Capítulo 8

RESULTADOS

Los resultados que se van a mostrar a continuación están sacados del archivo programa.m (ver apéndice) que hemos creado para estudiar el problema. Dicho archivo está pensado para que la persona que lo utilice sólo tenga que introducir el valor de las dos constantes de las que depende dicho problema. El archivo necesita de otro programa que se llama valores.m (ver apéndice) que le manda los valores de μ que salen para los valores de las constantes que hemos introducido. Los resultados que muestra son:

En <u>pantalla</u>: los valores de μ , las frecuencias naturales, la ecuación de la forma de la deformada inicial y los coeficientes A_n .

En gráficas:

- 1) Video del movimiento de la viga
- 2) Ecuación del extremo derecho de la viga
- 3) FFT
- Posición de la asíntota de la función i. Valores de μ (valores de corte de las funciones i y d).
- 5) Forma de los modos de vibración

Vamos a comentarlos brevemente:

1) Video del movimiento de la viga

Simplemente es una animación del movimiento que se produce en la viga al sacarla de su posición de equilibrio. Podemos ver cómo se transmite la onda de la vibración y cómo rebota en el extremo empotrado, con los correspondientes intercambios de energía potencial y cinética entre el sistema viga y el sistema masa-muelle.

Para verlo bien, habría que adecuar los intervalos de tiempo en el programa, ya que según los parámetros introducidos, si la onda viaja muy rápida, los intervalos de tiempo habrá que cogerlos muy pequeños para percatarnos del movimiento de la vibración, y sin embargo si la onda viaja despacio (muelles con constante elástica pequeña), podemos aumentar el tamaño de los intervalos. (Para esto hay que entrar en el fichero .m correspondiente y cambiarlo). 2) Ecuación del extremo derecho de la viga.

La viga retarda y/o acelera el movimiento del sistema masa-muelle. Es lógico que, cuando el sistema masa-muelle entrega parte de su energía potencial a la viga, ésta la recoge en forma de energía cinética y potencial, la onda se transmite por la viga y rebota en el extremo empotrado, volviendo para entregarle otra vez energía al sistema masa-muelle. Por esta razón es interesante mostrar la gráfica del movimiento con el tiempo de la posición del extremo derecho de la viga.

También aquí podría ser necesario tocar los intervalos de tiempo, porque cuando el movimiento es muy rápido podría no apreciarse bien, y sería mejor que la gráfica cogiera menos tiempo para representar el movimiento.

3) FFT

Ya hemos hablado de la transformada rápida de Fourier. Sólo añadiremos que cuando tenemos una onda no periódica, con la existencia de varias frecuencias, unas frecuencias se llevan más energía que otras y esto se ve con la FFT.

4) Posición de la asíntota de la función i. Valores de μ (valores de corte de las funciones i y d)

Esto es simplemente para ver gráficamente los cortes entre la función continua (función d) y la discontinua (función i), que corresponden con los valores de μ , que nos darán las frecuencias naturales del sistema.

5) Forma de los modos de vibración

Por hacernos una idea de la forma aproximada de los 8 primeros modos de vibración.

Ahora ya podemos pasar a ver los resultados. La respuesta total del sistema depende de dos parámetros: ρ , que es la relación de masas viga-masa del extremo, y \sqrt{r} , posición de la asíntota de la función i, a la vez que relación entre la frecuencia natural del sistema masa muelle y la frecuencia natural de la viga sola, $\sqrt{r} = \frac{\Omega_1}{\Omega_2} = \frac{\sqrt{\frac{2\pi}{m}}}{\sqrt{\frac{EI}{m_u L^4}}}$. Pues bien, nuestro estudio se basa en ver los

casos siguientes:

