De la que por iteración volveríamos a calcular ZV, ZT una vez calculados compararíamos con SAI1 que representa la profundidad de la fibra neutra en el limite de los dominios 2 y 3. Si PVM es mayor o igual, repetiríamos los cálculos suponiendo que el hormigón alcanza su rotura por compresión a flexión.

En el caso de que fuese menor comprobaríamos igual que antes la deformación de la fibra extrema del hormigón para ver si esta en el subdominio 2b y admitiríamos la solución. En otro caso deberíamos de calcular con el diagrama parábola rectángulo.

Por ultimo el momento de rotura podríamos expresarlo una vez conocida ZV y ZT como:

 $PERI(I) = 0.85 \times FCK \times (B \times ZV \times (HT(I) - RC - ZV/2) + S \times ZT \times (HT(I) - RC - ZV - ZT/2))/(GAC \times GAF)$

9.8 Aplicación numérica del momento de rotura en el subdominio 2a.-

Vamos a calcular el Momento de rotura de la sección adjunta cuyos datos vienen reflejados en las siguientes tablas:

Datos de la sección en mm			
Altura de la sección	HT(I)	1650	
Anchura de la cabeza	В	400	
Achura del alma	S	100	
Espesor de la cabeza	Т	70	

fig 9.13a

Sección Homogeneiz	uds		
Área de la sección	AHX(I)	220.966,00	mm2
Coordenada c.g. Respecto borde inf.	YGXI(I)	857,30	mm
Momento de Inercia	NIX(I)	6,99394940E+11	mm4

fig 9.13b

Datos de las armadura	uds		
Área de los alambres	mm2		
Distancia del c.g al borde inferior	RC	85,30	mm
Recubrimiento Armadura activa	DAP	30,00	mm
Fuerza residual de Pretensado	PKF	672,15	kN
Limite elástico	FPK	1.617,65	N/mm2
Coef. seg. E. limites agotamiento	GAS	1,10	-
Resistencia de calculo	FPD	1.470,59	N/mm2
Modulo de Elasticidad	EP	210,00	kN/mm2

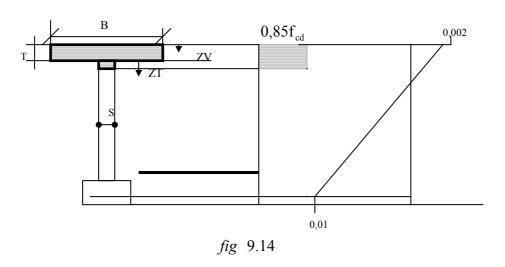
fig 9.13c

Datos relativos al hormigón			uds
Resistencia Característica	FCK	55,00	N/mm2
Coef. seg. E. limites agotamiento	GAC	1,50	-
Resistencia de calculo	FCD	36,67	N/mm2

fig 9.13d

Datos de las acciones exteriores		
Coef. seg. E. limites agotamiento	GAC	1,60

fig 9.13e



Vamos de acuerdo con la figura anterior a resolver la ecuación de equilibrio suponiendo que el acero de las armaduras activas trabajan FPD. La ecuación de equilibrio era:

$$0.85 \times FCK \times (ZV \times B + ZT \times S)/GAC - WT \times FP/GAS = 0$$

Que resuelta iterando nos da para ZV y ZT los valores de la tabla siguiente :

ZV	ZT	SA1S
70	26,7002202	-6,32636E-06

Vamos a comparar el valor SA1I = $\frac{0.0035 \times 0.8}{0.01 + 0.0035}$ (HT(I) – DAP) que representa la

separación entre los dominios 2 y 3 con el valor calculado para ZV + ZT

SA1I =
$$\frac{0.0035 \times 0.8}{0.01 + 0.0035}$$
 (1650 - 30) = 336,00 mm; PVM = 70 + 26,70 = 96,70, con lo

que es menor, PVM que SA1I. Calculemos ahora la profundidad en el limite ente los subdominios 2a y 2b.

$$x = 0.16667(1650 - 30) = 270.054$$
mm \Rightarrow PVM = $0.8 \times 270.054 = 216.0432$ mm Con lo que es PVM menor y por tanto nos encontramos en el subdominio 2a.

