4 ANEXOS DE CÁLCULO

4.1 ANEXOS DE CÁLCULO DE LA INSTALACIÓN DE CLIMATIZACIÓN Y VENTILACIÓN.

Cálculo de cargas térmicas de sus zonas y locales

Local	Hora cálculo	Mes cálculo
Laboratorio	16:00	Julio

Condiciones interiores Ts: 25 °C Hr: 55 %

Condiciones exteriores Ts: 38,05 °C Hr: 27 % W: 0,011218

Kg/Kg a.s. Temp. Terreno: 30,3

Ratio max. luces: (incandescentes 0 W/m2) (fluor.con reactancia 20,5

W/m2) (fluor.sin rectancia 0 W/m2)

Ratio max. Otras cargas: (sensible 13,7 W/m2) (latente 0 W/m2) (Ratio

max. personas/m2 : 0,13699)

	Calor latente (W)	Calor sensible (W)	
Cerramientos	0	3465	
Ventanas	0	373	
Iluminación	0	609	
Personas	256	225	
Puertas	0	22	
Otras cargas	0	400	
Infiltración (82m3/h)	22	356	
Ventilación (0m3/h) max. (288m3/h)	0	0	
Propia instalación	0	327	
Mayoración	13	288	
Suma	291	6065	

Factor de calor sensible = 0,95 Calor Total = 6356 W Ratio Total : 218 W/m2 Ratio Sensible : 208 W/m2 Temp. Impul. : 16 °C Caudal Impul. : 2021 m3/h

Local	Hora cálculo	Mes cálculo
Despacho dirección	15:00	Julio

Condiciones interiores Ts: 25 °C Hr: 55 %

Condiciones exteriores Ts: 38,56 °C Hr: 26 % W: 0,011218

Kg/Kg a.s. Temp. Terreno: 30,3

Ratio max. luces: (incandescentes 0 W/m2) (fluor.con reactancia

20,6 W/m2) (fluor.sin rectancia 0 W/m2)

Ratio max. Otras cargas : (sensible 13,7 W/m2) (latente 0 W/m2)

(Ratio max. personas/m2: 0,20833)

	Calor latente (W)	Calor sensible (W)
Cerramientos	0	1327
Ventanas	0	394
Iluminación	0	285
Personas	192	160
Puertas	0	23
Otras cargas	0	198
Infiltración (40m3/h)	11	180
Ventilación (0m3/h) max.	0	0
(135m3/h)		
Propia instalación	0	154

Mayoración	13	136
Suma	213	2857

Factor de calor sensible = 0,93 Calor Total = 3070 W Ratio Total : 213 W/m2 Ratio Sensible : 198 W/m2 Temp. Impul. : 16 °C Caudal Impul. : 952 m3/h

Local	Hora cálculo	Mes cálculo
Aseos admin.	15:00	Agosto

Condiciones interiores Ts: 25 °C Hr: 55 %

Condiciones exteriores Ts: 38,74 °C Hr: 26 % W: 0,011298

Kg/Kg a.s. Temp. Terreno: 30,3

Ratio max. luces: (incandescentes 0 W/m2) (fluor.con reactancia

21,2 W/m2) (fluor.sin rectancia 0 W/m2)

Ratio max. Otras cargas : (sensible 14,1 W/m2) (latente 0 W/m2)

(Ratio max. personas/m2:0,18182)

	Calor latente (W)	Calor sensible (W)
Cerramientos	0	1385
Ventanas	0	83
Iluminación	0	336
Personas	192	160
Puertas	0	12
Otras cargas	0	233
Infiltración (46m3/h)	15	210
Ventilación (0m3/h) max.	0	0
(180m3/h)		145
Propia instalación	0	145
Mayoración	10	128
Suma	217	2692

Factor de calor sensible = 0,92 Calor Total = 2909 W Ratio Total : 176 W/m2 Ratio Sensible : 163 W/m2 Temp. Impul. : 16 °C Caudal Impul. : 897 m3/h

Local	Hora cálculo	Mes cálculo
Sala aux. 1	15:00	Julio

Condiciones interiores Ts: 25 °C Hr: 55 %

Condiciones exteriores Ts : 38,56 °C Hr : 26 % W : 0,011218

Kg/Kg a.s. Temp. Terreno: 30,3

Ratio max. luces: (incandescentes 0 W/m2) (fluor.con reactancia

21,2 W/m2) (fluor.sin rectancia 0 W/m2)

Ratio max. Otras cargas : (sensible 14,1 W/m2) (latente 0 W/m2)

(Ratio max. personas/m2: 0,48485)

	Calor latente (W)	Calor sensible (W)
Cerramientos	0	1499
Ventanas	0	394
Iluminación	0	336
Personas	512	427
Puertas	0	23
Otras cargas	0	233
Infiltración (46m3/h)	12	208
Ventilación (0m3/h) max.	0	0
(360m3/h)		
Propia instalación	0	187
Mayoración	26	165
Suma	550	3472

Factor de calor sensible = 0,86 Calor Total = 4022 W

Ratio Total : 244 W/m2 Ratio Sensible : 210 W/m2 Temp. Impul. : 16 $^{\circ}$ C Caudal Impul. : 1157 m3/h

Local	Hora cálculo	Mes cálculo
Sala aux. 2	15:00	Julio

Condiciones interiores Ts: 25 °C Hr: 55 %

Condiciones exteriores Ts: 38,56 °C Hr: 26 % W: 0,011218

Kg/Kg a.s. Temp. Terreno: 30,3

Ratio max. luces: (incandescentes 0 W/m2) (fluor.con reactancia

21,2 W/m2) (fluor.sin rectancia 0 W/m2)

Ratio max. Otras cargas: (sensible 14,1 W/m2) (latente 0 W/m2)

(Ratio max. personas/m2: 0,48485)

	Calor latente (W)	Calor sensible (W)
Cerramientos	0	1356
Ventanas	0	394
Iluminación	0	336
Personas	512	427
Puertas	0	23
Otras cargas	0	233
Infiltración (46m3/h)	12	208
Ventilación (0m3/h) max. (360m3/h)	0	0
Propia instalación	0	178
Mayoración	26	157
Suma	550	3312

Factor de calor sensible = 0,85 Calor Total = 3862 W Ratio Total : 234 W/m2 Ratio Sensible : 201 W/m2 Temp. Impul. : 16 °C Caudal Impul. : 1104 m3/h

Local	Hora cálculo	Mes cálculo
Administración	16:00	Julio

Condiciones interiores Ts: 25 °C Hr: 55 %

Condiciones exteriores Ts: 38,05 °C Hr: 27 % W: 0,011218

Kg/Kg a.s. Temp. Terreno: 30,3

Ratio max. luces: (incandescentes 0 W/m2) (fluor.con reactancia

20,5 W/m2) (fluor.sin rectancia 0 W/m2)

Ratio max. Otras cargas: (sensible 13,7 W/m2) (latente 0 W/m2)

(Ratio max. personas/m2: 0,13699)

	Calor latente (W)	Calor sensible (W)
Cerramientos	0	3465
Ventanas	0	373
Iluminación	0	609
Personas	256	225
Puertas	0	22
Otras cargas	0	400
Infiltración (82m3/h)	22	356
Ventilación (0m3/h) max. (180m3/h)	0	0
Propia instalación	0	327
Mayoración	13	288
Suma	291	6065

Factor de calor sensible = 0,95 Calor Total = 6356 W Ratio Total : 218 W/m2 Ratio Sensible : 208 W/m2 Temp. Impul. : 16 °C Caudal Impul. : 2021 m3/h

Local	Horo páloulo	Mes cálculo
LUGAI	Hora calculo	Mes calculo
•		

D. Jefe planta	16:00	Julio
2. colo pianta	. 5.55	040

Condiciones interiores Ts: 25 °C Hr: 55 %

Condiciones exteriores Ts: 38,56 °C Hr: 26 % W: 0,011218

Kg/Kg a.s. Temp. Terreno: 30,3

Ratio max. luces: (incandescentes 0 W/m2) (fluor.con reactancia

20,6 W/m2) (fluor.sin rectancia 0 W/m2)

Ratio max. Otras cargas: (sensible 13,7 W/m2) (latente 0 W/m2)

(Ratio max. personas/m2: 0,27778)

	Calor latente (W)	Calor sensible (W)
Cerramientos	0	1327
Ventanas	0	394
Iluminación	0	285
Personas	256	213
Puertas	0	23
Otras cargas	0	198
Infiltración (40m3/h)	11	180
Ventilación (0m3/h) max. (180m3/h)	0	0
Propia instalación	0	157
Mayoración	13	138
Suma	280	2915

