ÍNDICE DE FIGURAS

Fotografía del A – 380 donde se señala la ubicación de la BF. Perspectiva de la BF en la que se muestran los conductos y canalizaciones que contiene. Fig. 1.1.3-----6 Partes constitutivas de un panel perteneciente a la BF. Fig. 1.1.4-----7 Disposición general de la toma de aire AGU – NACA. Fig. 1.1.5------Corte longitudinal de la toma AGU – NACA en el que se señalan las diferentes partes que la constituyen. Fig.1.2.1-----9 Representación de una de las disposiciones específicas de ensayo del conjunto. Mesa de vibración. Fig. 1.2.3------11 Elemento encargado de la transición entre el AGU – NACA y la mesa de vibración (CAMA).

Fig. 1.2.4------12 Elemento estructural diseñado para aportar rigidez al conjunto.

Fig. 1.2.5	12
Disposición del conjunto Útil-Cama durante el ensayo llevado a cabo	
en el INTA.	
Fig. 2.3.1	17
Entorno de trabajo de PATRAN.	
Fig. 2.3.2	18
Descripción botones principales de la barra de herramientas.	
Fig. 2.3.1.1	19
Ficha de la aplicación Geometry.	
Fig. 2.3.1.2	-20
Opciones seleccionables en Object y Method para la acción Create.	
Fig. 2.3.1.3	-20
Opciones seleccionables en Object y Method para la acción Edit.	
Fig. 2.3.1.4	-21
Opciones utilizadas para la creación de los bordes (izda.) y las	
superficies biparamétricas de las secciones (dcha.).	
Fig. 2.3.1.5	-22
Ficha de aplicación para la creación de un sólido mediante Extrude.	
Fig. 2.3.1.6.a	-23
Conjunto de superficies topológicamente incongruentes.	
Fig. 2.3.1.6.b	23
Conjunto de superficies topológicamente congruentes.	

Fig. 2.3.1.7------24 Ficha de la aplicación "cortar sólido por plano".

Fig. 2.3.1.8------24 Parametrización de las superficies en PATRAN (ξ_1, ξ_2) .

Fig. 2.3.1.9------25 Parametrización de los sólidos en PATRAN (ξ_1, ξ_2, ξ_3) .

Fig. 2.3.2.1------26 Diferentes opciones posibles en los botones de selección Action, Object y Type de la aplicación Elements.

Fig. 2.3.2.2------27 Ficha de aplicación asociada al mallado 3D en la que se muestran los tipos de elementos disponibles en PATRAN.

Fig. 2.3.2.3------28 Ficha de aplicación asociada al mallado 2D en la que se muestra las opciones seleccionadas para el mallado de la superficie de contacto útil – cama.

Fig. 2.3.2.4------29 Ficha de aplicación asociada a la creación del "mallado por barrido".

Fig. 2.3.2.5-------30 Coincidencia de la cara inferior de un elemento tetraédrico con un elemento triangular asociado a la superficie del sólido inferior.

Fig. 2.3.2.6------31 Ficha de aplicación asociada al mallado por tetraedros utilizado para los sólidos superiores de la cama.

Fig. 2.3.2.7
Ficha de aplicación asociada al mallado con elementos Quad4.
Fig. 2.3.2.833
a) Elemento Hex8; b) Elemento Tri3; c) Elemento Wedge6;
d) Elemento Tet4.
Fig. 2.3.3.134
Ficha de la aplicación Load and Boundary conditions.
Fig. 2.3.3.235
Ficha de introducción de datos para Displacements.
Fig. 2.3.3.336
Ficha de introducción de datos para Force.
Fig. 2.3.4.137
Posibilidades de elección para los 3 botones de selección de
la aplicación Materials.
Eia 2242
Introducción manual de las propiedades de los materiales que
anarecen en el modelo (anlicación Materials)
Fig. 2.3.5.139
Posibilidades de selección en la ficha Properties para el caso
concreto de creación de propiedades para entidades 2D.
Fig. 2.3.5.240
Ficha de creación de propiedades para los sólidos que conformaban
las piezas de los modelos.