- 1. Cuatro casos límite completos:
 - 1.1 ρ es muy pequeña y \sqrt{r} es muy pequeña. $\rho = 0.01$ y $\sqrt{r} = 0.1$. Valores que implican que la masa de la viga es despreciable frente a la masa del extremo, y que la constante elástica de los muelles es muy pequeña.
 - 1.2 ρ es muy pequeña y \sqrt{r} es muy grande. $\rho = 0.01$ y $\sqrt{r} = 22$. La masa de la viga es despreciable frente a la masa del extremo, y la constante elástica de los muelles es muy grande.
 - 1.3 ρ es muy grande y \sqrt{r} es muy pequeña. $\rho = 200$ y $\sqrt{r} = 0.1$. La masa del extremo es despreciable frente a la masa de la viga y la constante elástica de los muelles es muy pequeña.
 - 1.4 ρ es muy grande y \sqrt{r} es muy grande. $\rho = 200$ y $\sqrt{r} = 22$. La masa del extremo es despreciable frente a la masa de la viga y la constante elástica de los muelles es muy grande.

2) Variaciones de \sqrt{r} , haciendo que la asíntota de la función i vaya pasando por las asíntotas de la función d, junto con variaciones de ρ , mostrando sólo las gráficas de la ecuación del extremo respecto al tiempo, la gráfica de la FFT y una gráfica con la variación que experimentan los coeficientes A_n con el fin de facilitar la extracción de conclusiones.

Se llevarán a cabo los siguientes casos:

\sqrt{r}	0	6	12
μ 0.1	Caso 1	Caso 2	Caso 3
1	Caso 4	Caso 5	Caso 6
10	Caso 7	Caso 8	Caso 9

3) Un caso intermedio para una viga en concreto y poder ver un caso no límite.

8.1 Casos límite

Los resultados se que se van a ofrecer a continuación son, por orden:

1) Tabla con los valores de ρ y \sqrt{r} .

- 2) Tabla con los valores de los coeficientes A_n y los valores de μ .
- 3) Gráfica de la ecuación de movimiento del extremo respecto al tiempo.
- 4) Gráfica de la FFT.
- 5) Gráfica de la posición de la asíntota de la función i.
- 6) Gráfica de los modos de vibración.

8.1.1 Caso límite 1

Cuando ρ es muy pequeña y \sqrt{r} es muy pequeña, tendríamos una viga muy esbelta y unos muelles muy débiles, de constante elástica muy pequeña, y por tanto de fuerza elástica muy pequeña. Cuando ρ es muy pequeña también se puede pensar en una viga con una masa en el extremo grande, ya que ρ es la relación de masas masa de la viga y masa del extremo.

Si pensamos en darle a este sistema un desplazamiento unidad en el extremo derecho, es lógico que lo que ocurra sea que la viga se comporte como una viga en voladizo y que prácticamente los muelles no le afecten.

Vemos los resultados en la tabla nº2:

Valor de ρ	Valor de \sqrt{r}
0.01	0.1
Coeficientes A _n	Valores de μ
-8.711	0.41629
-0.0022614	3.9278
-0.0013929	7.0693
-0.00098029	10.211
-0.00067011	13.352
-0.00032758	16.494
-0.00022033	19.635
-0.00036252	22.777
-0.0005374	25.918
-0.00050241	29.06
-0.00014887	32.201
0.00074426	35.343
0.00082	38.485
0.0015778	41.626
0.0060681	
0.011683	
	_

Tabla nº 2: $\rho = 0.01; \sqrt{r} = 0.1$.

Podemos ver que los coeficientes cumplen la ley de la serie de Fourier, de decaer a 0. Pero los coeficientes no decaen estrictamente, sino que manifiestan una subida y bajada aleatoria. Pero siempre alrededor de 0, siendo siempre despreciables a la hora de ponerlos en la respuesta total del sistema. Más adelante, en el capítulo 9, se compara gráficamente la caída de coeficientes de los cuatro casos límite.

Figura nº 13: $\rho = 0.01; \sqrt{r} = 0.1$. Ecuación del extremo.