Factor de calor sensible = 0,91 Calor Total = 3195 W Ratio Total : 222 W/m2 Ratio Sensible : 202 W/m2 Temp. Impul. : 16 °C Caudal Impul. : 971 m3/h

Local	Hora cálculo	Mes cálculo
Aseos personal	15:00	Agosto

Condiciones interiores Ts: 25 °C Hr: 55 %

Condiciones exteriores Ts: 38.74 °C Hr: 26 % W: 0.011298

Kg/Kg a.s. Temp. Terreno: 30,3

Ratio max. luces: (incandescentes 0 W/m2) (fluor.con reactancia

21,2 W/m2) (fluor.sin rectancia 0 W/m2)

Ratio max. Otras cargas : (sensible 14,1 W/m2) (latente 0 W/m2)

(Ratio max. personas/m2: 0,48485)

	Calor latente (W)	Calor sensible (W)	
Cerramientos	0	1385	
Ventanas	0	83	
Iluminación	0	336	
Personas	512	427	
Puertas	0	12	
Otras cargas	0	233	
Infiltración (46m3/h)	15	210	
Ventilación (0m3/h) max.	0	0	
(360m3/h)			
Propia instalación	0	161	
Mayoración	26	142	
Suma	553	2989	

Factor de calor sensible = 0,84 Calor Total = 3542 W Ratio Total : 215 W/m2 Ratio Sensible : 181 W/m2 Temp. Impul. : 16 °C Caudal Impul. : 996 m3/h

Local	Hora cálculo	Mes cálculo
Sala control	15:00	Julio

Condiciones interiores Ts: 25 °C Hr: 55 %

Condiciones exteriores Ts: 38,56 °C Hr: 26 % W: 0,011218

Kg/Kg a.s. Temp. Terreno: 30,3

Ratio max. luces: (incandescentes 0 W/m2) (fluor.con reactancia

21,2 W/m2) (fluor.sin rectancia 0 W/m2)

Ratio max. Otras cargas: (sensible 14,1 W/m2) (latente 0 W/m2)

(Ratio max. personas/m2: 0,18182)

	Calor latente (W)	Calor sensible (W)	
Cerramientos	0	1499	
Ventanas	0	394	
Iluminación	0	336	
Personas	192	160	
Puertas	0	23	
Otras cargas	0	233	
Infiltración (46m3/h)	12	208	
Ventilación (0m3/h) max.	0	0	
(135m3/h)			
Propia instalación	0	171	
Mayoración	10	151	-
Suma	214	3175	

Factor de calor sensible = 0,93 Calor Total = 3389 W Ratio Total : 205 W/m2 Ratio Sensible : 192 W/m2 Temp. Impul. : 16 °C Caudal Impul. : 1058 m3/h

Local	Hora cálculo	Mes cálculo
Sala CGBT	15:00	Julio

Condiciones interiores Ts: 25 °C Hr: 55 %

Condiciones exteriores Ts: 38,56 °C Hr: 26 % W: 0,011218

Kg/Kg a.s. Temp. Terreno: 30,3

Ratio max. luces: (incandescentes 0 W/m2) (fluor.con reactancia

21,2 W/m2) (fluor.sin rectancia 0 W/m2)

Ratio max. Otras cargas: (sensible 121 W/m2) (latente 0 W/m2)

(Ratio max. personas/m2: 0,060606)

	Calor latente (W)	Calor sensible (W)
Cerramientos	0	1356
Ventanas	0	394
Iluminación	0	336
Personas	64	53
Puertas	0	23
Otras cargas	0	2000
Infiltración (46m3/h)	12	208
Ventilación (0m3/h) max. (45m3/h)	0	0
Propia instalación	0	262
Mayoración	3	231
Suma	79	4863

Factor de calor sensible = 0,98 Calor Total = 4942 W Ratio Total : 300 W/m2 Ratio Sensible : 295 W/m2 Temp. Impul. : 16 °C Caudal Impul. : 1621 m3/h

Zona	Hora cálculo	Mes cálculo
Planta 1	15:00	Agosto

Condiciones exteriores Ts: 38,74 °C Hr: 26 % W: 0,011298

Kg/Kg a.s. Temp. Terreno: 30,3

Ratio max. luces: (incandescentes 0 W/m2) (fluor.con reactancia 20,9

W/m2) (fluor.sin rectancia 0 W/m2)

Ratio max. Otras cargas : (sensible 13,9 W/m2) (latente 0 W/m2) (Ratio max. personas/m2 : 0,27927)

	Calor latente (W)	Calor sensible (W)	
Cerramientos	0	6284	
Ventanas	0	1599	
Iluminación	0	1873	
Personas	1664	1389	
Puertas	0	104	
Otras cargas	0	1297	
Infiltración (260m3/h)	86	1188	
Ventilación (1323m3/h) max. (1323m3/h)	451	6057	
Propia instalación	0	1187	
Mayoración	110	1048	
Suma	2311	22026	

Factor de calor sensible = 0,9 Calor Total = 24337 W Ratio Total : 261 W/m2 Ratio Sensible : 237 W/m2

Equipo zona con toma de aire exterior constante Temp. Impul.

: 16 °C Caudal Impul. : 6088 m3/h

Zona	Hora cálculo	Mes cálculo
Planta 1	15:00	Agosto

Condiciones exteriores Ts : 38,74 $^{\circ}$ C Hr : 26 % W : 0,011298

Kg/Kg a.s. Temp. Terreno: 30,3

Ratio max. luces: (incandescentes 0 W/m2) (fluor.con reactancia

20,9 W/m2) (fluor.sin rectancia 0 W/m2)

Ratio max. Otras cargas: (sensible 32,9 W/m2) (latente 0 W/m2)

(Ratio max. personas/m2: 0,21482)

	Calor latente (W)	Calor sensible (W)	
Cerramientos	0	6284	
Ventanas	0	1599	
Iluminación	0	1873	
Personas	1280	1069	
Puertas	0	104	
Otras cargas	0	3064	
Infiltración (260m3/h)	86	1188	
Ventilación (900m3/h) max. (900m3/h)	306	4120	
Propia instalación	0	1187	
Mayoración	83	1022	
Suma	1755	21481	

Equipo zona con toma de aire exterior constante Temp. Impul.

: 16 °C Caudal Impul. : 6625 m3/h

Zona	Hora cálculo	Mes cálculo
Oficinas completas	15:00	Agosto

Condiciones exteriores Ts : $38,74 \, ^{\circ}\text{C}$ Hr : $26 \, \%$ W : 0,011298

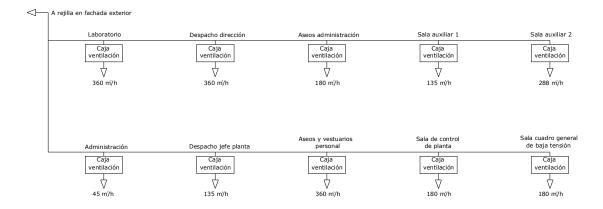
Kg/Kg a.s. Temp. Terreno: 30,3

Ratio max. luces: (incandescentes 0 W/m2) (fluor.con reactancia 20,9

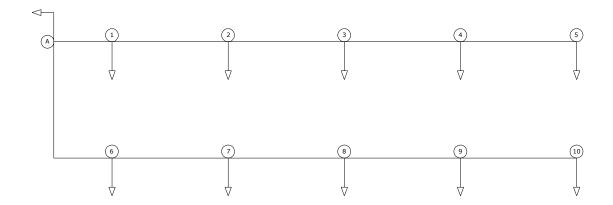
W/m2) (fluor.sin rectancia 0 W/m2)

Ratio max. Otras cargas: (sensible 23,4 W/m2) (latente 0 W/m2) (Ratio

max. personas/m2: 0,24705)


Corremientes 0 12569	Calor latente (W) Calor sensible (W)	
Certainlencos 0 12300	0 12568	

Ventanas	0	3198
Iluminación	0	3746
Personas	2944	2458
Puertas	0	208
Otras cargas	0	4361
Infiltración (520m3/h)	172	2376
Ventilación (2223m3/h) max. (2223m3/h)	757	10177
Propia instalación	0	2345
Mayoración	193	2071
Suma	4066	43508


Factor de calor sensible = 0,91 Calor Total = 47574 W Ratio Total : 0 W/m2 Ratio Sensible : 234 W/m2

El cálculo lo hemos llevado a cabo con el programa de cálculo de cargas térmicas Daiklima.