Debemos ahora comprobar que la hipótesis de que las armaduras trabajan a FPD es cierta, para ello calcularemos la deformación del acero de las armaduras activas en el limite elástico de calculo se tiene para ella $\frac{FP}{GAS \times EP} = \frac{1.470,59}{210000} = 0,0070028$;

Vamos a buscar la deformación correspondiente al hormigón que envuelve a las armaduras activas a nivel de su centro de presión, se tendrá suponiendo que nos encontramos en las hipótesis del dominio 2 :

$$E = 0.01 \times (1 - \frac{0.8 \times (RC - DAP)}{0.8 \times (HT(I) - DAP) - PVM})$$

En la que sustituyendo valores tendremos E = 0.009631118 que de por si sola sin sumar los términos de las deformaciones previas DFI y DFS es superior a la del limite elástico con lo que nuestra hipótesis de calculo original era cierta. Si ahora calculamos el Momento de rotura por la expresión:

$$PERI(I) = 0.85 \times FCK \times (B \times ZV \times (HT(I) - RC - ZV/2) + S \times ZT \times (HT(I) - RC - ZV - ZT/2))/(GAC \times GAF)$$

Sustituyendo valores tendremos:

Podemos ahora comprobar este momento con una formula sencilla que se utiliza para determinar el momento de rotura de las armaduras activas.

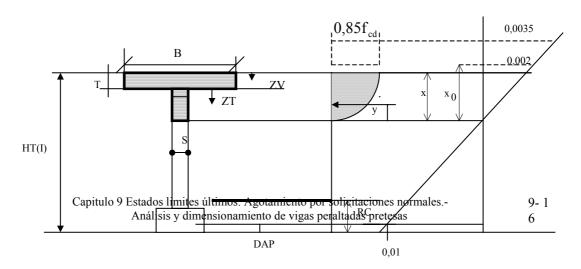
Momento de rotura armaduras activas = $0.9 \times (HT(I) - RC) \times WT \times FPRG$

En la que FPRG es la tensión de rotura garantizada por el fabricante

$$1770 \text{ N/mm}^2 \Rightarrow \frac{1770}{1,1} = 1609 \text{ N/mm}^2$$

Si sustituimos valores en la anterior se tendrá:

Vamos a trabajar con el método de la parábola rectángulo, suponiendo que estamos dentro del subdominio 2a.



Analizando la figura anterior podemos escribir teniendo en cuenta que ε_{cy} es la deformación en la fibra y, que ε_{c} corresponde a la deformación del hormigón en la fibra mas comprimida, podemos escribir:

$$\frac{\varepsilon_{\rm c}}{\rm x} = \frac{\varepsilon_{\rm cy}}{\rm y} = \frac{0.01}{\rm HT(I) - DAP - x} = \frac{0.002}{\rm x_0}$$

Podemos escribir ahora la tensión en la fibra y como:

$$\sigma_{cy} = 0.85 \times f_{cd} \times \frac{y}{x_0} \times (2 - \frac{y}{x_0})$$

en la que x_0 puede expresarse teniendo en cuenta la primera relación como:

$$\mathbf{x}_0 = \frac{\mathbf{HT}(\mathbf{I}) - \mathbf{DAP} - \mathbf{x}}{5}$$

La primera ecuación de equilibrio la de fuerzas se podrá expresar como:

$$N_c - WT \times \sigma_p = 0$$

En la que suponemos que $\sigma_p = \text{FPD/GASy N}_c$ el volumen de compresiones puede expresarse por:

