
Chapter 4

Experimental results

In this section, an implementation of the algorithm previously presented is

carried out. The section is divided in three different subsections. In Section

4.1 a brief introduction to the sensors is given, followed by an explanation

of the experimental setup in 4.2 to finally present the results and conclu-

sions in Section 4.3.

4.1 Sensor description

The experiment was run onto Moteiv’s popular mote: Tmote Sky. Tmote

Sky is an ultra low power wireless module for use in sensor networks, mon-

itoring applications and rapid application prototyping, being a natural re-

placement for Moteiv’s previous product (Telos).

The module was designed to fit the size of two AA batteries from which

is powered. Although 2.1 to 3.6V DC cells are explicitly requested in the

datasheet ([26]) in the experiment 1.5V DC cells were used, as are the ones

provided along the motes. The sensors can also be powered from the USB

port of a computer (as is the case of the data-gathering node). In this case,

it is not necessary to use batteries.

Also, Telos module has been designed to provide a very low power opera-

tion, for what, between many other things, uses an ultra low power Texas

Instruments microcontroller (TI MSP430 F1611) featuring 10kB of RAM and
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Figure 4.1: Graphic display of the sensors used to run the experiment.

48kB of flash. The MSP430 has an internal digitally controlled oscillator

(DCO) that may operate up to 8MHz.

To be able to communicate with a PC through the USB port, Telos uses a

USB controller from FTDI which, of course, requires a previous installation

of FTDI’s drivers on the host. Furthermore, Windows users will need the

Virtual Com Port (VCP) drivers. These drivers are included on the Moteiv

CD shipped with your order or downloaded from FTDI’s website.

On the radio interface, Telos features the Chipcon CC2420 radio for wireless

communications. The CC2420 is an IEEE 802.15.4 compliant radio, being

highly configurable. Two antennas options are provided, an internal an-

tenna built into the module and an external SMA connector for connecting

to external antennas. By default, Telos is shipped with the internal antenna

enabled. Although not a perfect omnidirectional pattern, the antenna may

attain 50-meter range indoors and upwards of 125-meter range outdoors.

There are 4 optional sensors supported onboard:
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• The TSR (Total Solar Radiation) and PAR (Photosynthetically Active Ra-

diation) sensors measure using the microcontroller’s 12-bit ADC with

V ref = 1.5V . The photodiodes create a current through a 100kΩ re-

sistor. To calculate this current we can use Ohm’s Law:

I = Vsensor/100kΩ (4.1)

where Vsensor can be obtained as:

Vsensor = valueADC/4096 · V ref (4.2)

The Moteiv datasheet [26] includes curves for converting the photo-

diode’s current into light values (Lux)

• Humidity and Temperature sensors are located in the external Sen-

sirion sensor. Their readings can be converted to IS units as follows:

For temperature, the 14 bits value returned can be converted to Cel-

sius degrees as:

temperature = −39.60 + 0.01SOt (4.3)

where SOt is the raw output of the sensor.

Humidity is a 12-bit value that is not temperature compensated.

humidity = −4 + 0.0405SOrh + (−2.8 · 10−6)(SOrh2) (4.4)

where, same as before, SOrh is the raw output of the relative humid-

ity sensor. Using this calculation and the temperature measurement,

you can correct the humidity measurement with temperature com-

pensation:

humiditytrue = (Tc − 25)(0.01 + 0.00008SOrh) + humidity (4.5)

where Tc is the temperature measured in Celsius from equation (4.3),

SOrh is the raw output of the relative humidity sensor, and humidity

is the uncompensated value calculated in equation (4.4).
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4.2 Experimental setup

Several important variables have to be defined before we are able to run

the experiment of distributed source coding.

The first one is to decide how the WSN is deployed. Is straightforward to

choose the network architecture, since it is requested by the algorithm itself

to be as shown in Fig: 1.1. Furthermore, we choose the network to be com-

posed by five sensors to be able to compare results with those presented in

[3].