A continuación calcularemos los conductos de ventilación de oficinas de acuerdo al RITE respecto a caudales de aire de renovación, de acuerdo con esta normativa hemos calculado el caudal a renovar en cada estancia, tal y como puede observarse en el siguiente diagrama:

Para mayor comodidad en el nombramiento de los distintos tramos a dimensionar utilizaremos las siguientes referencias según el esquema que presentamos a continuación:

La tabla con los cálculo y dimensiones adoptadas para los distintos tramos de la red es la siguiente:

Tramo conducto	Q(m3/h)	%Capacidad inicial	Velocidad (m/s)	Sección (m2)	Dimensión (cmxcm)
Hasta A	2223	100	7	0,088	30x30
A-6	900	40,48	4	0,025	30x25
6-7	855	38,46	4	0,060	30x25
7-8	720	32,38	4	0,051	20x25
8-9	360	16,69	4	0,025	15x20
9-10	180	8,09	4	0,013	15x20
A-1	1323	59,51	4	0,092	30x30
1-2	963	43,32	4	0,067	30x25
2-3	603	27,13	4	0,042	20x25
3-4	423	19,03	4	0,029	15x20
4-5	288	12,95	4	0,020	15x20

La aspiración del aire viciado se realizará a través de conducto bajo falso techo de igual dimensiones que el tramo que acomete a las cajas de ventilación correspondientes, de esta forma aseguraremos que no se superen las velocidades de aire máximas recomendadas en estos conductos, ya que un exceso de velocidad de aire produciría molestias de ruidos y vibraciones. Véanse planos para más detalles.

4.2 ANEXOS DE CÁLCULO RED DE DISTRIBUCIÓN DE BAJA TENSIÓN.

Fórmulas Generales

```
Emplearemos las siguientes: Sistema Trifásico I = Pc / 1,732 \times U \times Cos \square = amp \ (A) e = 1.732 \times I[(L \times Cos \square / k \times S \times n) + (Xu \times L \times Sen \square / 1000 \times n)] = voltios \ (V) Sistema Monofásico: I = Pc / U \times Cos \square = amp \ (A) e = 2 \times I[(L \times Cos \square / k \times S \times n) + (Xu \times L \times Sen \square / 1000 \times n)] = voltios \ (V) En donde:
```

Pc = Potencia de Cálculo en Watios.

L = Longitud de Cálculo en metros.

e = Caída de tensión en Voltios.

K = Conductividad.

I = Intensidad en Amperios.

U = Tensión de Servicio en Voltios (Trifásica ó Monofásica).

S = Sección del conductor en mm².

Cos \square = Coseno de fi. Factor de potencia.

 $n = N^{o}$ de conductores por fase.

 $Xu = Reactancia por unidad de longitud en m <math>\square/m$.

Fórmula Conductividad Eléctrica

$$\Box = \Box_{20}[1+\Box (T-20)]$$

$$T = T_0 + [(T_{max} - T_0) (I/I_{max})^2]$$

Siendo,

K = Conductividad del conductor a la temperatura T.

 \square = Resistividad del conductor a la temperatura T.

 \square_{20} = Resistividad del conductor a 20°C.

$$Cu = 0.018$$

$$AI = 0.029$$

□ = Coeficiente de temperatura:

$$Cu = 0.00392$$

$$AI = 0.00403$$

T = Temperatura del conductor (${}^{\circ}$ C).

 $T_0 = \text{Temperatura ambiente } ({}^{\circ}\text{C})$:

Cables enterrados = 25ºC

Cables al aire = 40ºC

T_{max} = Temperatura máxima admisible del conductor (°C):

I = Intensidad prevista por el conductor (A).

I_{max} = Intensidad máxima admisible del conductor (A).

Las características generales de la red son:

Tensión(V): Trifásica 400, Monofásica 230

C.d.t. máx.(%): 5

Cos 🗆 : 0.8

Coef. Simultaneidad: 1

Temperatura cálculo conductividad eléctrica (ºC):

- XLPE, EPR: 20

- PVC: 20

A continuación se presentan los resultados obtenidos para las distintas ramas y nudos:

Linea	Nudo	Nudo	Long	. Metal /	Canal./	Aislam/Polar.	I. Cálculo	In/Ireg	In/Sens.Dif	Sección	I. Admisi.(A)/	D.tubo
	Orig.	Dest.	(m)	$Xu(m\square/m)$			(A)	(A)	(A/mA)	(mm2)	Fc	(mm)
1	1	2	31	Cu	Ent.Bajo Tub	oo RZ1-K(AS)3 Unp.	1375.036			4(3x185/95)	1536/0.8	4(180)
Nudo	C.d.1	t.(V)	Tensio	ón Nudo(V)	C.d.t.(%)	Carga Nudo						
1 2	0 -1.	425	40 39	00 98.575	0 0.356*	1375.036 A (762.1 -1375.036 A (-762.	,					

NOTA:

- * Nudo de mayor c.d.t.

Fórmulas Cortocircuito

* IpccI = Ct U / \square 3 Zt

Siendo,

Ipccl: intensidad permanente de c.c. en inicio de línea en kA.

Ct: Coeficiente de tensión.

U: Tensión trifásica en V.

Zt: Impedancia total en mohm, aguas arriba del punto de c.c. (sin incluir la línea o circuito en estudio).

* IpccF = Ct
$$U_F / 2 Zt$$

Siendo,

IpccF: Intensidad permanente de c.c. en fin de línea en kA.

Ct: Coeficiente de tensión.

U_F: Tensión monofásica en V.

Zt: Impedancia total en mohm, incluyendo la propia de la línea o circuito (por tanto es igual a la impedancia en origen mas la propia del conductor o línea).

$$Zt = (Rt^2 + Xt^2)^{1/2}$$

Siendo,

Rt: $R_1 + R_2 + \dots + R_n$ (suma de las resistencias de las líneas aguas arriba hasta el punto de c.c.)

 $Xt: X_1 + X_2 + \dots + X_n$ (suma de las reactancias de las líneas aguas arriba hasta el punto de c.c.)

$$R = L \cdot 1000 \cdot C_{R} / K \cdot S \cdot n \qquad (mohm)$$

$$X = Xu \cdot L / n$$
 (mohm)

R: Resistencia de la línea en mohm.

X: Reactancia de la línea en mohm.

L: Longitud de la línea en m.

C_R: Coeficiente de resistividad, extraído de condiciones generales de c.c.

K: Conductividad del metal.

S: Sección de la línea en mm².

^{*} La impedancia total hasta el punto de cortocircuito será:

Xu: Reactancia de la línea, en mohm por metro.

n: nº de conductores por fase.

* tmcicc = $Cc \cdot S^2 / IpccF^2$

Siendo.

tmcicc: Tiempo máximo en sg que un conductor soporta una Ipcc.

Cc= Constante que depende de la naturaleza del conductor y de su aislamiento.

S: Sección de la línea en mm².

IpccF: Intensidad permanente de c.c. en fin de línea en A.

* tficc = cte. fusible / IpccF2

Siendo,

tficc: tiempo de fusión de un fusible para una determinada intensidad de cortocircuito.

IpccF: Intensidad permanente de c.c. en fin de línea en A.

* Lmax = 0,8 U_F / $2 \cdot I_{F5} \cdot \Box (1,5 / K \cdot S \cdot n)^2 + (Xu / n \cdot 1000)^2$

Siendo.

Lmax: Longitud máxima de conductor protegido a c.c. (m) (para protección por fusibles)

U_F: Tensión de fase (V)

K: Conductividad

S: Sección del conductor (mm²)

Xu: Reactancia por unidad de longitud (mohm/m). En conductores aislados suele ser 0,1.

n: nº de conductores por fase

Ct= 0,8: Es el coeficiente de tensión.

C_R = 1,5: Es el coeficiente de resistencia.

I_{F5} = Intensidad de fusión en amperios de fusibles en 5 sg.

CURVA B IMAG = 5 In CURVA C IMAG = 10 In

CURVA D Y MA IMAG = 20 In

Linea	Nudo	Nudo	Ipccl	P de C	IpccF	tmcicc	tficc	In;Curvas
	Orig.	Dest.	(kA)	(kA)	(A)	(sg)	(sg)	
1	1	2	34.64	35	16507.12	36.63		1600; B,C

4.3 ANEXOS DE CÁLCULO CENTRO DE TRANSFORMACIÓN.

INTENSIDAD DE ALTA TENSIÓN

En un sistema trifásico, la intensidad primaria Ip viene determinada por la

^{*} Curvas válidas.(Para protección de Interruptores automáticos dotados de Relé electromagnético).

expresión:

$$Ip = \frac{S}{\sqrt{3} * U}$$

Siendo:

S = Potencia del transformador en kVA.