Figura nº 14: $\rho = 0.01; \sqrt{r} = 0.1$. FFT

Figura nº 16: $\rho = 0.01$; $\sqrt{r} = 0.1$. Modos de vibración. Los ejes de cada gráfica de la figura nº 16 son: x-y

8.1.2 Caso límite 2

Cuando ρ es muy pequeña y \sqrt{r} es muy grande, tenemos una viga muy esbelta y unos muelles muy fuertes, de constante elástica muy grande, y por tanto de fuerza elástica muy grande. Cuando ρ es muy pequeña también se puede pensar, como ya hemos comentado anteriormente, en una viga con una masa grande en el extremo.

En este caso, podríamos pensar que sería como aplicar impulsos seguidos al extremo de la viga, uno cada vez que el muelle empuja el extremo de la viga.

Valor de ρ 0.01	Valor de \sqrt{r} 22
Coeficientes A _n	Valores de μ
-0.3506	3.9266
-0.20242	7.0686
-0.14511	10.21
-0.12223	13.352
-0.1246	16.493
-0.19483	19.635
-0.49339	21.997
-0.40658	22.778
-0.057087	25.919
-0.022798	29.06
-0.011621	32.202
-0.006757	35.343
-0.0042547	38.485
-0.0029023	41.626
-0.0022537	44.768
-0.0019753	47.909
-0.0023295	51.051
-0.0031402	54.193
-0.0035956	
-0.0019239	

Los resultados:

Tabla nº 3: $\rho = 0.01; \sqrt{r} = 22$

Como se puede ver, con estos valores de ρ y \sqrt{r} , para llegar a valores despreciables de A_n hemos necesitado resolver muchas más matrices (cada vez más grandes) para poder obtener más valores de A_n (según se explicó en el capítulo 6, apartado 6.2).

Figura nº 17: $\rho = 0.01$; $\sqrt{r} = 22$. Ecuación del extremo.

Figura nº 18: $\rho = 0.01$; $\sqrt{r} = 22$. FFT.

Figura nº 20: $\rho = 0.01$; $\sqrt{r} = 22$. Modos de vibración. Los ejes de cada gráfica de la figura nº 20 son: x-y

8.1.3 Caso límite 3

Cuando ρ es muy grande y \sqrt{r} es muy pequeña, tenemos una viga rígida y unos muelles muy débiles, de constante elástica muy pequeña, y por tanto de fuerza elástica muy pequeña. Es lógico pensar que aquí el comportamiento debe ser el de una viga en voladizo. A la viga los muelles no le afectan. Será como si no estuvieran.

Cuando ρ es muy grande también se puede pensar en una viga con una masa en el extremo muy pequeñita. Esta idea no hace más que reafirmar el hecho de que este caso es el de una viga en voladizo. De hecho, las frecuencias naturales de este caso son prácticamente las frecuencias naturales de una viga en voladizo. Esto es así porque en este caso, los autovalores están muy cerca de las asíntotas de la función d, y el valor de estas asíntotas son los autovalores del problema de una viga en voladizo. Todo esto se comentará con más detalle en el siguiente capítulo dedicado a conclusiones.

Los resultados:

Valor de \sqrt{r}
0.1
Frecuencias naturales
1.8658
4.6713
7.8172
10.944
14.072
17.2
20.328
23.457
26.587
29.716
32.847
35.977
39.108
42.239

Tabla nº 4: $\rho = 200; \sqrt{r} = 0.1$.

Aquí se vuelve a repetir la subida y bajada de los valores de los coeficientes. Pero es, como ya hemos comentado, alrededor de 0, con lo que los modos a los que acompañan estos valores, siguen sin tener efecto alguno en la respuesta total del sistema. Más adelante se verá que, cuanto más pequeño es \sqrt{r} , más rápidamente decaen los coeficientes.

Figura nº 21: $\rho = 200; \sqrt{r} = 0.1$. Ecuación del extremo.

Figura n° 22: $\rho = 200; \sqrt{r} = 0.1$. FFT.

