Capítulo 5 Análisis de los resultados para un aluminio

Hasta ahora se ha desarrollado una serie de modelos más o menos sencillos y más o menos atractivos desde el punto de vista técnico. En el capítulo que comienza se pretende obtener los resultados de estos modelos para conocer la bondad de sus aplicaciones a problemas reales; en realidad, como se ha comentado en la presente Memoria, se aplican sobre un ensayo sencillo, definido en el Capítulo 2.

En primer lugar se definen las variables particulares para este ensayo, sean:

- el material;
- las geometría;
- las cargas;
- las variables de ensayo;

El siguiente paso consiste en la evaluación de las tensiones tanto en la superficie de contacto y sus alrededores, como a distintas profundidades para analizar su evolución. Lo que resta sería determinar los métodos de predicción y lanzar la aplicación que tiene asociada este Proyecto para que devuelva los resultados de aquéllos. Se fijan algunas hipótesis de partida que quedaban pendientes de los capítulos anteriores; aspectos importantes como el punto de iniciación de grieta en la zona de contacto que determina el cálculo de las tensiones y otros factores. Y como paso adicional, sería interesante comparar los resultados obtenidos del modelo (resultados teóricos) con los que se obtienen realmente de los ensayos.

5.1 Caracterización del ensayo

Un ensayo está caracterizado por cuatro grupos de datos: el material, la geometría del contacto y las cargas, y por otro lado las variables de ensayo. Se pretende independizar los primeros tres grupos del cuarto puesto que para un mismo conjunto de ellos (mismo material, misma geometría y mismas cargas), podemos efectuar varios ensayos, puesto que dentro del grupo de variables de ensayo se encuentran la longitud final de grieta y el espesor de probeta (que no forma parte de la geometría del contacto), que permite modificar las condiciones de ensayo lo suficiente como para describirlos como uno nuevo.

5.1.1 El material: Al7075T651

Se analizan los resultados para una aleación de aluminio del tipo Al7075T651, cuyas propiedades mecánicas principales se definen en la tabla 5.1, 5.2 y 5.3. Cada una de ellas alberga una información de carácter diferente.

PROPIEDAD	VALOR
Límite Elástico (LE, σ_y), [MPa]	503
Límite de Rotura (LR, σ_U), [MPa]	572
Límite de Fatiga (LF, σ_f), [MPa]	169
Módulo de Young (E), [GPa]	71
Coeficiente de Poisson	0.3
Tamaño típico de grano (D) [µm]	35
Coeficiente de rozamiento (µ)	0.75

Tabla 5.1: Propiedades mecánicas (I) para el Al7075T651

PROPIEDAD	VALOR
Coeficiente de Resistencia a fatiga (σ_{f} , MPa)	1610
Exponente de Resistencia a fatiga (b)	-0.1553

Tabla 5.2: Propiedades mecánicas (II) para el Al7075T651

PROPIEDAD	VALOR
Coeficiente de la Ley de Paris, c [Mpa m ^{0.5}]	8.8308e-11
Exponente de la Ley de Paris, n	3.3219
FIT Umbral para grieta larga (K _{th} ∞) [MPa m ^{0.5}]	2.2

Tabla 5.3: Propiedades mecánicas (III) para el Al7075T651

5.1.2 La geometría del contacto

Al tratarse de un contacto entre un cuerpo esférico y otro plano, la geometría queda completamente definida por el radio de la esfera que constituye el primero.

PROPIEDAD	VALOR
Radio de la esfera (R) [mm]	100

Tabla 5.4: Geometría del contacto

5.1.3 Las cargas

Este apartado constituye la principal variable del ensayo, ya que representa una de las magnitudes más importantes del problema. Se proponen los siguientes valores, tabla 5.5.

PROPIEDAD	VALOR
Carga Normal, P [N]	200
Carga Tangencial,Q [N]	±100
Tensión axial, σ_a [MPa]	±100

Tabla 5.5: Valores propuestos de las cargas.

5.1.4 Las variables de ensayo

Este grupo está compuesto por la longitud final de grieta y el espesor de probeta, cuyos valores se presentan en la tabla 5.6.

PROPIEDAD	VALOR
Longitud final de grieta (a _f) [mm]	5
Espesor de probeta (w) [mm]	10

Tabla 5.6: Variables de ensayo.

5.2 Tensiones en el contacto

Una vez caracterizado el ensayo, obtenemos el valor y la evolución del campo de tensiones sobre el contacto y sus alrededores. La representación de ello se lleva a cabo mediante gráficas en las que se tiene por ordenada el valor de tensión y por abscisas la longitud a lo largo de la cual se evalúan las tensiones, pero de forma adimensional a través del radio de la zona de contacto, a_C . En particular, se estudia la evolución de las tensiones en la dirección de la carga, el eje x (el sistema de coordenadas se mantiene a lo largo de todo este trabajo).

En primer lugar, y en vista de que se utiliza para adimensionalizar las variables longitudinales, se evalúa el radio de la zona de contacto y el coeficiente p_0 para adimensionar las tensiones:

$$a_c = 0.7272mm$$
 (5.1)

$$p_0 = \frac{3 \cdot P}{2 \cdot \pi \cdot a_C^2} = 180.59 \text{MPa}$$
(5.2)

El siguiente paso consiste en evaluar las tensiones para los estados extremos del ciclo de carga. En la figura 5.1 se muestra el ciclo de carga simétrico que tiene lugar; lo interesante es la definición de los estados A y B, que son lo casos extremos de máxima carga durante el ciclo.