U = Tensión compuesta primaria en kV = 20 kV.

Ip = Intensidad primaria en Amperios.

Sustituyendo valores, tendremos:

Potencia del

transformador Ip (kVA) (A)

630 18.19 630 18.19

siendo la intensidad total primaria de 36.37 Amperios.

• INTENSIDAD DE BAJA TENSIÓN.

En un sistema trifásico la intensidad secundaria Is viene determinada por la expresión:

$$Is = \frac{S - Wfe - Wcu}{\sqrt{3} * U}$$

Siendo:

S = Potencia del transformador en kVA.

Wfe= Pérdidas en el hierro.

Wcu= Pérdidas en los arrollamientos.

U = Tensión compuesta en carga del secundario en kilovoltios = 0.4 kV.

Is = Intensidad secundaria en Amperios.

Sustituyendo valores, tendremos:

Potencia del		
transformador	Is	
(kVA)	(A)	
630	898.07	
630	898.07	

CORTOCIRCUITOS

Observaciones

Para el cálculo de la intensidad de cortocircuito se determina una potencia de cortocircuito de 500 MVA en la red de distribución, dato proporcionado por la Compañía suministradora.

Cálculo de las Corrientes de Cortocircuito.

Para la realización del cálculo de las corrientes de cortocircuito utilizaremos las expresiones:

- Intensidad primaria para cortocircuito en el lado de alta tensión:

$$Iccp = \frac{Scc}{\sqrt{3} * U}$$

Si

endo:

Scc = Potencia de cortocircuito de la red en MVA.

U = Tensión primaria en kV.

Iccp = Intensidad de cortocircuito primaria en kA.

- Intensidad primaria para cortocircuito en el lado de baja tensión:

No la vamos a calcular ya que será menor que la calculada en el punto anterior.

- Intensidad secundaria para cortocircuito en el lado de baja tensión

(despreciando la impedancia de la red de alta tensión):

$$Iccs = \frac{S}{\sqrt{3} * \frac{Ucc}{100} * Us}$$

Siendo:

S = Potencia del transformador en kVA.

Ucc = Tensión porcentual de cortocircuito del transformador.

Us = Tensión secundaria en carga en voltios.

Iccs= Intensidad de cortocircuito secundaria en kA.

Cortocircuito en el lado de Alta Tensión.

Utilizando la fórmula expuesta anteriormente con:

Scc = 500 MVA.

U = 20 kV.

y sustituyendo valores tendremos una intensidad primaria máxima para un cortocircuito en el lado de A.T. de:

$$Iccp = 14.43 \text{ kA}.$$

Cortocircuito en el lado de Baja Tensión.

Utilizando la fórmula expuesta anteriormente y sustituyendo valores, tendremos:

Potencia del		
transformador	Ucc	Iccs
(kVA)	(%)	(kA)
630	4	22.73
630	4	22.73

Siendo:

- Ucc: Tensión de cortocircuito del transformador en tanto por ciento.
- lccs: Intensidad secundaria máxima para un cortocircuito en el lado de baja tensión.

DIMENSIONADO DEL EMBARRADO.

Como resultado de los ensayos que han sido realizados a las celdas fabricadas por Schneider Electric no son necesarios los cálculos teóricos ya que con los cerificados de ensayo ya se justifican los valores que se indican tanto en esta memoria como en las placas de características de las celdas.

Comprobación por densidad de corriente.

La comprobación por densidad de corriente tiene como objeto verificar que no se supera la máxima densidad de corriente admisible por el elemento conductor cuando por el circule un corriente igual a la corriente nominal máxima.

Para las celdas modelo RM6 seleccionadas para este proyecto se ha obtenido la correspondiente certificación que garantiza cumple con la especificación citada mediante el protocolo de ensayo 51168218XB realizado por VOLTA.

Para las celdas modelo SM6 seleccionadas para este proyecto se ha obtenido la correspondiente certificación que garantiza cumple con la especificación citada mediante el protocolo de ensayo 51249139XA realizado por VOLTA.

Comprobación por solicitación electrodinámica.

La comprobación por solicitación electrodinámica tiene como objeto verificar que los elementos conductores de las celdas incluidas en este proyecto son capaces de soportar el esfuerzo mecánico derivado de un defecto de cortocircuito entre fase.

Para las celdas modelo RM6 seleccionadas para este proyecto se ha obtenido la correspondiente certificación que garantiza cumple con la especificación citada mediante el protocolo de ensayo 51168210XB realizado por VOLTA.

Para las celdas modelo SM6 seleccionadas para este proyecto se ha obtenido la correspondiente certificación que garantiza cumple con la especificación citada mediante DEPARTAMENTO DE INGENIERÍA DEL DISEÑO 157

el protocolo de ensayo 51249068XA realizado por VOLTA.

Los ensayos garantizan una resistencia electrodinámica de 40kA.

Comprobación por solicitación térmica. Sobreintensidad térmica admisible.

La comprobación por solicitación térmica tienen como objeto comprobar que por motivo de la aparición de un defecto o cortocircuito no se producirá un calentamiento excesivo del elemento conductor principal de las celdas que pudiera así dañarlo.

Para las celdas modelo RM6 seleccionadas para este proyecto se ha obtenido la correspondiente certificación que garantiza cumple con la especificación citada mediante el protocolo de ensayo 51168210XB realizado por VOLTA.

Para las celdas modelo SM6 seleccionadas para este proyecto se ha obtenido la correspondiente certificación que garantiza cumple con la especificación citada mediante el protocolo de ensayo 51249068XA realizado por VOLTA.

Los ensayos garantizan una resistencia térmica de 16kA 1 segundo.

• SELECCIÓN DE LAS PROTECCIONES DE ALTA Y BAJA TENSIÓN.

* ALTA TENSIÓN.

Los cortacircuitos fusibles son los limitadores de corriente, produciéndose su fusión, para una intensidad determinada, antes que la corriente haya alcazado su valor máximo. De todas formas, esta protección debe permitir el paso de la punta de corriente producida en la conexión del transformador en vacío, soportar la intensidad en servicio continuo y sobrecargas eventuales y cortar las intensidades de defecto en los bornes del secundario del transformador.

Como regla práctica, simple y comprobada, que tiene en cuenta la conexión en vacío del transformador y evita el envejecimiento del fusible, se puede verificar que la intensidad que hace fundir al fusible en 0,1 segundo es siempre superior o igual a 14 veces la intensidad nominal del transformador.

La intensidad nominal de los fusibles se escogerá por tanto en función de la DEPARTAMENTO DE INGENIERÍA DEL DISEÑO 158

potencia del transformador a proteger.

Sin embargo, en el caso de utilizar como interruptor de protección del transformador un disyuntor en atmósfera de hexafluoruro de azufre, y ser éste el aparato destinado a interrumpir las corrientes de cortocircuito cuando se produzcan, no se instalarán fusibles para la protección de dicho transformador.

Potencia del	Intensidad nominal
transformador	del fusible de A.T.
(kVA)	(A)
630	40
630	40

* BAJA TENSIÓN.

Los elementos de protección de las salidas de Baja Tensión del C.T. no serán objeto de este proyecto sino del proyecto de las instalaciones eléctricas de Baja Tensión.

DIMENSIONADO DE LA VENTILACIÓN DEL C.T.

Las rejillas de ventilación de los edificios prefabricados EHC están diseñadas y dispuestas sobre las paredes de manera que la circulación del aire ventile eficazmente la sala del transformador. El diseño se ha realizado cumpliendo los ensayos de calentamiento según la norma UNE-EN 61330, tomando como base de ensayo los transformadores de 1000 KVA según la norma UNE 21428-1. Todas las rejillas de ventilación van provistas de una tela metálica mosquitero. El prefabricado ha superado los ensayos de calentamiento realizados en LCOE con número de informe 200506330341.

• DIMENSIONES DEL POZO APAGAFUEGOS.

El foso de recogida de aceite tiene que ser capaz de alojar la totalidad del volumen de agente refrigerante que contiene el transformador en caso de su vaciamiento total.

Potencia del Volumen mínimo

transformador	del foso
(kVA)	(litros)
630	397
630	397

Dado que el foso de recogida de aceite del prefabricado será de 760 litros para cada transformador, no habrá ninguna limitación en este sentido.