Fig. 2.3.5.341
Ficha de creación de la propiedad de masa para los elementos
puntuales creados para el Método de las grandes masas puntuales.
Fig. 2.3.7.143
Ficha principal del botón Analysis.
Fig. 2.3.7.244
Ficha de selección del tipo de análisis a realizar.
Fig. 2.3.7.345
Proceso de configuración del análisis en frecuencia (Parte I).
Fig. 2.3.7.446
Proceso de configuración del analisis en frecuencia (Parte II).
Eig 9.4.4
Fig. 2.4. I
olomontos puntualos do olovada masa
elementos puntuales de elevada masa.
Fig. 3.1.154
Modelo de Elementos Finitos de la toma AGU – NACA.
Fig. 3.2.1.157
Superficies que conforman la sección del travesaño longitudinal.
Fig. 3.2.1.257
Creación del primer travesaño longitudinal por extrusión de las
superficies.
Fig. 3.2.1.358

Creación del segundo travesaño longitudinal por traslación del primero.

Fig. 3.2.1.4------58

Superficies que conforman la sección del travesaño transversal.

Fig. 3.2.1.5------59 Creación del primer travesaño transversal por extrusión de las superficies.

Fig. 3.2.1.6------59

Creación de varios travesaños transversales por traslación del primero.

Fig. 3.2.1.7------60 Geometría completa para el diseño preliminar del útil.

Fig. 3.2.1.8------61 Dimensiones y vistas principales de la geometría preliminar.

Fig. 3.2.2.1-----62

Mallado de la geometría asociada al modelo del diseño preliminar.

Fig. 3.3.1-----64

Disposición voladizo del modelo del diseño preliminar del útil.

Fig. 3.3.2-----66

Disposición centrada del modelo del diseño preliminar del útil.

Fig. 3.3.3-----67 Conjunto útil – cama en el que se comprueba que la segunda queda dentro del contorno exterior del primero. Fig. 3.3.4------68 Conjunto útil – mesa vibración para la disposición en voladizo.

Fig. 3.3.568
Conjunto útil – mesa vibración para la disposición centrada.
Fig. 4.2.172
Esquema de la notación seguida para referirse a las partes
específicas del útil.
Fig. 4.2.273
Cambios introducidos en los perfiles de los largueros.
Fig. 4.2.374
Zona de incidencia de las irregularidades que impedían atornillar
el útil a la mesa de vibración.
Fig. 4.2.474
Representación cualitativa del útil construido con los aligerados
circulares.
Fig. 4.3.1.175
Perfil por extrusión del cual se obtiene un larguero.
Fig. 4.3.1.276
Creación de larguero y traslación del mismo para obtener el otro.
Fig. 4.3.1.376
Perfil asociado a un travesaño transversal.
Fig. 4.3.1.477
Creación del travesaño transversal y traslaciones sucesivas para
obtener los restantes.
Fig. 4.3.1.577
Consecución de los aligerados y aspecto final de la geometría del útil.

Fig. 4.3.1.67	' 9
Vistas principales del útil.	
Fig. 4.3.2.18	0
Mallado del útil para el análisis de frecuencias naturales.	
Fig. 4.4.18	32
Disposición en voladizo del modelo de EF del útil.	
Fig. 4.4.2	83
Disposición centrada del modelo de EF del útil.	,5
Fig. 4.4.38	35
Disposición en planta del conjunto útil – mesa (VOLADIZO).	
	~~
FIG. 4.4.4	35
Disposición en planta del conjunto útil – mesa (CENTRADO).	
Fig. 4.5.1.18	37
Geometría del modelo 2D a partir de superficies congruentes.	
Fig. 4.5.1.28	8
Detalle de geometría del modelo 2D del útil.	
Fig. 4.5.1.38	88
Malla de EF para el modelo 2D del útil.	•
Fig. 4.5.1.48	}9
Detalle de elementos puntuales para la aplicación del "large mass	
method" en el análisis en frecuencia,	
	1
Aplicación de cargas y CC en el modelo 2D	

Fig. 4.5.2.1-----93-

Disposición esquemática del útil para los ensayos de vibración realizados sobre él.

Fig. 4.5.2.2------94 Ubicación del punto del modelo del que se han tomado los desplazamientos para elaborar la gráfica de comparación.

Fig. 4.5.2.3------96 Mapa tensional σ_{x} sobre la deformada del útil ω_{4} =69 Hz.

Fig. 4.5.2.4------96 Mapa tensional $\sigma_{\rm Y}$ sobre la deformada del útil ω_4 =69 Hz.

Fig. 4.5.2.5------97 Mapa tensional σ_z sobre la deformada del útil ω_1 =69 Hz.