Figura 5.1: Ciclo de carga. Estados A y B.

5.2.1 Tensiones para el Estado A

Se evalúan las tensiones para este estado en particular que se define con un valor máximo de la carga tangencial y uno mínimo de la tensión axial (ver figura 5.1).

En las gráficas 5.1-5.4 se trata de analizar la evolución de las componentes del tensor de tensiones de dos formas distintas: en primer lugar, a lo largo de la superficie de contacto (z=0), y en dicha zona pero desplazada una cierta profundidad adimensional. Se muestra la evolución para varios valores de la coordenada "z/a" ("z" adimensional) y se marca con un trazo algo más grueso la correspondiente a la superficie de contacto.

Para poder aprovechar al máximo la información que proporcionan las gráficas, se muestra en la figura 5.2 el sistema de ejes coordenados definidos en el Capítulo 2.

Memoria - Capítulo 5

ANÁLISIS DE LOS RESULTADOS PARA UN ALUMINIO

Figura 5.2: Sistema de coordenadas definidas en Capítulo 2.

Gráfica 5.1: Tensión normal en la dirección de la carga tangencial Q (σ_x/p_0) respecto de x/a_c para y=0.

Gráfica 5.2: Tensión normal en dirección perpendicular a la dirección de la carga tangencial Q ($\sigma_{\rm Y}/p_0$) frente a x/a_c para y=0.

Gráfica 5.3: Tensión normal en la dirección perpendicular a la superficie de contacto "z=0" (σ_z/p_0) frente a x/a_c para y=0.

Gráfica 5.4: Tensión tangencial τ_{XZ}/p_0 frente a x/a_C para y=0.

Como podrá observar el lector, las gráficas de las tensiones tangenciales correspondientes a τ_{XY} y τ_{YZ} no aparecen. Estas tensiones son nulas a lo largo de la dirección de la carga y con la profundidad para el plano *y*=0; sin embargo no tienen porque serlo para otros planos; por ejemplo, para planos³¹ *y*/*a*_C=0.2, 0.5 y 1.0, con *z*/*a*_C=0.2, 0.5 y 1.0; puede obtenerse la evolución de las gráficas 5.5-5.

³¹ Para valores negativos de la coordenada "y" se obtienen los mismo resultados debido a la simetría del problema según el plano y=0.

Memoria - Capítulo 5 Análisis de los resultados para un aluminio

Gráfica 5.5: Tensión tangencial τ_{XY}/p_0 en $z/a_c=0.2$.

Gráfica 5.6: Tensión tangencial $\tau_{YZ}/p_0 \operatorname{con} z/a_C = 0.2$.

Memoria - Capítulo 5 Análisis de los resultados para un aluminio

Gráfica 5.7: Tensión tangencial τ_{XY}/p_0 en $z/a_c=0.5$.

Gráfica 5.8: Tensión tangencial $\tau_{YZ}/p_0 \operatorname{con} z/a_C = 0.5$.

Memoria - Capítulo 5 Análisis de los resultados para un aluminio

Gráfica 5.9: Tensión tangencial τ_{XY}/p_0 en $z/a_c=1.0$.

Gráfica 5.10: Tensión tangencial $\tau_{YZ}/p_0 \operatorname{con} z/a_c = 1.0$.

Por otro lado, la evolución de las tensiones con la profundidad también representa un dato importante e interesante, como se comprobará después. Así pues, en las figuras 5.11-5.14 se muestra tal evolución para el límite de la zona de contacto donde se producen los valores extremos de las tensiones.

Memoria - Capítulo 5

ANÁLISIS DE LOS RESULTADOS PARA UN ALUMINIO

Gráfica 5.11: Gráfica de la tensión normal en la dirección de la carga tangencial $Q(\sigma_x/p_0)$ con la profundidad para $x/a_c=1.0$ e y=0.

Gráfica 5.12: Gráfica de la tensión normal en la dirección perpendicular a la de la carga tangencial $Q(\sigma_x/p_0)$ con la profundidad para $x/a_c=1.0$ e y=0.

Memoria - Capítulo 5

ANÁLISIS DE LOS RESULTADOS PARA UN ALUMINIO

Gráfica 5.13: Gráfica de la tensión normal en la dirección perpendicular a la superficie de contacto (σ_z/p_0) con la profundidad para $x/a_c=1.0$ e y=0.

Gráfica 5.14: Gráfica de la tensión tangencial (τ_{xz}/p_0) con la profundidad para $x/a_c=1.0 \text{ e } y=0.$

5.2.2 Tensiones para el Estado B

Se evalúan las tensiones para este estado en particular que se define con un valor mínimo de la carga tangencial y máximo de la tensión axial (ver figura 5.1).

Para las representaciones siguientes se sigue el mismo criterio que para las correspondientes al Estado A; es decir, las tensiones se evalúan a distintas profundidades sobre una misma línea (entre x/a_c =-2.0 y +2.0).

Gráfica 5.15: Tensión normal en la dirección de la carga tangencial Q (σ_x/p_0) respecto de x/a_c para y=0.

Gráfica 5.16: Tensión normal en dirección perpendicular a la dirección de la carga tangencial Q ($\sigma_{\rm Y}/p_0$) frente a x/a_C para y=0.

Gráfica 5.17: Tensión normal en la dirección perpendicular a la superficie de contacto "z=0" (σ_z/p_0) frente a x/a_c para y=0.

Gráfica 5.18: Tensión tangencial τ_{XZ}/p_0 frente a x/a_C para y=0.