• CÁLCULO DE LAS INSTALACIONES DE PUESTA A TIERRA.

Investigación de las características del suelo.

Según la investigación previa del terreno donde se instalará este Centro de Transformación, se determina una resistividad media superficial = $350 \ \tilde{\Box}$ m.

Determinación de las corrientes máximas de puesta a tierra y tiempo máximo correspondiente de eliminación de defecto.

Según los datos de la red proporcionados por la compañía suministradora (Compañía Se Electricidad (C.S.E.)), el tiempo máximo de desconexión del defecto es de 1s. Los valores de K y n para tensión máxima de contacto aplicada según MIE-RAT 13 en el tiempo de defecto proporcionado por la son:

$$K = 78.5 \text{ y } n = 0.18.$$

Por otra parte, los valores de la impedancia de puesta a tierra del neutro, corresponden a:

$$Rn = 12 \square y Xn = 0 \square$$
. con

$$|Zn| = \sqrt{Rn^2 + Xn^2}$$

La intensidad máxima de defecto se producirá en el caso hipotético de que la resistencia de pue del Centro de Transformación sea nula. Dicha intensidad será, por tanto igual a:

$$Id(m\acute{a}x) = \frac{Usmax}{\sqrt{3} * Zn}$$

donde Usmax=20000 V

con lo que el valor obtenido es Id=962.25 A, valor que la Compañía redondea a 1000 A.

Diseño preliminar de la instalación de tierra.

* TIERRA DE PROTECCIÓN.

Se conectarán a este sistema las partes metálicas de la instalación que no estén en tensión normalmente pero puedan estarlo a consecuencia de averías o causas fortuitas, tales como los chasis y los bastidores de los aparatos de maniobra, envolventes metálicas de las cabinas prefabricadas y carcasas de los transformadores.

Para los cálculos a realizar emplearemos las expresiones y procedimientos según el "Método de cálculo y proyecto de instalaciones de puesta a tierra para centros de transformación de tercera categoría", editado por UNESA, conforme a las características del centro de transformación objeto del presente cálculo, siendo, entre otras, las siguientes:

Para la tierra de protección optaremos por un sistema de las características que se indican a continuación:

- Identificación: código 5/82 del método de cálculo de tierras de UNESA.
- Parámetros característicos:

 $Kr = 0.0572 \ \Box/(\Box^*m).$ $Kp = 0.00345 \ V/(\Box^*m^*A).$

- Descripción:

Estará constituida por 8 picas en hilera unidas por un conductor horizontal de cobre desnudo de 50 mm² de sección.

Las picas tendrán un diámetro de 14 mm. y una longitud de 2.00 m. Se enterrarán verticalmente a una profundidad de 0.5 m. y la separación entre cada pica y la siguiente será de 3.00 m. Con esta configuración, la longitud de conductor desde la primera pica a la última será de 21 m., dimensión que tendrá que haber disponible en el terreno.

Nota: se pueden utilizar otras configuraciones siempre y cuando los parámetros Kr y Kp de la configuración escogida sean inferiores o iguales a los indicados en el párrafo anterior.

La conexión desde el Centro hasta la primera pica se realizará con cable de cobre aislado de 0.6/1 kV protegido contra daños mecánicos.

* TIERRA DE SERVICIO.

Se conectarán a este sistema el neutro del transformador, así como la tierra de los secundarios de los transformadores de tensión e intensidad de la celda de medida.

Las características de las picas serán las mismas que las indicadas para la tierra de protección. La configuración escogida se describe a continuación:

- Identificación: código 5/82 del método de cálculo de tierras de UNESA.
- Parámetros característicos:

```
Kr = 0.0572 \ \Box/(\Box^*m).

Kp = 0.00345 \ V/(\Box^*m^*A).
```

- Descripción:

Estará constituida por 8 picas en hilera unidas por un conductor horizontal de cobre desnudo de 50 mm² de sección.

Las picas tendrán un diámetro de 14 mm. y una longitud de 2.00 m. Se enterrarán verticalmente a una profundidad de 0.5 m. y la separación entre cada pica y la siguiente será de 3.00 m. Con esta configuración, la longitud de conductor desde la primera pica a la última será de 21 m., dimensión que tendrá que haber disponible en el terreno.

Nota: se pueden utilizar otras configuraciones siempre y cuando los parámetros Kr y Kp de la configuración escogida sean inferiores o iguales a los indicados en el párrafo anterior.

La conexión desde el Centro hasta la primera pica se realizará con cable de cobre aislado de 0.6/1 kV protegido contra daños mecánicos.

El valor de la resistencia de puesta a tierra de este electrodo deberá ser inferior a

DEPARTAMENTO DE INGENIERÍA DEL DISEÑO

162

37 □. Con este criterio se consigue que un defecto a tierra en una instalación de Baja Tensión protegida contra contactos indirectos por un interruptor diferencial de sensibilidad 650 mA., no ocasione en el electrodo de puesta a tierra una tensión superior a 24 Voltios (=37 x 0,650).

Existirá una separación mínima entre las picas de la tierra de protección y las picas de la tierra de servicio a fin de evitar la posible transferencia de tensiones elevadas a la red de Baja Tensión. Dicha separación está calculada en el apartado 2.8.8.

Cálculo de la resistencia del sistema de tierras.

* TIERRA DE PROTECCIÓN.

Para el cálculo de la resistencia de la puesta a tierra de las masas del Centro (Rt), intensidad y tensión de defecto correspondientes (Id, Ud), utilizaremos las siguientes fórmulas:

- Resistencia del sistema de puesta a tierra, Rt:

$$Rt = Kr * \square$$
.

- Intensidad de defecto, Id:

$$Id = \frac{Usmax V}{\sqrt{3} \cdot \sqrt{(Rn + Rt)^2 + Xn^2}}$$

donde Usmax=20000

- Tensión de defecto, Ud:

$$Ud = Id * Rt$$
.

Siendo:

$$Kr = 0.0572 \ \tilde{\square}/(\tilde{\square} \ m).$$

se obtienen los siguientes resultados:

Rt = 20 □

Id = 360.62 A.

Ud = 7219.6 V.

El aislamiento de las instalaciones de baja tensión del C.T. deberá ser mayor o igual que la tensión máxima de defecto calculada (Ud), por lo que deberá ser como mínimo de 8000 Voltios.

De esta manera se evitará que las sobretensiones que aparezcan al producirse un defecto en la parte de Alta Tensión deterioren los elementos de Baja Tensión del centro, y por ende no afecten a la red de Baja Tensión.

Comprobamos asimismo que la intensidad de defecto calculada es superior a 100 Amperios, lo que permitirá que pueda ser detectada por las protecciones normales.

* TIERRA DE SERVICIO.

Rt = Kr $^*\Box$ = 0.0572 * 350 = 20 \Box .

que vemos que es inferior a 37 \square .

Cálculo de las tensiones en el exterior de la instalación.

Con el fin de evitar la aparición de tensiones de contacto elevadas en el exterior de la instalación, las puertas y rejas de ventilación metálicas que dan al exterior del centro no tendrán contacto eléctrico alguno con masas conductoras que, a causa de defectos o averías, sean susceptibles de quedar sometidas a tensión.

Con estas medidas de seguridad, no será necesario calcular las tensiones de contacto en el exterior, ya que éstas serán prácticamente nulas.

Por otra parte, la tensión de paso en el exterior vendrá determinada por las DEPARTAMENTO DE INGENIERÍA DEL DISEÑO 164

características del electrodo y de la resistividad del terreno, por la expresión:

Up = Kp
$$^*\Box$$
 * Id = 0.00345 * 350 * 360.62 = 435.5 V.

Cálculo de las tensiones en el interior de la instalación.

El piso del Centro estará constituido por un mallazo electrosoldado con redondos de diámetro no inferior a 4 mm. formando una retícula no superior a 0,30 x 0,30 m. Este mallazo se conectará como mínimo en dos puntos preferentemente opuestos a la puesta a tierra de protección del Centro. Con esta disposición se consigue que la persona que deba acceder a una parte que pueda quedar en tensión, de forma eventual, está sobre una superficie equipotencial, con lo que desaparece el riesgo inherente a la tensión de contacto y de paso interior. Este mallazo se cubrirá con una capa de hormigón de 10 cm. de espesor como mínimo.