Fig. 4.5.2.6------97 Mapa tensional σ_{xy} sobre la deformada del útil ω_1 =69 Hz.

Fig. 4.5.2.7------98 Mapa tensional σ_{zx} sobre la deformada del útil ω_4 =69 Hz.

Fig. 4.5.2.8------98 Mapa tensional σ_{YZ} sobre la deformada del útil ω_1 =69 Hz.

Fig. 4.5.2.9------99 Espectro de "aceleraciones vs. frecuencia" obtenido a partir del análisis en frecuencia del modelo 2D del útil (Escala logarítmica).

Fig. 4.5.2.10	100
Espectro de "aceleraciones vs. frecuencia" obtenido a partir del	
análisis en frecuencia del modelo 2D del útil (Escala lineal).	
Fig. 5.3.1.1	104
Pieza a ensayar.	
Fig. 5.3.2.1	104
Disposición para el ensayo de vibración en el eje X.	
Fig. 5.3.2.2	105
Disposición para el ensayo de vibración en el eje Y.	
Fig. 5.3.2.3	105
Disposición para el ensayo de vibración en el eje Z.	
Fig. 5.3.3.1	107
Perfil de Excitación y límites (alarma y aborto) para el ensayo de vi	bración
sinusoidal.	
Fig. 5.3.3.2	109
Perfil de Excitación y límites para el Ensayo RANDOM.	
Fig. 5.3.4.1	109
Conjunto fijado para el ensayo de vibración en el eje X.	
Fig. 5.3.4.2	110
Conjunto fijado para el ensayo de vibración en el eje Y.	
Fig.5.3.4.3	110
Conjunto fijado para el ensayo de vibración en el eje Z.	

=

Disposición de acelerómetros para los ensayos de vibración del útil (sólo realizados en eje X). Fig. 5.3.5.2------113 Disposición de acelerómetros para los ensayos de vibración del conjunto en el eje X. Fig.5.4.1------Identificación del acelerómetro que proporciona los datos para las representaciones gráficas. Gráfica resultante del ensayo sinusoidal sobre el útil obtenida a partir de las medidas del acelerómetro ubicado en el voladizo. Gráfica resultante del ensayo RANDOM sobre el útil obtenida a partir de las medidas del acelerómetro ubicado en el voladizo. Geometría de la cama generada para la construcción del modelo. Fig. A.2.1.2------127 Superficie inferior de la toma AGU – NACA. Fig. A.2.1.3-------127 Borde de anchura adecuada obtenido tras el recorte. Fig. A.2.1.4------128 Geometría de la cama tras la extrusión y la posterior consecución

de la superficie inferior plana.

Fig. A.2.1.5129
Zona de la mesa real asociada a la mesa modelada.
Fig. A.2.1.6130
Geometría de la mesa en el modelo.
Fig. A.2.2.1132
Mallado no congruente entre el útil y la cama.
Eiα Λ 2 2 2133
rig. A.2.2.2.
Cuaulo de dialogo de la orden "Associate".
Fig. A.2.2.3134
Disposición que muestra las curvas proyectadas procedentes de la cama
asociadas a la superficie superior del útil.
Fig. A.2.2.4135
Cuadro de diálogo asociado a la orden "Create Mesh".
Fig. A.2.2.5136
Detalle de la congruencia del mallado.
Fig. A.2.2.6136
Disposición general de la superficie superior del útil mallada de forma
congruente con la superficie inferior de la cama.
Εία Δ 2 2 7
rug. A.2.2.1
Cuaulo de dialogo de la oldell'Sweep .
Fig. A.2.2.8138

Mallado de un sólido a partir del mallado triangular de una de sus caras.

Fig. A.2.2.9139
Disposición general del mallado del útil y la mesa de vibración.
Fig. A.2.2.10140
Malla de uno de los sólidos superiores de la cama.
Fig. A.2.2.11140
Disposición general del conjunto mallado mesa-útil- cama.
Fig. A.2.3.1143
Esquema de la disposición real del útil sobre la mesa.
Fig. A.2.3.2143
Detalle de aplicación de las cargas en el modelo.
Fig. A.2.3.3144
Detalle de las condiciones de contorno.
Fig. A.2.3.4145
Detalle de los elementos puntuales rígidos situados en los nodos
de aplicación de las cargas ("large mass method").