Igual que en el Estado A, se estudia la evolución de las tensiones con la profundidad. Puede observarse dicha evolución en las gráficas 5.19-5.25.

Memoria - Capítulo 5

ANÁLISIS DE LOS RESULTADOS PARA UN ALUMINIO

Gráfica 5.19: Gráfica de la tensión normal en la dirección de la carga tangencial $Q(\sigma_x/p_0)$ con la profundidad para $x/a_c=1.0$ e y=0.

Gráfica 5.20: Gráfica de la tensión normal en la dirección perpendicular a la de la carga tangencial $Q(\sigma_y/p_0)$ con la profundidad para $x/a_c=1.0$ e y=0.

Memoria - Capítulo 5

ANÁLISIS DE LOS RESULTADOS PARA UN ALUMINIO

Gráfica 5.21: Gráfica de la tensión normal en la dirección perpendicular a la supeficie de contacto (σ_z/p_0) con la profundidad para $x/a_c=1.0$ e y=0.

Gráfica 5.22: Gráfica de la tensión tangencial (τ_{xz}/p_0) con la profundidad para $x/a_c=1.0 \text{ e } y=0.$

5.2.3 Comentarios acerca de las tensiones

Las gráficas anteriores muestran, por un lado, la evolución de las tensiones en una línea en la dirección de la carga y para varias profundidades, y por otro, la variación que

sufren con la profundidad, pero en ambos casos de forma general. Sin embargo, como autor del Proyecto me interesa llamar la atención sobre algunos aspectos importantes, sobre todo para comprender el desarrollo posterior. En este apartado se pretende llamar la atención del lector sobre estos asuntos importantes.

En primer lugar, observe el rango de variación de las tensiones normales, en particular de la tensión σ_x que va en la dirección de la carga; para ello acuda a la gráfica 5.1 y 5.15. En la primera se observa que el valor más extremo de la tensión ocurre en un valor cercano a $x/a_c=1.0$, y es negativo; en el otro caso, la tensión en el mismo lado tiene un valor positivo y alcanza el máximo justo en dicho punto. Esto es importante puesto que el rango de variación de las tensiones (diferencian entre las dos tensiones en cada punto) es alto, y por tanto un importante gradiente de tensiones que conlleva consecuencias, como hemos visto en capítulos anteriores. Esto mismo tiene lugar para la tensión σ_y pero en mucha menor medida³², mientras que para la tensión normal σ_z , la variación no es tan acusada a primera vista. En las gráficas 5.23, 5.24 y 5.25 pueden comprobarse estas afirmaciones a través del rango de las tensiones normales, incluso se observa cómo la diferencia entre tensiones tiene algunas características adicionales.

- En la zona de adherencia, la diferencia se mantiene en un valor constante, salvo para σ_z .
- El rango de variación de la tensión normal se va disminuyendo conforme aumenta la profundidad, hasta hacerse casi plano, lo cual quiere decir que el gradiente va desapareciendo con la profundidad y por tanto la zona más afectada por el fretting se encuentra en la superficie y alrededores.
- El valor extremo aparece en $x/a_c=1.0$.

 $^{^{32}}$ Se puede decir que la gráfica de la tensión σ_Y se parece bastante a la de σ_X pero desplazada y con menor rango de variación. De hecho, el comportamiento de la tensión normal perpendicular es parecido en esta situación al de la tensión normal en dirección de la carga, pero a menor escala.

Gráfica 5.23: Rango de variación de la tensión normal en la dirección de la carga $(\Delta \sigma_x/p_0)$, con x/a_c , para varios valores de z/a_c e y=0.

Gráfica 5.24: Rango de variación de la tensión normal perpendicular a la dirección de la carga ($\Delta \sigma_{\rm Y}/p_0$), con x/a_O para varios valores de z/a_C e y=0.

Gráfica 5.25: Rango de variación de la tensión normal ($\Delta \sigma_z/p_0$) en dirección *z*, con x/a_c , para varios valores de z/a_c e y=0.

Gráfica 5.26: Rango de variación de la tensión tangencial $\Delta \tau_{XZ}/p_0$, con x/a_{co} para varios valores de $z/a_c e y=0$.

Del mismo modo, en la figura 5.26, se muestra el caso de la tensión tangencial τ_{XZ} , se comprueba que es bastante alto, pero que con la profundidad disminuye hasta hacerse casi horizontal.

Otro dato importante se puede comprobar con las figura 5.4, 5.18 y consecuentemente con 5.26, y es que la tensión tangencial máxima ocurre en el límite de la zona de adhesión, justo en la frontera del deslizamiento. Esto es consecuencia del desarrollo que tuvo lugar en el Capítulo 3.

En lo referente a la variación con la profundidad, debe notarse que las tensiones más directamente implicadas en el crecimiento de grietas (las que "abren" o "cierran" la grieta) como es la tensión normal en la dirección de la carga, disminuyen su valor con la profundidad de forma muy acusada al principio y más suave a partir de una profundidad 1.5 veces el radio de la zona de contacto o incluso antes. Esto no sucede con la tensión normal a la superficie de contacto ni con la tensión tangencial, ya que en esos casos el máximo de la tensión no ocurre en $\chi=0$ sino a una cierta profundidad relativamente cercana (sobretodo en el caso de σ_Z).