Since the data-gathering node is represented by a sensor plugged in the

USB port of the PC where the algorithm is run, we have now to decide

which interface are we going to choose for reading and writing to the USB

port and perform the necessary calculations. Here we have several possible

solutions being the most typical ones to write a suitable code in Java or

C. However, we decided to interface the motes with MATLAB. The main

reason being that MATLAB is a well known platform providing a complete

support for matrix processing and where we can reuse code for subsequent

simulations (see section: 4.4). We have provided a description on how to

interface MATLAB with TinyOS in Appendix B.

The experiment took place in the laboratory of the Automatic Control Group

(School of Electrical Engineering) at KTH. In Fig. 4.2 the location of each

sensor is shown. Each star denotes the position of the sensor with net-

work address the displayed number. Our application has been developed

on top of a multihop protocol so that direct line of sight is not required.

The routing protocol will build the routing tree having node with network

address zero as root, what means that all packets will be forwarded to this

node. Hence, the node zero (we will denote the sensors by their network

addresses) will be the one in charge for requesting data to a concrete node

and receiving and processing the correspondent answer. The computer to

which the Base Station (BS) is attached, will be the one responsible for track-

ing the correlation structure and determining when and which sensor must

be enquired.

In the experiment we will test the behavior of the algorithm subject to two
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Figure 4.2: Physical disposition of the sensors in the lab.

different environments: indoor and outdoors. The latter one was achieved

by opening the windows.

When computing the prediction for a determinate sensor we use its most

recent four past measures and the current value sensed by one of the re-

maining nodes. Mathematically, this is expressed as

Y
(j)
k =

4∑
l=1

αlX
(j)
k−l + X

(m)
k (4.6)

where, obviously, m �= j

To perform the experiment we chose the temperature as the magnitude to

be measured. From Section 4.1 we know that the ADC returns a 14 bit

value, and from Eq. (4.3) we derive that the dynamic range expands over

[−39.60, 124.23] ºC. But we still have to come up with the value of several

important variables as the step size, the value of K (length of the initial-

ization module), the sample time, the maximum waiting time (the time we

wait after a request for concluding whether a packet has been lost or not),...

Let us start by the step size μ and K (see Eqs. (1.13)(1.19)), since they are

closely related to each other. The value of μ and K will be given by the

initial conditions of the coefficients’ vector Γj and the characteristic time

of the signals sensed. Several simulations over real data yielded μ = 2.1 ·
10−4 as the quasi-optimal tradeoff value between speed of convergence and
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stationary error (following the original theory by Haykin [27] we initialize

Γj as the null vector). For K the value chosen was 30.

As sample time we chose 10 seconds (between measures belonging to one

self-same sensor), in other words, two sensors with consecutive network

addresses are enquired with a time difference of 2 seconds.

Finally, we set the value for the waiting timer to 3 seconds and the proba-

bility of decoding error to 0.01.

4.3 Analysis of the results

With the parameters defined in the previous section, we ran the experiment

during approximately one hour and a half to yield the results shown in

Figs. 4.3, 4.4 and 4.5. Let us give a small insight on each one of the subplots:

• Fig. 4.3 plots the value of the sensed data and its predictions during

the run of the experiment. Note that signals are perfectly tracked,

committing an unnoticeable error, so that we can only appreciate 5

different signals.
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Figure 4.3: Signals’ reconstruction.

• Fig. 4.4 shows the evolution of the error (difference between the de-

coded and the predicted value of the temperature) during the initial-

ization module. It can be appreciated how it barely takes 8 samples to
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track the signals with an error smaller than 0.05ºC what validates the

value chosen for the step size μ, and shows that we can decrease the

length of the initialization module (in other words, reduce K), with

the consequent increase of the compression rate.
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Figure 4.4: Error evolution.

• Fig. 4.5 is the most illustrative one when trying to show the reduction

achieved in the number of bits requested by means of the algorithm.

In the y-axis it shows the frequency with which a determinate number

of bits (in the x-axis) has been retrieved. We can realize how, without

any compression, this plot would be a single bar at value i = 14 with

frequency 1. However, thanks to the compression algorithm we have

been able to displace it to its right, being the new median of the dis-

tribution around value i = 6 (bits) for most of the sensors.

