) of f(X(j)
k). Once the suitable subcodebook

has been found, the decoder will use the side-information, Y
(j)
k , to

decode the closest value in S:

f(X(j)
k) = argminri∈S‖Y

(j)
k − ri‖ (1.2)

where ri stands for the ith codeword in S.

If we study more carefully how the tree structure of subcodebooks is con-

structed, we can appreciate that at level i, the different codewords within

the same subcodebook share the last i bits. This can be directly interpreted

as the fact that the estimate Y
(j)
k is not distinguishable among words of code

belonging to level i + 1 (or higher) so that it is necessary to have a finer de-

composition. Thus, buy asking for the i least significative bits, we are able

to rule out some codewords so that our subcodebook is small enough to

guarantee a correct decoding from the side-information.

In short, we assure that the prediction Y
(j)
k differs in less than 2i−1Δ from

X
(j)
k and we choose a subcodebook S whose codewords are at a distance

2iΔ from each other. In this way, a unique and successful decoding is

achieved.

Let us illustrate the coding/decoding process with a simple example. As-

sume we have the tree structure given by Fig. 1.2, where each codeword

in the codebook at level l = 0 is composed by four bits (the codebook has

sixteen elements). Let us also assume that the data-gathering node has in

some way computed the side-information Y
(j)
k and the number of bits to

which the data has to be compressed is i = 2. The process starts when

the sink node requests data to sensor j. The sensor node uses its ADC to

CHAPTER 1. DISTRIBUTED AND ADAPTIVE SOURCE CODING 15

obtain a 4-bit value X
(j)
k = 0.9 corresponding to codeword r9. The follow-

ing thing the sensor node does is to use the rule given by (1.1) to find the

mapping in the compressed domain: f(X(j)
k) = 9mod4 = 1. Thus, the en-

coder will send the two bits, {01}, to the k-th sink node. The sink node

will make use of the received message to descend by the tree and find the

suitable subcodebook S where to apply (1.2). It starts using the LSB ’1’

so that it breaks the root codebook (i.e., the codebook at level 0) down to

{r1, r3, r5, r7, r9, r11, r13, r15}. Afterwards it uses the second bit in the mes-

sage ’0’ to choose codebook {r1, r5, r9, r13} as S. It is now when the decoder

uses the side-information Y
(j)
k conveniently introduced in Eq. (1.2)

f(X(j)
k) = argminri∈S{0.7, 0.3, 0.1, 0.5}

to derive r9 as the decoded codeword, which is exactly the value sensed in

the node. Thus, we can see how transmission of the information has been

achieved by using only 2 bits instead of 4, as it would have been needed

without encoding.

1.3 Correlation tracking

In the previous section we assumed that some information, Y (j)
k , correlated

to the sensors readings, X
(j)
k , was available at the decoder for sensor j at

time k. The prediction can be done by a linear combination of different

measures available at the decoder and can be expressed as Eq. (1.3):

Y
(j)
k =

M∑
l=1

αlX
(j)
k−l +

j−1∑
i=1

βiX
(i)
k (1.3)

We can think of Y
(j)
k as a linear prediction based on past values of the sen-

sor whose measure is going to be predicted along with current values of

neighboring sensors. Hence, the main objective of the decoder is to derive

a good estimate of X
(j)
k for each sensor j.

To find the values αl and βi which minimize the mean square error (MSE), a

mathematical problem must be addressed. Let us start by representing the

prediction error as a random variable, Nj = Y
(j)
k − X

(j)
k . We can expand

CHAPTER 1. DISTRIBUTED AND ADAPTIVE SOURCE CODING 16

the mean square error as:

E
[
N2

j

]
= E

⎡
⎣
(

X
(j)
k −

(
M∑
l=1

αlX
(j)
k−l +

j−1∑
i=1

βiX
(i)
k

))2
⎤
⎦

= E
[
X

(j)2

k

]
− 2

M∑
l=1

αlE
[
X

(j)
k X

(j)
k−l

]