Conclusiones

Como resultado del desarrollo anterior, se obtienen algunas ideas importantes:

- La tensión máxima tiene lugar con toda seguridad en el límite de la zona de contacto, o en una zona muy próxima al borde donde $x/a_c=1.0$; y a una profundidad también cercana a la superficie de contacto.
- El gradiente de tensiones (relacionado con el rango de variación) es elevado en la superficie de contacto, disminuyendo de forma rápida conforme aumenta la profundidad.
- Las tensiones originadas en el contacto tienen una fuerte dependencia con la profundidad, de tal manera que en las zonas cercanas a la superficie sufren una fuerte variación, y que a partir de una profundidad $z/a_c=2.0$ pueden considerarse casi constantes.

Estas conclusiones se usan en el apartado siguiente para la toma de decisiones externas al modelo.

5.3 Resultados de los modelos de predicción

Este apartado se constituye con los resultados más importantes del Capítulo 5: la predicción de vida para el Al7075T651. En primer lugar se mostrarán los resultados de los modelos basados en métodos de iniciación, para los que no se requiere más que el conocimiento del campo de tensiones y algunas propiedades del material; a continuación se realiza lo mismo para métodos de propagación, definiendo antes una serie de conceptos; y finalmente, los modelos combinados.

5.3.1 Resultados del cálculo con modelos de iniciación

Como se comentaba anteriormente, estos modelos no requieren más que el campo de tensiones y las propiedades del material definidas en el Capítulo 4. Los resultados para cada criterio se presentan como un conjunto de gráficas y un valor de la predicción de vida a iniciación. Dependiendo de cada método, se representan los parámetros principales del criterio (rango de tensiones tangenciales máximas, tensión normal asociada a un plano, etc) y el valor del parámetro, en gráficas independientes.

Criterio de McDiarmid

Para empezar, hacemos uso del criterio de McDiarmid, que se definió en el Capítulo 4. Los parámetros que se representan son: el rango de variación máximo de tensiones tangenciales y la tensión normal asociada al plano de máximo rango anterior; junto a éstos se representa el valor de la tensión equivalente de McDiarmid.

Gráfica 5.27: Rango de variación máximo de la tensión tangencial ($\Delta \tau/p_0$), con x/a_c en $z/a_c=0$ e y=0.

Gráfica 5.28: Tensión normal máxima (σ_{max}/p_0) para el plano donde se produce el máximo rango de variación de la tensión tangencial, con x/a_c en $z/a_c=0$ e y=0.

Gráfica 5.29: Parámetro del criterio de McDiarmid adimensionalizado con el término σ_F , con x/a_C en $z/a_C=0$ e y=0.

Como puede comprobarse, este criterio apunta al extremos $x/a_c=1.0$ como el punto más desfavorable de todos los de la superficie $z/a_c=0$. Cabe preguntarse qué ocurre a profundidades mayores, por tanto, se evalúa este criterio para ciertas profundidades; la gráfica 5.30 muestra la evolución del parámetro para profundidades comprendidas entre

 $z/a_c=0$ y 0.5, de forma que se comprueba que el máximo del parámetro ocurre en la superficie de contacto, justo en su límite para $x/a_c=1.0$.

En vista de estos resultados, se concluye que la iniciación se produce justo en el borde $x/a_c=1.0$, donde se alcanza el máximo del parámetro en la superficie de contacto. En la tabla 5.7 se muestra la estimación de vida para cada una de las profundidades que aparecen en la gráfica 5.30; podría evaluarse la vida a iniciación a lo largo de la misma línea que se hace el parámetro, pero el resultado sería el mismo que el obtenido en la gráfica 5.30, que el punto de menor vida tendría lugar en el borde positivo.

Profundidad (z/a_c)	Predicción de vida (número de ciclos)	
0.0	23,334	
0.1	324,610	
0.2	1,265,700	
0.3	2,785,400	
0.4	4,848,500	
0.5	7,235,700	

Tabla 5.7: Predicción de vida a iniciación para varias profundidades con el criterio de McDiarmid.

Gráfica 5.30: Parámetro de McDiarmid (adimensaionalizado con el término σ_F) para varias profundidades a lo largo de la línea $x/a_C e y=0$.

Criterio de Smith-Watson-Topper

En este caso, los parámetros que se representan son un tanto especiales, puesto que si se hace memoria (recordando el Capítulo 4), el lector recordará que en este criterio lo que se maximiza es un producto entre el rango de deformaciones normales y la tensión máxima asociada a su plano. Por tanto, los parámetros representados que son el rango de deformaciones y la tensión normal máxima asociada a su plano, no tienen porqué ser máximos a priori, puesto que lo que es máximo es su producto. En la gráfica 5.31 y 5.32 se muestra sus evoluciones a lo largo de una línea, mientras que en la 5.33 aparece el valor del parámetro.

Gráfica 5.31: Rango de deformaciones normales ($\Delta \epsilon$) para el criterio de Smith-Watson-Topper en la línea de x/a_c y en la superficie de contacto (con y=0).

Gráfica 5.32: Tensión normal máxima (σ_{max}/p_0) asociada al plano de rango de

deformaciones en el criterio de Smith-Watson-Topper, en una línea de x/a_c y en la superficie de contacto (y=0).

Gráfica 5.33: Parámetro de Smith-Watson-Topper adimensionalizado con el término $\sigma_F^2/(2\cdot E)$, para una línea de x/a_C y en la superficie de contacto (y=0).

Si se evalúa este criterio para distintas profundidades, se obtiene el resultado de la gráfica 5.34. Como puede comprobarse, el máximo aparece nuevamente en la superficie de contacto y en el borde $x/a_c=1.0$; cuando la profundidad aumenta, el valor del parámetro disminuye enormemente, pero el máximo parece mantenerse entorno a dicho punto.