Now that we have a basic knowledge of what each figure means, it is

mandatory to make a joint analysis of the three figures without which the

potential of the compression algorithm would not be understood.

Initially the sink, where the prediction algorithm is carried out does not

have any information to compute the prediction. This is the reason why

at the beginning the difference between the real and the predicted values

is so large (see Fig. 4.4). As the BS starts to collect measurements from

several nodes, predictions become to be more and more accurate until they

reach an almost perfect estimate. Once the signals have been tracked, the

number of requested bits starts to decrease because the variance of the error
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Figure 4.5: Length of the data packets.

decreases as a consequence of the smaller prediction error (see Eq. 1.20). In

the experiment two kind of situations can be seen: the first one corresponds

to an indoor environment (for all the sensors from samples K=1:200), in

that moment, the window close to sensor 4 was opened (see Fig: 4.2 for

more information about the location of the sensors) so that the temperature

returned by this sensor (and number 5) reflects a decrease of its value at

the same time that the variance becomes higher, as is typical of an outdoor

environment. This can be easily appreciated in Fig. 4.3. We can see how

one sensor drastically decreases its temperature at the same time the rest

of sensors start to slowly decrease their sensed values of temperatures little

by little(due to the slow cooling of the room). In K = 500 the window

was closed again with the consequent stabilization and slow increase of

the temperature in the room.

In Table 4.1 we show the compression rate achieved during different mod-

ules of the experiment. Note that in the table, IM stands for Initiation Mod-
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ule (see Section )

Description Case Compression rate (%)

Whole experiment excluding IM k = K..600 37.8

Whole experiment including IM k = 0..600 36

All windows closed, no IM k = K..200 40.08

One window opened k = 200..500 34.76

Table 4.1: Analysis of the compression rate achieved.

Understanding Table 4.1 is of crucial importance for a deeper comprehen-

sion of the algorithm. Hence, we would like to highlight some aspects:

1. Including the Initialization Module in the computation yields a re-

duction in the compression rate achieved. In this way, a smaller value

of K (it can be set to 10 instead of 30) will perform better.

2. Stationarity of the signals yields more precise estimates. Thus, the

compression rate obtained when the windows are closed is higher

than that got when one window is open. This is easily understand-

able: the colder external temperature provokes a descend of the tem-

perature in the room. This change in the statistics of the temperature

has as a consequence a deviation between the real value and the pre-

dictions (increase of the error), whose ultimate consequence is the

increased number of bits requested.

4.4 Results of the simulation

In this section further studies on several parameters of the algorithm are

presented. The objective of carrying out this simulation work is threefold:

i) Overcome the always cumbersome and time consuming work of setting

up the network, ii) arrive at results comparable to those of the experiment

(which is unique and unrepeatable) by using the data obtained from this

one, iii) perform analysis impossible to carry out in reality.
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Simulations are performed in a similar way to that of the real experiment.

The structure of the MATLAB code is basically the same as in the exper-

iment but instead of requesting data to the correspondent node, it reads

the appropriate variable in a log file. Since the data used was recorded in

the experiment and we can assume that it faithfully represents the reality

(the decoding error is null as it will be shown in subsection 4.4.2), we can

consider this data as real.

Prior to going farther we should check the validity of the results given by

the simulator. To do this we just need to introduce the measures recorded

in the experiment into the simulator, which returns a compression ratio of

a 36%, value which fits in that attained in the real implementation.

Once the use of simulations has been motivated and validated, we can pro-

ceed to study the effect of several parameters on the compression rate and

the robustness to errors of the compression algorithm.

4.4.1 Effect of K and the number of sensors

Let us start our analysis with a parameter which obviously affects the over-

all compression rate: the length of the initialization module, K.

During the initialization module (IM) the sensors are asked to send their

data uncompressed. Thus, while IM is taking place, compression is not

being carried out. In Table 4.2 we show the compression rate achieved for

three different runs.

K Compression rate (%)

50 34.5

30 36

10 37.4

Table 4.2: Varying the value of K.