Figura nº 24: $\rho = 200$; $\sqrt{r} = 0.1$. Modos de vibración. Los ejes de cada gráfica de la figura nº 24 son: x-y

8.1.4 Caso límite 4

Cuando ρ es muy grande y \sqrt{r} es muy grande, significa que es como si tuviéramos una viga fuerte, gruesa y unos muelles muy fuertes, de constante elástica muy grande, y por tanto de fuerza elástica muy grande. Con este valor tan alto de ρ también se interpreta que es como una viga con una masa en el extremo pequeñísima.

Aquí podríamos pensar que la vibración se va a transmitir muy rápido, más que en los demás casos.

Los resultados:

Valor de ρ	Valor de \sqrt{r}
200	22
Coeficientes A _n	Frecuencias naturales
-0.35541	3.902
-0.22055	6.9043
-0.16951	9.6303
-0.11697	12.009
-0.060347	14.554
-0.027512	17.432
-0.013547	20.456
-0.0073565	23.535
-0.0043302	26.637
-0.0027214	29.751
-0.0017896	32.871
-0.0011919	35.995
-0.0010018	39.121
-0.00046862	42.249
-3.3958e-005	45.378
2.5781e-006	48.508
0.00013948	51.639
0.00019014	54.77
0.00019632	57.902
0.00015805	61.034

Tabla nº 5: $\rho = 200; \sqrt{r} = 22$.

En este caso se puede ver como el decaimiento es más lento para \sqrt{r} grandes que pequeños, pero como ya se ha comentado, esto se comparará gráficamente en el capítulo 9.

Figura nº 26: $\rho = 200; \sqrt{r} = 22$. FFT.

Figura nº 28: $\rho = 200$; $\sqrt{r} = 22$. Modos de vibración. Los ejes de cada gráfica de la figura nº 28 son: x-y

8.2 Variaciones de los parámetros del problema

El objetivo es ver que ocurre al fijar ρ en tres valores distintos y mover la asíntota de la función i, es decir, variar \sqrt{r} para cada uno de esos valores de ρ .

8.2.1 Caso 1

 $\rho = 0.1, \sqrt{r} = 0$. Será muy parecido al caso límite 1.

Valores de μ
0.73578
3.9385
7.0756
10.215
13.355
16.496
19.637
22.779
25.92
29.061

Tabla nº 6: Caso 1.

Figura nº 29: $\rho = 0.1$; $\sqrt{r} = 0$. Ecuación del extremo.

Figura nº 31: $\rho = 0.1$; $\sqrt{r} = 0$. Decaimiento coeficientes.

8.2.2 Caso 2

 \geq

-0.2

-0.4

-0.6

-0.8

-1 L 0

0.5

1.5

1

2

 $\rho = 0.1, \sqrt{r} = 6$. La asíntota de la función i la hemos movido hacia la derecha dejando a su izquierda dos de las asíntotas de la función d.

Castington	Valence de u
Coefficienties A_n	valores de μ
-0.42908	2.9808
-0.39376	3.9443
-0.20695	7.0758
-0.018574	10 215
0.0044839	13 356
0.0015042	10.000
-0.0015042	16.496
-0.00059522	19.637
-0.00027541	22.779
-0.00016361	25.92
-0.00010639	29.061
-2.453e-005	32.203
2.1000 000	35 344
۲	b = 20.044
1	abla II 7. Caso 2.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
04-	
0.2 -	
oH	

Figura nº 32: $\rho = 0.1$; $\sqrt{r} = 6$. Ecuación del extremo.

2.5

t

3

3.5

4.5

4

5

Comparando la figura nº 32 con la figura nº 29 se ve que al aumentar el valor de \sqrt{r} , que es lo mismo que aumentar la constante elástica del muelle, el movimiento es más rápido en el caso 2.

Figura nº 34: $\rho = 0.1$; $\sqrt{r} = 6$. Decaimiento coeficientes.

En la figura nº 34 se ve que ya no sólo es A_1 el que destaca frente a los demás.

8.2.3 Caso 3

 $\rho = 0.1, \sqrt{r} = 12$. La asíntota de la función i la hemos movido hacia la derecha dejando a su izquierda cuatro de las asíntotas de la función d.