El edifico prefabricado de hormigón EHC estará construido de tal manera que, una vez fabricado, su interior sea una superficie equipotencial. Todas las varillas metálicas embebidas en el hormigón que constituyan la armadura del sistema equipotencial estarán unidas entre sí mediante soldadura eléctrica.

Esta armadura equipotencial se conectará al sistema de tierras de protección (excepto puertas y rejillas, que como ya se ha indicado no tendrán contacto eléctrico con el sistema equipotencial; debiendo estar aisladas de la armadura con una resistencia igual o superior a 10.000 ohmios a los 28 días de fabricación de las paredes).

Así pues, no será necesario el cálculo de las tensiones de paso y contacto en el interior de la instalación, puesto que su valor será prácticamente nulo.

No obstante, y según el método de cálculo empleado, la existencia de una malla equipotencial conectada al electrodo de tierra implica que la tensión de paso de acceso es equivalente al valor de la tensión de defecto, que se obtiene mediante la expresión:

Cálculo de las tensiones aplicadas.

La tensión máxima de contacto aplicada, en voltios, que se puede aceptar, según el reglamento MIE-RAT, será:

Uca =
$$\frac{K}{t^n}$$

Siendo:

Uca = Tensión máxima de contacto aplicada en Voltios.

K = 78.5.

n = 0.18.

t = Duración de la falta en segundos: 1 s

obtenemos el siguiente resultado:

Uca = 78.5 V

Para la determinación de los valores máximos admisibles de la tensión de paso en el exterior, y en el acceso al Centro, emplearemos las siguientes expresiones:

$$Up(exterior) = 10 \frac{K}{t^n} \left(1 + \frac{6 * \sigma}{1.000} \right)$$

Up(acceso) =
$$10 \frac{K}{t^n} \left(1 + \frac{3 * \sigma + 3 * \sigma h}{1.000} \right)$$

Siendo:

Up = Tensiones de paso en Voltios.

K = 78.5.

n = 0.18.

t = Duración de la falta en segundos: 1 s

□ = Resistividad del terreno.

□ h = Resistividad del hormigón = 3.000 □.m

obtenemos los siguientes resultados:

Up(exterior) = 2433.5 V

Así pues, comprobamos que los valores calculados son inferiores a los máximos admisibles:

- en el exterior:

$$Up = 435.5 \text{ V.} < Up(exterior) = 2433.5 \text{ V.}$$

- en el acceso al C.T.:

Investigación de tensiones transferibles al exterior.

Al no existir medios de transferencia de tensiones al exterior no se considera necesario un estudio previo para su reducción o eliminación.

No obstante, con el objeto de garantizar que el sistema de puesta a tierra de servicio no alcance tensiones elevadas cuando se produce un defecto, existirá una distancia de separación mínima Dmín, entre los electrodos de los sistemas de puesta a tierra de protección y de servicio, determinada por la expresión:

$$Dmín = \frac{\sigma * Id}{2.000 * \pi}$$

CO

n:

$$\square$$
= 350 \square .m. Id = 360.62 A.

obtenemos el valor de dicha distancia:

$$Dmin = 20.09 m.$$

Corrección y ajuste del diseño inicial estableciendo el definitivo.

No se considera necesario la corrección del sistema proyectado. No obstante, si el valor medido de las tomas de tierra resultara elevado y pudiera dar lugar a tensiones de paso o contacto excesivas, se corregirían estas mediante la disposición de una alfombra aislante en el suelo del Centro, o cualquier otro medio que asegure la no peligrosidad de estas tensiones.

4.4 ANEXOS DE CÁLCULO BAJA TENSIÓN

CUADRO GENERAL DE MANDO Y PROTECCION

Fórmulas

```
Emplearemos las siguientes:
Sistema Trifásico
I = Pc / 1,732 \times U \times Cos \square \times R = amp (A)
e = (L \times Pc / k \times U \times n \times S \times R) + (L \times Pc \times Xu \times Sen / 1000 \times U \times n \times R \times Cos) = voltios (V)
Sistema Monofásico:
I = Pc / U \times Cos \square \times R = amp(A)
e = (2 \times L \times Pc / k \times U \times n \times S \times R) + (2 \times L \times Pc \times Xu \times Sen \square / 1000 \times U \times n \times R \times Cos \square) = voltios (V)
En donde:
Pc = Potencia de Cálculo en Watios.
L = Longitud de Cálculo en metros.
e = Caída de tensión en Voltios.
K = Conductividad.
I = Intensidad en Amperios.
U = Tensión de Servicio en Voltios (Trifásica ó Monofásica).
S = Sección del conductor en mm².
Cos \square = Coseno de fi. Factor de potencia.
R = Rendimiento. (Para líneas motor).
n = N^{o} de conductores por fase.
Xu = Reactancia por unidad de longitud en m <math>\square/m.
```

Fórmula Conductividad Eléctrica

```
K = 1/□
□ = □<sub>20</sub>[1+□ (T-20)]
T = T<sub>0</sub> + [(T<sub>max</sub>-T<sub>0</sub>) (I/I<sub>max</sub>)²]

Siendo,
K = Conductividad del conductor a la temperatura T.
□ = Resistividad del conductor a la temperatura T.
□<sub>20</sub> = Resistividad del conductor a 20°C.

Cu = 0.018
Al = 0.029
□ = Coeficiente de temperatura:
```

```
Cu = 0.00392
Al = 0.00403

T = Temperatura del conductor (°C).

T<sub>0</sub> = Temperatura ambiente (°C):

Cables enterrados = 25°C
Cables al aire = 40°C

T<sub>max</sub> = Temperatura máxima admisible del conductor (°C):

XLPE, EPR = 90°C
PVC = 70°C

I = Intensidad prevista por el conductor (A).

I<sub>max</sub> = Intensidad máxima admisible del conductor (A).
```

Fórmulas Sobrecargas

```
lb □ln □lz
l2 □1,45 lz
```

Donde:

Ib: intensidad utilizada en el circuito.

Iz: intensidad admisible de la canalización según la norma UNE 20-460/5-523.

In: intensidad nominal del dispositivo de protección. Para los dispositivos de protección regulables, In es la intensidad de regulación escogida.

12: intensidad que asegura efectivamente el funcionamiento del dispositivo de protección. En la práctica 12 se toma igual:

- a la intensidad de funcionamiento en el tiempo convencional, para los interruptores automáticos (1,45 ln como máximo).
 - a la intensidad de fusión en el tiempo convencional, para los fusibles (1,6 ln).

Fórmulas compensación energía reactiva

```
cosØ = P/□(P²+ Q²).

tgØ = Q/P.

Qc = Px(tgØ1-tgØ2).

C = Qcx1000/U²x□; (Monofásico - Trifásico conexión estrella).

C = Qcx1000/3xU²x□; (Trifásico conexión triángulo).

Siendo:

P = Potencia activa instalación (kW).

Q = Potencia reactiva instalación (kVAr).

Qc = Potencia reactiva a compensar (kVAr).

Ø1 = Angulo de desfase de la instalación sin compensar.

Ø2 = Angulo de desfase que se quiere conseguir.

U = Tensión compuesta (V).

□ = 2xPixf; f = 50 Hz.

C = Capacidad condensadores (F); cx1000000(μF).
```

Fórmulas Cortocircuito

```
* IpccI = Ct U / □3 Zt
```

Siendo,

Ipccl: intensidad permanente de c.c. en inicio de línea en kA.

Ct: Coeficiente de tensión.

U: Tensión trifásica en V.

Zt: Impedancia total en mohm, aguas arriba del punto de c.c. (sin incluir la línea o circuito en estudio).

* IpccF = Ct U_F / 2 Zt

Siendo.

IpccF: Intensidad permanente de c.c. en fin de línea en kA.

Ct: Coeficiente de tensión.

U_F: Tensión monofásica en V.

Zt: Impedancia total en mohm, incluyendo la propia de la línea o circuito (por tanto es igual a la impedancia en origen mas la propia del conductor o línea).

* La impedancia total hasta el punto de cortocircuito será:

$$Zt = (Rt^2 + Xt^2)^{1/2}$$

Siendo,

Rt: R₁ + R₂ ++ R_n (suma de las resistencias de las líneas aguas arriba hasta el punto de c.c.)

 $Xt: X_1 + X_2 + \dots + X_n$ (suma de las reactancias de las líneas aguas arriba hasta el punto de c.c.)

$$R = L \cdot 1000 \cdot C_R / K \cdot S \cdot n \quad (mohm)$$

$$X = Xu \cdot L / n$$
 (mohm)

R: Resistencia de la línea en mohm.

X: Reactancia de la línea en mohm.