−2
N∑

i=1

βiE
[
X

(j)
k X

(i)
k

]
+ 2

M∑
l=1

j−1∑
i=1

αlβiE
[
X

(j)
k−lX

(i)
k

]

+
M∑

l,h=1

αlαhE
[
X

(j)
k−lX

(j)
k−h

]
+

j−1∑
i,h=1

βiβhE
[
X

(i)
k X

(h)
k

]
(1.4)

Now, if we assume that X
(j)
k and X

(i)
k are pairwise jointly wide sense sta-

tionary for i = 1, . . . , j − 1 then we can rewrite the mean square error as:

E[N2
j] = rxjxj (0) − 2PT

j Γj + ΓT
j Rj

zzΓj (1.5)

where the superscript T stands for the transpose and

Γj =
[

α1 α2 · · · αM β1 β2 · · · βj−1

]T
,

Pj =
[

rxjxj (1) rxjxj (2) · · · rxjxj (M) rxjx1(0) rxjx2(0) · · · rxjxj−1(0)
]T

and we use the notation rxjxi(l) = E[Xj
kXi

k+l]. We can express Rj
zz as:

Rj
zz =

[
Rxjxj Rxjxi

RT
xjxi Rxixi

]
(1.6)

where, in turn, Rxjxj is given as:

Rxjxj =

⎡
⎢⎢⎢⎢⎢⎣

rxjxj (0) rxjxj (1) · · · rxjxj (M − 1)

rxjxj (1) rxjxj (0) · · · rxjxj (M − 2)
...

...
. . .

...

rxjxj (M − 1) rxjxj (M − 2) · · · rxjxj (0)

⎤
⎥⎥⎥⎥⎥⎦ (1.7)

CHAPTER 1. DISTRIBUTED AND ADAPTIVE SOURCE CODING 17

and Rxjxi and Rxixi are given as:

Rxjxj =

⎡
⎢⎢⎢⎢⎢⎣

rxjx1(1) rxjx2(1) · · · rxjxj−1(1)

rxjx1(2) rxjx2(2) · · · rxjxj−1(2)
...

...
. . .

...

rxjx1(M) rxjx2(M) · · · rxjxj−1(M)

⎤
⎥⎥⎥⎥⎥⎦ (1.8)

Rxixi =

⎡
⎢⎢⎢⎢⎢⎣

rx1x1(0) rx1x2(0) · · · rx1xj−1(0)

rx2x1(0) rx2x2(0) · · · rx2xj−1(0)
...

...
. . .

...

rxj−1x1(0) rxj−1x2(0) · · · rxj−1xj−1(0)

⎤
⎥⎥⎥⎥⎥⎦ (1.9)

To find the optimal set of coefficients (represented by Γj) that minimizes the

mean square error, we differentiate Eq. (1.5) with respect to Γj to obtain:

∂E[N2
j]

∂Γj
=

∂
(
rxjxj (0) − 2PT

j Γj + ΓT
j Rj

zzΓj

)
∂Γj

=
∂
(
−2PT

j Γj

)
∂Γj

+
∂
(
ΓT

j Rj
zzΓj

)
∂Γj

= −2Pj +
[
RjT

zz + Rj
zz

]
Γj

= −2Pj + 2Rj
zzΓj (1.10)

Where basic matrix calculus has been employed:

∂(Ax + b)T C (Dx + e)
∂x

= AT C (Dx + e) + DT CT (Ax + b) (1.11)

Please note that in the formula above (1.11) upper case letters denote ma-

trixes while vectors are written in the lower case.

Setting (1.10) equals zero and solving, we obtain the standard Wiener esti-

mate:

Γj,opt = R−1,j
zz Pj (1.12)

If the assumption of stationarity held, then the data gathering could request

for uncoded data from all the sensors for the first K rounds of requests and

construct the correlation matrixes for their subsequent use in (1.12). By do-

ing this we would already have tracked the behavior of the system and we

CHAPTER 1. DISTRIBUTED AND ADAPTIVE SOURCE CODING 18

could employ the obtained set of coefficients for computing the side infor-

mation for each future round of requests. Thus, it would be only necessary

to calculate the standard Wiener estimate once, what would be really con-

venient given the extreme computational complexity of this calculus.