Gráfica 5.34: Parámetro SWT adimensionalizado con el término $\sigma_F^2/(2\cdot E)$, para distintas profundidades (z/a_c) en una línea de $x/a_c e y=0$.

Del mismo modo que con el criterio de McDiarmid, se presenta en la tabla 5.8 los valores de la predicción de vida para distintas profundidades.

Profundidad (z/a_c)	Predicción de vida (número de ciclos)
0.0	22,100
0.1	634,600
0.2	2,194,100
0.3	4,591,500
0.4	7,407,700
0.5	10,253,000

Tabla 5.8: Predicción de vida a iniciación para varias profundidades con el criterio de Smith-Watson-Topper.

Criterio de Crossland

Este criterio tiene de particular que tan sólo requiere de las tensiones y por tanto sólo podemos representar el valor del parámetro. La gráfica 5.35 muestra dicha evolución en las mismas condiciones que en los anteriores criterios: sobre la superficie de contacto y en una línea a lo largo de x/a_C .

Memoria - Capítulo 5 Análisis de los resultados para un aluminio

Gráfica 5.35: Parámetro de Crossland (adimensionalizado con el término σ_F) en la superficie de contacto y a lo largo de una línea en $x/a_C e_Y=0$.

Como puede observarse en la gráfica 5.35, este criterio tiene de especial que el máximo no se produce en el borde de la zona de contacto, sino en el interior para un valor de $x/a_c=0.6$ aproximadamente, según se aprecia en la gráfica 5.36. En principio este resultado es contrario al obtenido en los anteriores criterios, sin embargo no tiene porqué ser menos cierto. Sobre estas y otras consideraciones acerca de la hipótesis de iniciación de la grieta se discute en el apartado siguiente.

MEMORIA - CAPÍTULO 5

ANÁLISIS DE LOS RESULTADOS PARA UN ALUMINIO

Gráfica 5.36: Máximo del criterio de Crossland (adimensionalizado con el término σ_F) en la superficie de contacto. Detalle.

La gráfica 5.37 muestra la evolución del parámetro con la profundidad. Puede observarse que los máximos en cada curva disminuyen con la profundidad como en los anteriores criterios, pero no tienen lugar en el límite de la zona de contacto, como se comentaba anteriormente.

Gráfica 5.37: Parámetro de Crossland (adimensionalizado con el término σ_F) para distintas profundidades en una línea de $x/a_c e y=0$.

En la tabla 5.9 se presenta la predicción de vida según el método basado en el criterio de Crossland para el punto donde se produce el máximo del parámetro. Si se desea la predicción para un mismo punto en todos los criterios, puede acudirse a la tabla 5.10 resumen de todos los métodos, donde el criterio de Crossland aparece en dos columnas, una para el valor máximo del parámetro y otra para el punto común a los otros criterios, el borde de la zona de contacto.

Profundidad (z/a_c)	Predicción de vida (número de ciclos)	
0.0	15,723	
0.1	113,490	
0.2	439,460	
0.3	975,770	
0.4	1,741,000	
0.5	2,755,600	

Tabla 5.9: Predicción de vida a iniciación para varias profundidades con el criterio de Crossland.

Profundidad	Predicción de vida (número de ciclos)			
(z/a_c)	McDiarmid (maximo) (1)	SWT (máximo) (2)	Crossland (en el borde) (3)	Crossland (máximo) (4)
0.0	23,334	22,100	50,328	15,723
0.1	32,461	634,600	361,760	113,490
0.2	1,265,700	2,194,100	920,860	439,460
0.3	2,785,400	4,591,500	1,888,300	975,770
0.4	4,848,500	7,407,700	3,326,700	1,741,000
0.5	7,235,700	10,253,000	5,188,400	2,755,600

Tabla 5.10: Tabla resumen de la predicción de vida por métodos basados en la iniciación de grietas.

ANÁLISIS DE LOS RESULTADOS PARA UN ALUMINIO

Figura 5.38: Predicción de vida de los métodos basados en la iniciación.

De la tabla anterior y la gráfica 5.38, pueden extraerse algunas conclusiones interesantes. En primer lugar, el valor más restrictivo de la vida a iniciación lo proporciona el método (4). La predicción obtenida para la superficie de contacto entre los métodos (1) y (2) es bastante similar, presentando diferencia con la obtenida con los métodos (3) y (4); la predicción más esperanzadora se obtiene con (3). Esto no ocurre así a una profundidad distinta, ya que los métodos (1) y (2) divergen, y el método (3) deja de ser el más esperanzador; sin embargo, el método (4) continúa siendo el más restrictivo.

5.3.2 Resultados del cálculo con modelos de propagación desde un defecto

Se presentan en este apartado los resultados de aplicar los modelos de propagación a un ensayo en concreto. A pesar de haber definido completamente el ensayo en apartados anteriores de este mismo capítulo, deben especificarse una serie de variables adicionales para hacer funcionar estos modelos. Se trata del punto de iniciación de la grieta así como de su longitud de iniciación.

Iniciación de grieta

En los resultados de este apartado se supone que la grieta se ha iniciado en el borde de la zona de contacto en el punto $x/a_c=1.0$; la longitud de iniciación de grieta, que es un parámetro dependiente del material, se toma como 5 µm.

Este punto de partida es necesario para el lanzamiento de los modelos de propagación; sin embargo, no tiene porqué ser único, ya que pueden adoptarse varias posibilidades. Por ello, en el Anexo VI se describen los fundamentos de la opción elegida así como las hipótesis que se asumen.