Coeficientes A _n -0.35434 -0.22783 -0.2908 -0.35658 -0.19331 -0.033072 -0.011579	Valores de µ 3.9265 7.0676 10.205 11.985 13.362 16.498 19.638
-0.0051565 -0.0026399 -0.0014798	22.779 25.92 29.062
-0.0008706	32.203
-0.00057903	35.344
-0.00049757	38.486
Ta	la nº 8: Caso 3.
0.8 -	
0.6 –	
0.4 –	
0.2 -	
> 0-	
-0.2	
-0.4	
-0.6 -	

Figura nº 35: $\rho = 0.1$; $\sqrt{r} = 12$. Ecuación del extremo.

Figura nº 37: $\rho = 0.1$; $\sqrt{r} = 12$. Decaimiento coeficientes.

En la figura nº 37 se ve que A_4 destaca tanto como A_1 .

8.2.4 Caso 4

 $\rho = 1, \sqrt{r} = 0$. Será parecido al caso 1.

Coeficientes A _n	Valores de μ
-0.99308	1.2479
-0.0033633	4.0311
-0.00020911	7.1341
-3.3279e-005	10.257
-7.87e-006	13.388
-1.9864e-006	16.523
-1.0399e-007	19.66
-3.7438e-007	22.798
1.6216e-006	25.937
2.552e-006	29.077
3.8154e-006	32.217
4.7491e-006	35.357
6.8596e-006	38.497
1.051e-005	41.638
3.7354e-005	44.779
1.8543e-005	47.92

Figura nº 38: $\rho = 1; \sqrt{r} = 0$. Ecuación del extremo.

Figura nº 40: $\rho = 1; \sqrt{r} = 0$. Decaimiento coeficientes.

En la figura n°40 se ve que todos los coeficientes son despreciable frente a A_1 .

8.2.5 Caso 5

 $\rho = 1, \sqrt{r} = 6$. La asíntota de la función i la hemos movido hacia la derecha dejando a su izquierda dos de las asíntotas de la función d.

Coeficientes A _n	Valores de μ
-0.42995	3.8996
-0.34121	5.8368
-0.15272	7.1874
-0.017267	10.262
-0.0043371	13.389
-0.0015246	16.523
-0.00066103	19.66
-0.00034078	22.798
-0.00019888	25.937
-0.00012622	29.077
9.0064e-006	32.217
-0.00045298	35.357
-1.9126e-005	38.497

Tabla nº 10: Caso 5.

Figura nº 41: $\rho = 1; \sqrt{r} = 6$. Ecuación del extremo.

En la figura nº 41 se aprecia como la viga retarda y/o acelera el movimiento del sistema masa-muelle.

Figura nº 43: $\rho = 1; \sqrt{r} = 6$. Decaimiento coeficientes.

En la figura nº 43 se ve que los tres primeros coeficientes son los importantes.

8.2.6 Caso 6

 $\rho = 1, \sqrt{r} = 12$. La asíntota de la función i la hemos movido hacia la derecha dejando a su izquierda cuatro de las asíntotas de la función d.

Figura nº 44: $\rho = 1; \sqrt{r} = 12$. Ecuación del extremo.

Como en el caso 5, en este caso la viga retarda y/o acelera el movimiento del sistema masa-muelle, pero en este caso es más rápido, como se puede apreciar comparando las figuras nº 41 y nº 44.

Figura nº 46: $\rho = 1; \sqrt{r} = 12$. Decaimiento coeficientes.

8.2.7 Caso 7

 $\rho = 10, \sqrt{r} = 0$. Será parecido al caso 1.

Figura nº 47: $\rho = 10$; $\sqrt{r} = 0$. Ecuación del extremo.

Comparando la figura nº 29, nº 38 y nº 47, vemos que aunque los tres casos corresponden a un problema de viga en voladizo, se puede ver que conforme aumento la relación de masas, ρ , el movimiento en el extremo es más rápido.