In practice, however, the statistics of the data may be (and actually they are)

time varying and as a result, the coefficient vector, Γj , must be continuously

adjusted to minimize the mean square error. One method of doing this is to

move Γj in the opposite direction of the gradient of the objective function

(i.e., the mean squared error) for each new sample received during round

k+1 (this method known in the literature as the ’Steepest Descent Method’):

Γ(k+1)
j = Γ(k)

j − μ∇(k)
j (1.13)

where ∇(k)
j is given by Eq. (1.10) and μ represents the step size of the Steep-

est Descent Method. The goal of this approach is to descend to the global

minima of the objective function. We are assured that such a minima exists

because the objective function is convex. In fact, it has been shown that if μ

is chosen correctly then (1.13) will converge to the optimal solution.

From (1.10) and (1.13) can be shown that the coefficient vector should be

updated following the rule:

Γ(k+1)
j = Γ(k)

j − 1
2
μ
(
−2Pj + 2Rj

zzΓ
(k)
j

)
(1.14)

However, in practice, the data gathering node will not have knowledge of

Pj and Rj
zz due to the computational complexity required for obtaining

them. Hence, it will be necessary to provide the algorithm with an efficient

method for estimating Pj and Rj
zz . One standard estimate is to use Pj =

CHAPTER 1. DISTRIBUTED AND ADAPTIVE SOURCE CODING 19

X
(j)
k Zk,j and Rzz = Zk,jZk,j with

Zk,j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
(j)
k−1

X
(j)
k−2

· · ·
X

(j)
k−M

X
(1)
k

X
(2)
k

· · ·
X

(j−1)
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

introducing these new terms, Eq. (1.14) remains as

Γ(k+1)
j = Γ(k)

j − μZk,j(−X
(j)
k + ZT

k,jΓ
(k)
j)

= Γ(k)
j + μZk,jNk,j (1.15)

where the second equality follows from the fact that Y
(j)
k = ZT

k,jΓ
(k)
j and

Nk,j = X
(j)
k − Y

(j)
k .

In practice the formulas above yield the following practical equations (well

known in the adaptive filtering literature as the Least-Mean-Squares (LMS)

algorithm):

1. Y
(j)
k = Γ(k)T

j Zk,j

2. Nk,j = X
(j)
k − Y

(j)
k

3. Γ(k+1)
j = Γ(k)

j + μZk,jNk,j

To use this algorithm, the data-gathering node will start asking the sens-

ing nodes for sending their data uncompressed during the first K rounds.

By doing this we ensure that the algorithm converges. Once this phase

has been carried out, we can consider that we have tracked the correlation

structure existing between the different nodes, so we can start to ask for

compressed data. This is done in two steps (as already shown): first, com-

puting the prediction of the data to be requested, for what we know that

Y
(j)
k = Γ(k)T

j Zk,j (recall that the statistics of the sources can change with

the time, so the vector of coefficients has to be continuously updated). The

CHAPTER 1. DISTRIBUTED AND ADAPTIVE SOURCE CODING 20

second step mentioned before, consists of obtaining the number of bits for

the data to be compressed to.

The decoder, in turn, will decode Y
(j)
k to the closest codeword in the sub-

codebook S as has already been seen, yielding X̂
(j)
k . From section 1.2 we

know that while 2i−1Δ > |Nk,j | and the encoder encodes X
(j)
k with i bits,

then, X̂
(j)
k = X

(j)
k and no decoding errors are made. However, if |Nk,j | >

2i−1Δ then a decoding error will occur. This fact can be used to try to find

a bound for the error committed during the prediction process. The most

straightforward method is to apply Chebyshev’s inequality

P
[|Nk,j | > 2i−1Δ

] ≤ σ2
Nj

(2i−1Δ)2
(1.16)

We adopt the realistic assumption that Nk,j is zero-mean and variance σ2
Nj

.