Resumen de resultados

Se presentan a continuación los resultados de cada una de las leyes propuestas en el Capítulo 4; se hace referencia a cada ley a través de su abreviatura.

Las figuras 5.39 y 5.40 muestran el FIT, y en la 5.41 las distintas velocidades de crecimiento para cada una de las leyes del Capítulo 4. Las leyes se nombran por su abreviatura, igualmente definida en el capítulo anterior. Se muestran las velocidades de crecimiento todas a la vez en escala logarítmica para que aprecien las diferencias. Observe el lector las notables diferencias entre las velocidades al inicio de la grieta y cómo se atenúan al llegar a la longitud final, donde son prácticamente iguales.

Al inicio de la grieta, las diferencias entre las leyes permiten agruparlas en dos partes; la primera contiene las leyes PS, UM1 y UM2; y la segunda a FM1 y FM2. En la tabla 5.11 pueden observarse las consecuencias de estas diferencias: las leyes que muestran un crecimiento mayor en la zona inicial de la grieta (el segundo grupo), proporcionan una predicción de vida mucho menor que las restantes. Como cabe esperar, la primera parte del crecimiento es mucho más influyente que las restantes sobre la predicción de vida.

Gráfica 5.39: Factor de Intensidad de Tensiones (FIT) (1).

MEMORIA - CAPÍTULO 5

ANÁLISIS DE LOS RESULTADOS PARA UN ALUMINIO

Gráfica 5.40: Factor de Intensidad de Tensiones (FIT) (2).

Gráfica 5.41: Velocidad de crecimiento de grietas para Al7075T651.

Ley	Predicción de vida (número de ciclos)
PS	223.7812e+03
UM1	257.4685e+03
UM2	281.0118e+03
FM1	136.2882e+03
FM2	187.6256e+03

Tabla 5.11: Resumen de la predicción de vida con modelos de propagación de grietas.

5.3.3 Resultados del cálculo con modelos combinados de iniciación y propagación

Estos resultados son los más interesantes de todos, ya que permiten comparar directamente con los obtenidos en el laboratorio. En ellos participan los modelos anteriores de alguna forma, pero gobernados por un control que hace que el modelo resultante sea más complejo al mismo tiempo que proporciona mejores resultados.

Los resultados sobre el material elegido se representan de forma que pueda apreciarse en cada punto qué importancia tiene cada fenómeno (iniciación y propagación). Por otro lado se comparan los resultados globales, es decir, la predicción de vida obtenida a partir de cada método, con valores de vida obtenidos para algunos ensayos (datos experimentales).

La tabla 5.12 muestra los resultados para el ensayo del que se ha hecho uso en los anteriores apartados. Puede comprobarse que la predicción por los métodos que utilizan las leyes FM1 y FM2 resulta la más restrictiva de todas.

Método de		Número de	Número de	Predicción	% De	Longitud de
cálculo		iniciación	propagación	(ciclos)	iniciación	iniciación
careato		(1)	(2)	(3)	(4)	(µm)
	PS	64831.09	197432.81	262263.90	24.72	10.1804
	UM1	74506.57	213759.06	288265.63	25.85	13.0890
McD	UM2	74506.57	233983.74	308490.35	24.15	13.0890
	FM1	23353.75	137163.39	160517.14	14.55	7.27e-6
	FM2	23353.75	188641.28	211995.03	11.02	7.27e-6
	PS	66946.14	203527.22	270473.36	24.75	8.7260
	UM1	73391.05	224945.55	298336.61	24.60	10.1804
SWT	UM2	79979.64	239639.88	319619.52	25.02	11.6347
	FM1	22121.96	137163.39	159285.35	13.89	7.27e-6
	FM2	22121.96	188641.28	210763.24	10.50	7.27e-6
Cross	PS	104852.88	197432.81	302285.68	34.69	10.1804
	UM1	110308.35	218845.93	329154.29	33.51	11.3347
	UM2	115700.81	233983.77	349684.59	33.09	13.0890
	FM1	50328.75	137163.39	187492.15	26.84	7.27e-6
	FM2	50328.75	188641.28	238970.03	21.06	7.27e-6

Tabla 5.12: Resumen de resultados para modelos combinados.

Memoria - Capítulo 5 Análisis de los resultados para un aluminio

Los métodos que modifican el FIT influyen fuertemente sobre la parte inicial del crecimiento (véase gráfica 5.41). Además, el valor de la longitud inicial de grieta –que sirve de transición entre las fases de iniciación y propagación– se comprueba que es prácticamente cero para estos métodos (FM1 y FM2), y por tanto la propagación representa la fase que domina desde el principio. Los resultados obtenidos para el resto de métodos son más acordes entre sí, ya que proporcionan una vida similar (para aquéllos que usan el mismo criterio de iniciación) y una longitud de iniciación que a priori parece razonable; incluso en el caso de criterios de iniciación diferentes, la predicción se ve afectada tal y como cabía esperar a tenor de las conclusiones del apartado de los modelos de iniciación.

Comparación con datos experimentales

El paso siguiente consiste en comparar los resultados obtenidos con este material con datos provinentes de ensayos de laboratorio. En primer lugar se presentan los datos de estos ensayos, y seguidamente los resultados de la simulación por medio de la aplicación asociada a este proyecto.

En la tabla 5.13 se encuentran los datos experimentales con los que se comparará el modelo. Éstos han sido proporcionados por el Departamento de Ingeniería Mecánica y de los Materiales de la Escuela Superior de Ingenieros de Sevilla. Observe el lector que los valores de las carga varían entre ensayos y por tanto es necesario volver a lanzar el modelo propuesto para poder comparar resultados.