L: Longitud de la línea en m.

C_R: Coeficiente de resistividad.

K: Conductividad del metal.

S: Sección de la línea en mm².

Xu: Reactancia de la línea, en mohm por metro.

n: nº de conductores por fase.

Siendo,

tmcicc: Tiempo máximo en sg que un conductor soporta una Ipcc.

Cc= Constante que depende de la naturaleza del conductor y de su aislamiento.

S: Sección de la línea en mm².

IpccF: Intensidad permanente de c.c. en fin de línea en A.

* tficc = cte. fusible / IpccF2

Siendo,

tficc: tiempo de fusión de un fusible para una determinada intensidad de cortocircuito.

IpccF: Intensidad permanente de c.c. en fin de línea en A.

* Lmax = 0,8 U_F /
$$2 \cdot I_{F5} \cdot \Box (1,5 / K \cdot S \cdot n)^2 + (Xu / n \cdot 1000)^2$$

Siendo,

Lmax: Longitud máxima de conductor protegido a c.c. (m) (para protección por fusibles)

^{*} tmcicc = $Cc \cdot S^2 / IpccF^2$

U_F: Tensión de fase (V)

K: Conductividad

S: Sección del conductor (mm²)

Xu: Reactancia por unidad de longitud (mohm/m). En conductores aislados suele ser 0,1.

n: nº de conductores por fase

Ct= 0,8: Es el coeficiente de tensión.

C_R = 1,5: Es el coeficiente de resistencia.

I_{F5} = Intensidad de fusión en amperios de fusibles en 5 sg.

* Curvas válidas. (Para protección de Interruptores automáticos dotados de Relé electromagnético).

CURVA B IMAG = 5 In CURVA C IMAG = 10 In

CURVA D Y MA IMAG = 20 In

Fórmulas Embarrados

Cálculo electrodinámico

```
\square \max = |\operatorname{Ipcc}^2 \cdot L^2 / (60 \cdot d \cdot Wy \cdot n)|
```

Siendo,

max: Tensión máxima en las pletinas (kg/cm²)

Ipcc: Intensidad permanente de c.c. (kA)

L: Separación entre apoyos (cm)

d: Separación entre pletinas (cm)

n: nº de pletinas por fase

Wy: Módulo resistente por pletina eje y-y (cm³) □adm: Tensión admisible material (kg/cm²)

Comprobación por solicitación térmica en cortocircuito

lcccs = Kc · S / (1000 · □tcc)

Siendo,

Ipcc: Intensidad permanente de c.c. (kA)

lcccs: Intensidad de c.c. soportada por el conductor durante el tiempo de duración del c.c. (kA)

S: Sección total de las pletinas (mm²) tcc: Tiempo de duración del cortocircuito (s)

Kc: Constante del conductor: Cu = 164, Al = 107

DEMANDA DE POTENCIAS

- Potencia total instalada:

CP3	54000 W
CG.AN.01	4000 W
CG.AN.02	4000 W
CG.AN.06	2250 W
CG.AN.07	2500 W
CG AN 09	462 W

CG.AN.10	378 W	
CG.AN.11	168 W	
CG.AE.01	100 W	
CG.AE.02	70 W	
CG.AE.03	60 W	
CG.AE.04	100 W	
CG.AEX.01	2000 W	
CG.AEX.04	3250 W	
CG.AEX.03	3250 W	
CG.AEX.05	5000 W	
CG.FEX.01 (BASC)		2500 W
CG.FEX.02 (P.EXT)		2500 W
CG.FEX.03 (P.EXT)		2500 W
CG.FN.CLIMA		15300 W
CG.FN.01	2000 W	
CG.FN.02	2000 W	
CG.FN.03	2000 W	
CG.FN.04	2000 W	
CG.FN.05	2000 W	
CG.FN.06	2000 W	
CG.FN.07	2000 W	
CG.FN.08	2000 W	
CG.FN.09	2000 W	
CG.FN.10	2000 W	
CG.FN.11	2000 W	
CG.FN.12	2000 W	
CP1	375600 W	
CP2	217300 W	
TOTAL		721288 W

- Potencia Instalada Alumbrado (W): 27588
- Potencia Instalada Fuerza (W): 693700
- Potencia Máxima Admisible (W): 0

Cálculo de la Línea: CP3

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 40 m; Cos \square : 0.8; Xu(m \square /m): 0;
- Potencia a instalar: 54000 W.
- Potencia de cálculo: (Según ITC-BT-47):

20000x1.25+34000=59000 W.(Coef. de Simult.: 1)

I=59000/1,732x400x0.8=106.45 A.

Se eligen conductores Unipolares 4x35+TTx16mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 110 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 68.1

e(parcial)=40x59000/46.74x400x35=3.61 V.=0.9 %

e(total)=0.9% ADMIS (4.5% MAX.)

Protección Termica en Principio de Línea

I. Aut./Tet. In.: 160 A. Térmico reg. Int.Reg.: 108 A.

Protección Térmica en Final de Línea

I. Aut./Tet. In.: 160 A. Térmico reg. Int.Reg.: 108 A. Protección diferencial en Principio de Línea Relé y Transfor. Diferencial Sens.: 30 mA.

SUBCUADRO

CP3

DEMANDA DE POTENCIAS

- Potencia total instalada:

CP3.FN.01	8000 W
CP3.FN.02	20000 W
CP3.FN.03	5000 W
CP3.FN.07	2000 W
CP3.FN.06	1000 W
CP3.FN.04	15000 W
CP3.FN.05	3000 W

TOTAL.... 54000 W

- Potencia Instalada Fuerza (W): 54000

Cálculo de la Línea: CP3.FN.01

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 12 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 8000 W.

- Potencia de cálculo: (Según ITC-BT-47):

8000x1.25=10000 W.

I=10000/1,732x400x0.8x1=18.04 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 60.18

e(parcial)=12x10000/48x400x2.5x1=2.5 V.=0.63 %

e(total)=1.53% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 20 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP3.FN.02

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 15 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 20000 W.

- Potencia de cálculo: (Según ITC-BT-47):

20000x1.25=25000 W.

I=25000/1,732x400x0.8x1=45.11 A.

Se eligen conductores Unipolares 4x10+TTx10mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 52 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 62.57

e(parcial)=15x25000/47.61x400x10x1=1.97 V.=0.49 %

e(total)=1.39% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 47 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 63 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP3.FN.03

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 20 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 5000 W.

- Potencia de cálculo: (Según ITC-BT-47):

5000x1.25=6250 W.

I=6250/1,732x400x0.8x1=11.28 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (${}^{\circ}$ C): 47.88

```
e(parcial)=20x6250/50.08x400x2.5x1=2.5 V.=0.62 %
e(total)=1.53% ADMIS (6.5% MAX.)
```

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A. Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP3.FN.07

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor - Longitud: 20 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 2000 W.

- Potencia de cálculo: (Según ITC-BT-47):

2000x1.25=2500 W.

I=2500/1,732x400x0.8x1=4.51 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 41.26

e(parcial)=20x2500/51.28x400x2.5x1=0.98 V.=0.24 %

e(total)=1.15% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP3.FN.06

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 20 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 1000 W.

- Potencia de cálculo: (Según ITC-BT-47):

1000x1.25=1250 W.

I=1250/1,732x400x0.8x1=2.26 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 40.32

e(parcial)=20x1250/51.46x400x2.5x1=0.49 V.=0.12 %

e(total)=1.02% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP3.FN.04

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 10 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 15000 W.

- Potencia de cálculo: (Según ITC-BT-47):

15000x1.25=18750 W.

I=18750/1,732x400x0.8x1=33.83 A.

Se eligen conductores Unipolares 4x10+TTx10mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 52 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (ºC): 52.7

e(parcial)=10x18750/49.24x400x10x1=0.95 V.=0.24 %

e(total)=1.14% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 38 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 40 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP3.FN.05

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 20 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 3000 W.

- Potencia de cálculo: (Según ITC-BT-47):

3000x1.25=3750 W.