Simulations confirm what we already knew: the higher the value of K, the

smaller the compression rate. It should also be noted that the influence of

K in the final compression gain also depends on the relative value of K
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respect to the length of the simulation run (this can be appreciated in Table

4.3 if we consider one individual row).

An analysis of how the number of nodes affects the overall performance

was also carried out. The results have been displayed in Table 4.3, showing

that larger networks attain a better performance than smaller ones. Thus,

if we compare the compression gain for a WSN composed by 5 sensors and

another one having 200 nodes, we can easily see an improvement in the

compression gain of almost the 25%.

number of measures

number of sensors 600 5000 10000 30000 100000

5 37.37 37.93 37.97 37.99 38

20 44.38 45.04 45.09 45.12 45.13

50 45.78 46.47 46.51 46.54 46.55

100 46.25 46.94 46.98 47.02 47.03

200 46.48 47.18 47.22 47.26 47.27

Table 4.3: Optimizing the compression gain.

In Table 4.3, we assumed K = 10, and the IM was included for the cal-

culation of the compression gain. For computing the presented values we

considered the same distribution for the number of requested bits as the

one in the experiment.

4.4.2 Robustness to errors

In this section we check the robustness of the compression algorithm against

the two kinds of errors that can appear. The first type of error is a packet

loss. The second is a decoding error, which means that we decoded the

prediction to the erroneous codeword in the codebook. Each one of these

errors will be considered in the following items:

Packet loss There are two possible ways in which a packet loss can oc-

cur: malfunction of the temperature sensing device or transmission

loss. In principle, a packet loss could enormously affect the decoding
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and the correlation tracking processes, because this error propagates

along time (affecting those estimates that depend on this measure-

ment ). There are two possible policies to follow: use the prediction

on behalf of the sensed value or simply use the last correctly decoded

value for that sensor. We chose the latter one. For the simulations we

considered a bursty noise channel: the Gilbert-Elliott Channel model

[28], which is characterized by two states, the Good and the Bad state,

denoted by G and B. Let us express the probabilities of being in each

of these states as πG and πB . The wireless channel is modelled by

choosing the model parameters to match a concrete probability of

packet loss and the average burst length. The Gilbert-Elliott model

has been depicted in Fig. 4.6, where pij (i, j ∈ {g, b}) is the probabil-

ity of moving from state i to j, and pii the probability of remaining in

state i if the previous state was also i.

G

pgb

pbb
pgg

pbg

B

Figure 4.6: Gilbert-Elliott channel model.

From basic probability theory:

pgb + pgg = 1 (4.7)

pbb + pbg = 1 (4.8)

The Gilbert-Elliott Model is a first order, 2-state Hidden Markov Model,

thus we can write the transition matrix, M , as:

M =

[
pgg pgb

pbg pbb

]
(4.9)
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which, by using Eqs. (4.7)(4.8), can be rewritten as:

M =

[
pgg pgb

pbg pbb

]
=

[
1 − pgb pgb

pbg 1 − pbg

]
(4.10)

However, before proceeding, we have to find the relation between

the variables of our channel (average burst length, l, and probability

of packet loss, ppl) and the variables of the Gilbert-Elliott model (pbg

and pgb).

The first relationship is easy to calculate and can be shown to be:

l =
1

pbg
(4.11)

Calculating the second relationship is a little bit more laborious. Let

us start by writing the local balance equations along with the property

that the sum of all state probabilities has to be one:

pgbπG − pbgπB = 0 (4.12)

πG + πB = 1 (4.13)

It is immediate to verify that:

pgb =
pbgπB

1 − πB
(4.14)

Finally, by making use of eqs. (4.11) and (4.14) our model remains

totally determined by the parameters of the real channel:

pbg =
1
l

pgb =
πB

l (1 − πB)

Where we would like to highlight that the probability of packet loss

is the probability of being in the bad state, ppl = πB .

First of all, we should check if the simulated channel effectively cor-

responds to the one described by the design parameters. Thus, we

ran the simulations several times under different channel parameters

and analyzed the resulting systems. The output of these analysis are

shown in Table 4.4.
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Desired Channel Simulated Channel

πB l πB l

0.1 11 0.099 10.643

0.2 5 0.199 4.885

0.3 8 0.302 8.089

Table 4.4: Testing the channel.