Ensayo	P(N)	Q(N)	σ _a (MPa)	μ	VIDA (ciclos)	Prof.final (mm)
1	230	117	82.5	1.25	413374	5
2	230	109	81.7	1	398056	5
3	230	121	81.6	0.65	1101329	5
4	230	127	111.6	1.25	210934	5
5	230	122	111.3	1	183520	5
6	230	120	111	0.65	305199	5
7	120	67	111	1.25	221537	5
8	120	65	110.7	1	224915	5
9	120	64	110.2	0.65	450639	5
10	70	29	110	1.25	326391	5
11	70	36	110.6	1	273771	5
12	70	36	110.5	0.65	356037	5
13	420	207	68.3	1.25	587516	5
14	420	177	66.77	1	597776	5
15	420	186	66.6	0.65	811370	5
16	120	59.7	82.5	1.25	722298	5
17	120	55.5	82.6	1	568673	5
18	120	61	82.6	0.65	696204	5
19	230	119.5	67.9	1.25	607558	5
20	230	119.5	68.35	1	612464	5
21	230	122.5	68	0.65	720665	5
22	120	62.5	67.9	1.25	1054787	5
23	120	57	69.5	1	611476	5
24	120	55	67.85	0.65	1093003	5
25	420	213	81.9	1.25	403948	5

MEMORIA - CAPÍTULO 5

ANÁLISIS DE LOS RESULTADOS PARA UN ALUMINIO

Ensayo	P(N)	Q(N)	σ _a (MPa)	μ	VIDA (ciclos)	Prof.final (mm)
26	420	205	81.8	1	361248	5
27	420	211	82.9	0.65	414420	5
28	420	197	60	1.25	753283	5
29	420	212	59.8	1	688660	5
30	420	219	59.6	0.65	806342	5
31	340	165	59.85	1.25	702819	5
32	340	169	59.95	1	1055920	5
33	340	167	59.9	0.65	1391262	5
34	300	141	60.3	1.25	782431	5

Tabla 5.13: Datos experimentales de ensayos de fatiga por fretting.

Los resultados obtenidos se pueden comparar de forma visual en la gráfica 5.42 y 5.43, sin embargo, para poder acceder a la información más correctamente, se muestran también tabulados en las páginas siguientes.

Gráfica 5.42: Comparativa de ensayos con resultados del modelo combinados.

Memoria - Capítulo 5

ANÁLISIS DE LOS RESULTADOS PARA UN ALUMINIO

Gráfica 5.43: Diferencias entre datos experimentales y teóricos para cada ensayo: diferencia media, mínima y máxima entre el valor del ensayo y todas las predicicones.

Ensavo	Nt-EXP			McD					SWT			Cross				
Ensayo		PS	UM1	UM2	FM1	FM2	PS	UM1	UM2	FM1	FM2	PS	UM1	UM2	FM1	FM2
1	413,374	353,984	393,887	409,088	295,502	355,483	358,495	398,780	414,137	295,629	355,610	381,527	422,278	437,817	305,826	365,808
2	398,056	425,610	482,655	509,756	342,649	421,927	432,640	490,345	518,108	342,440	421,718	469,154	527,835	555,598	363,444	442,721
3	1,101,329	501,868	570,671	621,584	362,960	459,581	513,380	586,274	639,812	359,665	456,285	568,711	638,622	689,869	412,772	509,393
4	210,934	143,571	149,913	152,787	107,497	129,146	146,033	152,579	155,569	107,566	129,215	155,400	162,073	165,089	111,880	133,529
5	183,520	166,415	174,931	179,556	118,478	144,338	170,120	179,009	183,751	118,421	144,281	183,009	191,889	196,631	126,464	152,324
6	305,199	232,555	248,866	261,109	149,160	187,183	240,057	257,636	270,761	147,625	185,647	259,807	275,787	287,745	171,187	209,210
7	221,537	202,376	217,085	225,920	137,883	174,081	206,538	221,782	230,928	138,054	174,252	225,352	240,852	250,153	147,671	183,869
8	224,915	240,357	260,474	274,976	154,749	198,638	246,460	267,794	282,614	154,639	198,528	271,783	293,049	307,868	171,859	215,748
9	450,639	363,782	406,844	450,856	213,532	285,877	375,808	423,458	470,618	210,272	282,618	414,776	457,354	500,582	258,616	330,962

Easter	N4 EVD	McD							SWT			Cross				
Ensayo	INT-EAP	PS	UM1	UM2	FM1	FM2	PS	UM1	UM2	FM1	FM2	PS	UM1	UM2	FM1	FM2
10	326,391	336,582	384,689	426,767	208,541	290,368	343,977	393,895	437,041	208,906	290,733	387,986	439,095	482,543	233,284	315,111
11	273,771	344,592	390,748	434,238	204,342	281,063	354,181	402,845	447,325	204,123	280,844	399,173	447,590	491,938	236,874	313,595
12	356,037	538,198	641,221	802,717	301,328	453,589	556,931	670,478	842,767	295,398	447,658	622,750	722,268	877,836	380,369	532,630
13	587,516	470,534	532,450	546,024	447,110	511,307	473,811	535,954	549,632	447,171	511,367	490,285	552,709	566,497	453,685	517,881
14	597,776	636,401	761,345	797,143	616,323	727,117	641,892	767,594	803,711	616,085	726,879	675,047	801,746	838,052	633,111	743,905
15	811,370	702,803	832,245	887,379	623,120	749,952	712,703	845,261	901,524	620,135	746,968	772,546	903,719	959,385	669,266	796,098
16	722,298	501,110	598,487	662,006	397,561	527,306	509,489	608,406	672,459	397,904	527,649	560,672	661,555	726,056	423,163	552,908
17	568,673	604,160	743,413	865,471	456,920	640 , 880	616,531	758,599	882,887	456,449	640,409	695,717	839,521	963,810	505,456	689,416
18	696,204	803,683	1,017,947	1,439,854	546,088	897,008	825,018	1,055,011	1,490,195	538,099	889,020	948,683	1,166,353	1,586,542	661,903	1,012,823