Thus, reading from Eq. (1.16), we deduce that we can take for the proba-

bility of error Pe any value greater or equal than
σ2

Nj

(2i−1Δ)2
so that we can be

sure that P
[|Nk,j | > 2i−1Δ

]
is fulfilled. We obviously take the equal in the

inequality so that the expression of the probability of error remains as

Pe =
σ2

Nj

(2i−1Δ)2
(1.17)

from where we can work the value of i out

i =
1
2

log2

(
σ2

Nj

Δ2Pe

)
+ 1 (1.18)

as the number of bits necessaries to ensure a probability of error less or

equal than Pe. Note that it is not necessary to be over-conservative when

choosing Pe because Chebyshev’s inequality is a loose bound.

If we look thoroughly at expression (1.18) we can appreciate the presence

of a new term not taken into account yet: the variance σ2
Nj

. This means

that the data gathering node must also maintain an estimate of σ2
Nj

. After

the initialization module (K iterations long), the data-gathering node can

initialize σ2
Nj

as

σ2
Nj

=
1

K − 1

K∑
i=1

N2
k,j (1.19)

CHAPTER 1. DISTRIBUTED AND ADAPTIVE SOURCE CODING 21

However, in the main module, the variance can be computed and updated

in a weighted way (filtered estimate) as

σ2
Nj ,new = (1 − γ)σ2

Nj ,old + γN2
k,j (1.20)

The choice of a filtered estimate is consequent with the time varying prop-

erties stated before, so we can adapt to changes in the statistics. γ is known

as the ”forgetting factor” and is a key value for the capacity of adapting to

changes in the statistics.

Beyond our scope stands the correction/detection of errors, even though,

two possible policies are suggested:

a) To detect errors, the use of a cyclic redundancy check (CRC) is proposed.

In this way, each sensor would be entitled to send a CRC formed with

its last m readings. Afterwards, the data-gathering node will perform

its own CRC, in case both of them do not match, the data-gathering

node will decide between dropping the m last readings or asking for

their retransmission.

b) Another option is to use error-correction codes, as could be the case of

using Reed-Solomon codes [9].

1.4 Querying and reporting algorithm

In this section, the algorithm to be implemented in the encoder and decoder

is reported. Note that, at the beginning of the algorithm, the data-gathering

node must gather enough information to track the correlation structure,

what is achieved by performing K rounds of readings (note that K should

be chosen large enough to allow the LMS algorithm convergence).

The data-gathering node should alternate the requests for ”uncompressed”

data among the nodes to ensure that every single node wastes the same

amount of energy.

CHAPTER 1. DISTRIBUTED AND ADAPTIVE SOURCE CODING 22

1.4.1 Data gathering node algorithm

The provided pseudocode basically expresses in programming language

what has been analyzed along the previous sections. The only novelty in-

troduced here is that, when carrying out the main module, it is necessary to

ask a sensor for its full uncompressed data to keep track of the real data en-

suring that the prediction is not producing erroneous estimates. However,

the request for uncoded data is alternated between the different sensors, so

that we can assure that the waste of energy is shared between sensors.

Once taken into account the previous considerations the pseudocode for

the data-gathering node is reported:

Pseudocode for data gathering node:

Initialization:

for (i = 0; i < K; i + +)

for (j = 0; j < num sensors; j + +)

Ask sensor j for its uncoded reading

end

for each pair of values i, j

update correlation parameters, using LMS and (1.19) equations.

end

end

Main Loop:

for (k = K; k < N ; k + +)

Request a sensor for uncoded reading

for each remaining sensor

determine number of bits, i, to request for using Eq. (1.18)

request for i bits

end

Decode data for each sensor.

Update correlation parameters for each sensor.

end

CHAPTER 1. DISTRIBUTED AND ADAPTIVE SOURCE CODING 23

1.4.2 Sensing nodes algorithm

Pseudocode for the sensor nodes is given below.

Pseudocode for sensor nodes:

for each request

Extract i from the request

Get X[n] from ADC

Transmit nmod2i

end