Figura nº 49: $\rho = 10; \sqrt{r} = 0$. Decaimiento coeficientes.

En la figura n°49 se ve que todos los coeficientes son despreciables frente a A_1 .

8.2.8 Caso 8

 $\rho = 10, \sqrt{r} = 6$. La asíntota de la función i la hemos movido hacia la derecha dejando a su izquierda dos de las asíntotas de la función d.

Coeficientes A _n	Valores de μ
-0.41444	3.6686
-0.22346	5.2407
-0.048994	7.5519
-0.0097199	10.544
-0.0029061	13.621
-0.0011236	16.722
-0.00053538	19.835
-0.00028084	22.954
-0.00015771	26.078
-0.00010874	29.205
-0.00013336	32.335
-0.00029693	35.466

Tabla nº 13: Caso 8.

Figura nº 50: $\rho = 10; \sqrt{r} = 6$. Ecuación del extremo.

En la figura nº 50, comparada con la figura nº 41, se ve que la viga cobra más importancia en el movimiento del extremo. En este caso se ve claramente la transmisión de energía de un sistema a otro.

Figura nº 51: $\rho = 10; \sqrt{r} = 6.$ FFT.

Figura nº 52: $\rho = 10; \sqrt{r} = 6$. Decaimiento coeficientes.

8.2.9 Caso 9

 $\rho = 10, \sqrt{r} = 12$. La asíntota de la función i la hemos movido hacia la derecha dejando a su izquierda cuatro de las asíntotas de la función d.

Valores de μ
3.9126
6.9673
9.6673
11.362
13.783
16.773
19.856
22.965
26.084
29.208
32.337

Tabla nº 14: Caso 9.

Figura n° 53: $\rho = 10$; $\sqrt{r} = 12$. Ecuación del extremo.

En la figura nº 53 se puede ver que conforme vamos aumentando ρ y \sqrt{r} , hay más modulación en la gráfica de la ecuación del extremo. Esto quiere decir que, el extremo que comienza en el instante inicial en y = -1, llega, en determinados instantes de tiempo, a valer cerca de 0.

Figura nº 55: $\rho = 10$; $\sqrt{r} = 12$. Decaimiento coeficientes.

8.3 Caso intermedio

Vamos a coger un caso cualquiera. Por ejemplo, una viga de sección rectangular de 3x1 cm, longitud un metro y masa en el extremo de 0.5 kg.

Figura nº 56: Caso intermedio.

$$\rho = \frac{7850 \frac{\text{kg}}{\text{m}^3} \cdot 3 \cdot 10^{-4} \text{ m}^2 \cdot 1\text{m}}{0.5 \text{kg}} = 4.71$$

Cogemos un valor intermedio de \sqrt{r} . Los resultados son:

Valor de \sqrt{r}
5.2
Frecuencias naturales
3.679
4.9635
7.3595
10.402
13.502
16.618
19.742
22.87
26.001
29.134
32.269
35.405
38.542

Tabla nº 15: Caso intermedio.

Figura nº 57: $\rho = 4.71; \sqrt{r} = 5$. Ecuación del extremo.

Figura nº 58: $\rho = 4.71; \sqrt{r} = 5$. FFT.

Figura nº 60: $\rho = 4.71$; $\sqrt{r} = 5$. Modos de vibración. Los ejes de cada gráfica de la figura nº 60 son: x-y

Figura nº 61: $\rho = 4.71; \sqrt{r} = 5$. Decaimiento coeficientes.

En la figura nº 57 se ve que ambos sistemas, la viga y el sistema masamuelle, participan en el intercambio de energía. La modulación en dicha figura es considerable. En la figura nº 61 se aprecia como los dos primeros coeficientes (y el tercero aunque en menor medida) son los más importantes y esto tiene que ver con el número de asíntotas que hemos pasado con la asíntota de la función i. Ese número es dos. Siempre que pasamos por "x" asíntotas, el número de modos de vibración excitados es x + 1. Y por tanto, los coeficientes de mayor valor serán los x + 1 primeros.