F	Nt-EXP	McD							SWT			Cross				
Ensayo		PS	UM1	UM2	FM1	FM2	PS	UM1	UM2	FM1	FM2	PS	UM1	UM2	FM1	FM2
19	607,558	588,919	706,087	746,425	554,066	669,963	594,595	712,521	753,140	554,240	670,136	628,476	747,280	788,194	569,066	684,963
20	612,464	619,805	741,574	791,512	557,866	682,875	627,866	751,388	801,875	557,637	682,646	675,604	799,585	850,651	584,214	709,223
21	720,665	768,825	932,348	1,052,018	625,148	806,230	783,594	953,260	1,076,796	620,394	801,476	871,410	1,037,242	1,158,464	699,141	880,222
22	1,054,787	811,620	1,103,755	1,319,126	780,427	1,109,238	822,709	1,117,878	1,333,322	780,920	1,109,731	899,964	1,198,861	1,415,285	818,599	1,147,410
23	611,476	936,131	1,318,026	1,785,537	859,189	1,395,820	951,746	1,339,708	1,810,609	858,468	1,395,100	1,073,560	1,465,934	1,938,221	932,424	1,469,055
24	1,093,003	1,457,035	2,388,464	2,357,569	1,312,128	17,083,610	1,488,863	2,460,057	2,086,584	1,296,446	36,328,330	1,760,582	2,706,382	2,040,637	1,543,013	11,380,699
25	403,948	274,407	294,226	299,169	240,583	275,412	276,919	296,861	301,915	240,631	275,460	287,873	307,963	313,083	245,006	279,835
26	361,248	303,989	327,835	335,077	258,513	299,257	307,699	332,056	339,426	258,427	299,172	323,935	348,305	355,809	266,994	307,738
27	414,420	343,589	371,447	384,751	266,308	315,501	350,451	379,567	393,800	264,831	314,023	376,368	404,721	418,265	289,117	338,309

Ensayo	Nt-EXP	McD							SWT			Cross				
Ensayo		PS	UM1	UM2	FM1	FM2	PS	UM1	UM2	FM1	FM2	PS	UM1	UM2	FM1	FM2
28	753,283	722,788	888,576	924,951	758,526	877,172	726,852	893,042	929,577	758,591	877,238	749,727	916,441	953,147	767,622	886,269
29	688 , 660	682,110	812,372	841,152	682,419	783,403	687,313	818,290	847,498	682,275	783,260	715,660	846,860	876,132	696,643	797,628
30	806,342	741,780	873,926	917,386	684,579	799,545	751,442	885,228	930,464	682,095	797,061	802,403	935,536	979,845	724,874	839,840
31	702,819	759,867	954,774	1,004,606	800,717	943,215	764,849	960,328	1,010,380	800,818	943,316	793,656	989,883	1,040,169	812,610	955,108
32	1,055,920	763,940	944,966	995,273	773,110	912,273	770,629	952,642	1,003,448	772,900	912,064	809,909	993,077	1,043,883	793,536	932,700
33	1,391,262	905,490	1,130,506	1,233,076	847,993	1,039,501	917,957	1,146,748	1,251,663	844,023	1,035,530	998,907	1,225,854	1,329,839	911,109	1,102,617
34	782,431	817,872	1,064,776	1,140,343	877,203	1,061,401	823,361	1,071,051	1,146,917	877,323	1,061,522	859,399	1,108,115	1,184,299	892,413	1,076,612

Tabla 5.14: Resumen de resultados para la comparación teórico experimental.

En la gráfica 5.42 y 5.43 se muestran los resultados de la comparación teóricoexperimental. En la primera, para cada uno de los ensayos, se muestra la vida obtenida experimentalmente y las predicciones según todos los métodos planteados en este documento. En la segunda, se muestran las diferencias entre los datos; la diferencia mínima se toma con el signo correspondiente, al igual que la máxima; de esta forma, pueden ubicarse todos los resultados entre ambos valores. Del mismo modo, la diferencia media se obtiene de ponderar los resultados para todos los métodos; esta medida no es del todo fiable, ya que, a la vista de la gráfica 5.42, no todos los métodos proporcionan buenos resultados.

La gráfica 5.44 es más representativa de la dispersión de los resultados. El eje x representa la vida experimental, el eje y la teórica (producto del modelo), y en el área gráfica se representan tres líneas auxiliares: la igualdad entre vida real –experimental– y teórica, dos veces la vida real ("2x") y la mitad de ella ("0.5x"). Finalmente se observa que la gran mayoría de los resultados permanecen dentro de la franja creada, sin embargo no todos lo hacen y se dan ciertas discrepancias, incluso en algunos puntos llegan a ser importantes.

Gráfica 5.44: Diferencia entre datos experimentales y teóricos (2).