$$\int_{0}^{x=ZV*ZT} 0.85 \times B \times f_{cd} \times \frac{y}{x_{0}} \times (2 - \frac{y}{x_{0}}) dy - \int_{0}^{ZT} 0.85 \times (B - S) \times f_{cd} \times \frac{y}{x_{0}} \times (2 - \frac{y}{x_{0}}) dy$$

que integrando y sustituyendo limites se tiene:

$$0.85 \times f_{cd} \times (B \times (\frac{(ZV + ZT)^2}{2x_0} - \frac{(ZV + ZT)^3}{3x_0^2}) - (B - S) \times (\frac{ZT^2}{2x_0} - \frac{ZT^3}{3x_0^2}))$$

con lo que la ecuación de equilibrio quedaría:

$$0.85 \times f_{cd} \times (B \times (\frac{(ZV + ZT)^{2}}{2x_{0}} - \frac{(ZV + ZT)^{3}}{3x_{0}^{2}}) - (B - S) \times (\frac{ZT^{2}}{2x_{0}} - \frac{ZT^{3}}{3x_{0}^{2}})) - WT \times \frac{FP}{GAS} = 0$$

que resolviéndola los siguientes

			por iteración nos da
ZV	ZT	SA1S	valores.
70	146,477084	8,17934E-06	

Vamos a comparar el valor SA1I = $\frac{0,0035}{0,01+0,0035}$ (HT(I) – DAP) que representa la separación entre los dominios 2 y 3 con el valor calculado para ZV + ZT

SA1I =
$$\frac{0,0035}{0,01+0,0035}$$
 (1650 - 30) = 420,00 mm; $x = 70+146,477 = 216,477$

con lo que x es menor, que SA1I. Conocemos la profundidad en el limite ente los subdominios 2a y 2b de los cálculos anteriores y su valor era.

$$x = 0.16667 \times (1650 - 30) = 270,054 \text{ mm}$$

Con lo que comparándola con la anterior (216,477) nos encontramos dentro del subdominio 2a.

Debemos ahora comprobar que la hipótesis de que las armaduras trabajan a FPD es cierta, para ello calcularemos la deformación del acero de las armaduras activas en el

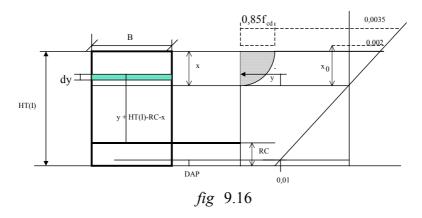
limite elástico de calculo se tiene para ella
$$\frac{FP}{GAS \times EP} = \frac{1.470,59}{210000} = 0,0070028$$
;

Vamos a buscar la deformación correspondiente al hormigón que envuelve a las armaduras activas a nivel de su centro de presión, se tendrá suponiendo que nos encontramos en las hipótesis del dominio 2 :

$$E = 0.01 \times (1 - \frac{(RC - DAP)}{(HT(I) - DAP) - (ZV + ZT)})$$

En la que sustituyendo valores tendremos E = 0,009605991, que de por si sola sin sumar los términos de las deformaciones previas DFI y DFS, es superior a la del limite elástico con lo que nuestra hipótesis de calculo original era cierta.

Vamos a formular el momento del hormigón respecto a las armaduras activas. Para ello vamos a usar el momento de una sección rectangular y luego con suma y resta obtendremos el de la sección en T. Consideremos la figura adjunta:



El momento de la rebanada de altura dy y espesor B respecto al centro de gravedad de la armadura activa vendrá dado por:

$$0.85f_{cd} \times B \times (y + HT(I) - RC - x)(\frac{2y}{x_0} - \frac{y^2}{x_0^2})dy$$

El momento del área comprimida podrá expresarse por:

Que integrada entre los limites y simplificada podemos expresar por :

$$0.85 \times f_{cd} \times B \times \left(\frac{x^4}{12x_0^2} - \frac{x^3}{3x_0} + (HT(I) - RC)(\frac{x^2}{x_0} - \frac{x^3}{3x_0^2}) \right)$$