The main reason for introducing the channel was to check the robust-

ness to packet losses of the compression algorithm. In Fig. 4.7 we can

graphically see the destructive effect of the bursts of errors. There are

two bursts spreading over the time ranges [474 − 493] and [503 − 518]

where the reception of packets is interrupted (it can be deduced that

we are dealing with bursts from the fact that the decoded data remain

constant, not being able to follow the evolution of the real data). As it

was programmed, we stick to the last correctly received temperature

measure, committing decoding errors during these ranges. To study

the performance of the algorithm in terms of probability of decoding

error, a set of simulations were carried out, the results being reported

in Table 4.5.

Average Burst Length

Packet Loss Rate 1 3 5 10 15

0 % 0 0 0 0 0

10 % 7.33 · 10−2 7.5 · 10−2 7.83 · 10−2 8.12 · 10−2 9.45 · 10−2

20 % 1.56 · 10−1 1.58 · 10−1 1.81 · 10−1 1.85 · 10−1 1.95 · 10−1

30 % 2.42 · 10−1 2.71 · 10−1 2.74 · 10−1 2.81 · 10−1 2.87 · 10−1

Table 4.5: Probability of decoding error for several experimental setups.

Prior to drawing any conclusions, it should be noticed that we are

superimposing the probability of packet losses to that of making a

decoding error due to the prediction and decoding algorithm (recall

that this probability was set to 0.01). Having this in mind, there are

three major results to be highlighted from Table 4.5:

a) The first one is to notice that for a probability of having zero packet
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Figure 4.7: Effect of the burst noisy channel.

losses, the algorithm is able to perform without doing any errors;

b) The second thing to highlight is that the longer the bursts, the

larger is the probability of decoding errors;

c) The third thing to remark is that for every simulation carried out,

the achieved probability of decoding error was smaller that the

actual packet losses;

From the previous observations we can conclude that the algorithm

is robust to packet loss.

Decoding error Anytime the decoded measure does not match the real

measure we say to have a decoding error. Recall we set the probabil-

ity of decoding error to be Pe = 0.01, and that it was a basic parameter

for choosing the number of bits we wanted to receive from the sensors

(1.18) along with the use of Chebyshev’s bound. It was also stated

that Chebyshev’s inequality was a too loose theoretic bound. The

purpose of this paragraph is to experimentally motivate this state-

ment. In this sense, a comparison between the tolerable noise and

the prediction noise was carried out. By tolerable noise we mean

the amount of noise that can exist between the prediction of a sensor
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reading and the actual sensor reading without inducing a decoding

error, and is calculated as 2i−1Δ, where i is the number of requested

bits and Δ is the quantization step. On the other hand, with pre-

diction noise we just denote the difference between the value of the

estimate and the actual sensor reading. A plot of the tolerable pre-

diction noise versus the actual prediction noise is given in Fig. 4.8.
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Figure 4.8: Tolerable versus prediction noise.

From Fig. 4.8 we can conclude that the tolerable noise is much higher

than the actual prediction noise. This is because we chose a non-

aggressive policy when determining the number of necessary bits to

request data to the sensors. If we choose a more aggressive policy, we

will be able to achieve an improved compression gain, but we will

also get closer to the probability of error we set. For example, for a

Pe = 0.01 we propose to use the following heuristic formula to calcu-

late the number of bits, instead of using (1.18).

i =
1
2

log2

(
σ2

Nj

Δ2Pe

)
+ 0.1 (4.15)

If we simulate once again with this new formula, we obtain a com-

pression gain of a 42% and a probability of error equals 9.67 · 10−3,

what clearly outperforms the results drawn when we used (1.18). If
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we plot again (Fig. 4.9) the tolerable noise versus the prediction noise

we can see how our margin has been reduced below the quantization

step.
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Figure 4.9: Tolerable versus prediction noise with improved number of requested
bits, i.