Si llamamos M a:

$$M = 0.85 f_{cd} \times (y + HT(I) - RC - x) (\frac{2y}{x_0} - \frac{y^2}{x_0^2})$$

Podemos expresar ahora el momento de la sección en T por :

$$\int_{0}^{ZV+ZT} B \times M \ dy - \int_{0}^{ZT} B \times M \ dy + \int_{0}^{ZT} S \times M \ dy = \int_{0}^{ZV+ZT} B \times M \ dy - \int_{0}^{ZT} (B-S) \times M \ dy$$

Cuya integración conocemos en función de los limites (0,x) y tendríamos sustituyendo en cada intervalo:

$$\begin{split} M_R &= \frac{0.85 f_{cd} B}{GAF} \Biggl(\frac{(ZV + ZT)^4}{12 x_0^2} - \frac{(ZV + ZT)^3}{3 x_0} + (HT(I) - RC) (\frac{(ZV + ZT)^2}{x_0} - \frac{(ZV + ZT)^3}{3 x_0^2}) \Biggr) \\ &- \frac{0.85 f_{cd} (B - S)}{GAF} \Biggl(\frac{ZT^4}{12 x_0^2} - \frac{ZT^3}{3 x_0} + (HT(I) - RC) (\frac{ZT^2}{x_0} - \frac{ZT^3}{3 x_0^2}) \Biggr) \end{split}$$

En la que sustituyendo valores y operando tendríamos:

Podríamos ver la magnitud del error cometido con uno y otro método. La tabla siguiente compara resultados:

	comparación de errores		
	Rectángulo	Parábola	Error
Momento de Rotura	911,37	877,99	-3,80%
Posición fibra neutra x	120,88	216,48	44,16%
limite subdominios 2	270,05	270,05	0,00%
limite dominios 2 y 3	420,00	420,00	0,00%
def. fibra mas comp.	0,000806	0,001542	47,72%
def. a nivel armaduras activas	0,009631	0,009606	-0,26%

Los errores en cuanto al momento de rotura y deformación de las armaduras activas son pequeños comparados con los correspondientes a la deformación de la fibra mas comprimida y la posición de la fibra neutra, con lo que dependiendo para que, el método del rectángulo, tendrá que ser usado conociendo los niveles de error en los que se incurre.

9.9 Limitaciones de las armaduras longitudinales resistentes, para agotamiento por flexión simple o compuesta producido por las acciones exteriores excluida la acción del pretensado.-

Las armaduras resistentes longitudinales deberán cumplir en el supuesto del enunciado las siguientes limitaciones:

- Para secciones rectangulares:

$$WT(0,4\times\frac{FP}{GAS}-50)\times\frac{(HT(I)-RC)}{HT(I)-DAP}+A_s\times\frac{FYK}{GAS}\geq0,04\times\frac{FCK}{GAC}\times B\times HT(I)$$

- Para secciones en T, I cajón o similares:

$$WT(0,4 \times \frac{FP}{GAS} - 50) \times \frac{(HT(I) - RC)}{HT(I) - DAP} + A_s \times \frac{FYK}{GAS} \ge 0,15 \times \frac{FCK}{GAC} \times (B_0 \times T_0 + \frac{(B_0 + S)}{2} \times T_{01})$$

En la que el ultimo termino de esta expresión representa el área del ala o cabeza de tracción de la jacena.

Todas las unidades anteriores se expresan en Newton y centímetros.

Estas limitaciones impuestas a las armaduras longitudinales obedecen a la necesidad de evitar que debido a su poca cuantía no se asegure la transmisión de los esfuerzos en el momento en que se fisura el hormigón y pueda romperse la pieza sin previo aviso al alcanzarse en el hormigón su resistencia a la tracción.