I=3750/1,732x400x0.8x1=6.77 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (9 C): 42.84 e(parcial)=20x3750/50.99x400x2.5x1=1.47 V.=0.37 % e(total)=1.27% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

CALCULO DE EMBARRADO CP3

Datos

- Metal: Cu
- Estado pletinas: desnudas
- nº pletinas por fase: 1
- Separación entre pletinas, d(cm): 10
- Separación entre apoyos, L(cm): 25
- Tiempo duración c.c. (s): 0.5

Pletina adoptada

- Sección (mm²): 45
- Ancho (mm): 15
- Espesor (mm): 3
- Wx, Ix, Wy, Iy (cm^3, cm^4) : 0.112, 0.084, 0.022, 0.003
- I. admisible del embarrado (A): 170

a) Cálculo electrodinámico

```
\squaremax = Ipcc^2 \cdot L^2 / (60 \cdot d \cdot Wy \cdot n) =4.71^2 \cdot 25^2 / (60 \cdot 10 \cdot 0.022 \cdot 1) = 1051.163 <= 1200 kg/cm^2 Cu
```

b) Cálculo térmico, por intensidad admisible

```
|cal| = 106.45 \text{ A}
|cal| = 170 \text{ A}
```

c) Comprobación por solicitación térmica en cortocircuito

```
lpcc = 4.71 kA 
lcccs = Kc · S / ( 1000 · \Boxtcc) = 164 · 45 · 1 / (1000 · \Box0.5) = 10.44 kA
```

Cálculo de la Línea: AL NAVE NORMAL

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 0.3 m; Cos □: 0.8; Xu(m□/m): 0;

```
- Potencia a instalar: 12750 W.
```

- Potencia de cálculo: (Según ITC-BT-44):

22950 W.(Coef. de Simult.: 1)

I=22950/1,732x400x0.8=41.41 A.

Se eligen conductores Unipolares 4x10mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 52 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 59.02

e(parcial)=0.3x22950/48.18x400x10=0.04 V.=0.01 %

e(total)=0.01% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 47 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 63 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CG.AN.01

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 85 m; Cos □: 1; Xu(m□/m): 0;

- Datos por tramo

Tramo 1

Longitud(m) 85
P.des.nu.(W) 4000
P.inc.nu.(W) 0

- Potencia a instalar: 4000 W.

- Potencia de cálculo: (Según ITC-BT-44):

4000x1.8=7200 W.

I=7200/1,732x400x1=10.39 A.

Se eligen conductores Unipolares 4x4+TTx4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 30 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 43.6

e(parcial)=85x7200/50.85x400x4=7.52 V.=1.88 %

e(total)=1.89% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Cálculo de la Línea: CG.AN.02

```
- Tensión de servicio: 400 V.
```

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 90 m; Cos \square : 1; Xu(m \square /m): 0;

- Datos por tramo

Tramo 1

Longitud(m) 90
P.des.nu.(W) 4000
P.inc.nu.(W) 0

- Potencia a instalar: 4000 W.
- Potencia de cálculo: (Según ITC-BT-44):

4000x1.8=7200 W.

I=7200/1,732x400x1=10.39 A.

Se eligen conductores Unipolares 4x4+TTx4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 30 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (ºC): 43.6

e(parcial)=90x7200/50.85x400x4=7.96 V.=1.99 %

e(total)=2% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Cálculo de la Línea: CG.AN.06

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 36 m; Cos \square : 1; Xu(m \square /m): 0;
- Datos por tramo

Tramo 1

Longitud(m) 36
P.des.nu.(W) 2250
P.inc.nu.(W) 0

- Potencia a instalar: 2250 W.
- Potencia de cálculo: (Según ITC-BT-44):

2250x1.8=4050 W.

I=4050/1,732x400x1=5.85 A.

Se eligen conductores Unipolares 4x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 16 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

```
Caída de tensión:
Temperatura cable (ºC): 44
e(parcial)=36x4050/50.78x400x1.5=4.79 V.=1.2 %
e(total)=1.21% ADMIS (4.5% MAX.)
Prot. Térmica:
I. Mag. Tetrapolar Int. 10 A.
Cálculo de la Línea: CG.AN.07
- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 75 m; Cos □: 1; Xu(m□/m): 0;
- Datos por tramo
         Tramo
                            75
         Longitud(m)
         P.des.nu.(W)
                            2500
         P.inc.nu.(W)
                            0
- Potencia a instalar: 2500 W.
- Potencia de cálculo: (Según ITC-BT-44):
2500x1.8=4500 W.
I=4500/1,732x400x1=6.5 A.
Se eligen conductores Unipolares 4x1.5+TTx1.5mm²Cu
Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.
Desig. UNE: ES07Z1-K(AS)
I.ad. a 40 °C (Fc=1) 16 A. según ITC-BT-19
Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².
Caída de tensión:
Temperatura cable (°C): 44.94
e(parcial)=75x4500/50.61x400x1.5=11.12 V.=2.78 %
e(total)=2.79% ADMIS (4.5% MAX.)
Prot. Térmica:
I. Mag. Tetrapolar Int. 10 A.
Cálculo de la Línea: AL OFICINA NORMAL
- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
```

- Canalización: E-Unip.o Mult.Bandeja Perfor - Longitud: 0.3 m; Cos □: 0.8; Xu(m□/m): 0; - Potencia a instalar: 1008 W. - Potencia de cálculo: (Según ITC-BT-44): 1814.4 W.(Coef. de Simult.: 1)

I=1814.4/1,732x400x0.8=3.27 A.

Se eligen conductores Unipolares 4x1.5mm²Cu

```
Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.
Desig. UNE: ES07Z1-K(AS)
I.ad. a 40 °C (Fc=1) 16 A. según ITC-BT-19
Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².
Caída de tensión:
Temperatura cable (°C): 41.26
e(parcial)=0.3x1814.4/51.28x400x1.5=0.02 V.=0 %
e(total)=0% ADMIS (4.5% MAX.)
Prot. Térmica:
I. Mag. Tetrapolar Int. 10 A.
Protección diferencial:
Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.
Cálculo de la Línea: CG.AN.09
- Tensión de servicio: 230 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 24 m; Cos □: 1; Xu(m□/m): 0;
- Datos por tramo
         Tramo
         Longitud(m)
                            24
         P.des.nu.(W)
                            462
         P.inc.nu.(W)
                            0
- Potencia a instalar: 462 W.
- Potencia de cálculo: (Según ITC-BT-44):
462x1.8=831.6 W.
I=831.6/230x1=3.62 A.
Se eligen conductores Unipolares 2x1.5+TTx1.5mm2Cu
Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.
Desig. UNE: ES07Z1-K(AS)
I.ad. a 40 °C (Fc=1) 19 A. según ITC-BT-19
Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².
Caída de tensión:
Temperatura cable (°C): 41.09
e(parcial)=2x24x831.6/51.31x230x1.5=2.25 V.=0.98 %
e(total)=0.98% ADMIS (4.5% MAX.)
Prot. Térmica:
I. Mag. Bipolar Int. 10 A.
```

Cálculo de la Línea: CG.AN.10

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 30 m; Cos □: 1; Xu(m□/m): 0;
- Datos por tramo

```
Tramo
                1
         Longitud(m)
                           30
         P.des.nu.(W)
                           378
         P.inc.nu.(W)
                           0
- Potencia a instalar: 378 W.
- Potencia de cálculo: (Según ITC-BT-44):
378x1.8=680.4 W.
I=680.4/1,732x400x1=0.98 A.
Se eligen conductores Unipolares 4x1.5+TTx1.5mm2Cu
Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.
Desig. UNE: ES07Z1-K(AS)
I.ad. a 40 °C (Fc=1) 16 A. según ITC-BT-19
Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².
Caída de tensión:
Temperatura cable (ºC): 40.11
e(parcial)=30x680.4/51.5x400x1.5=0.66 V.=0.17 %
e(total)=0.17% ADMIS (4.5% MAX.)
Prot. Térmica:
I. Mag. Tetrapolar Int. 10 A.
Cálculo de la Línea: CG.AN.11
- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 15 m; Cos □: 1; Xu(m□/m): 0;
- Datos por tramo
         Tramo 1
         Longitud(m)
                           15
         P.des.nu.(W)
                           168
         P.inc.nu.(W)
- Potencia a instalar: 168 W.
- Potencia de cálculo: (Según ITC-BT-44):
168x1.8=302.4 W.
I=302.4/1,732x400x1=0.44 A.
Se eligen conductores Unipolares 4x1.5+TTx1.5mm²Cu
Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.
Desig. UNE: ES07Z1-K(AS)
I.ad. a 40 °C (Fc=1) 16 A. según ITC-BT-19
Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².
Caída de tensión:
```

e(parcial)=15x302.4/51.51x400x1.5=0.15 V.=0.04 %

Temperatura cable (°C): 40.02

e(total)=0.04% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A.

Cálculo de la Línea: AL EMERG

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 0.3 m; Cos □: 0.8; Xu(m□/m): 0;

- Potencia a instalar: 330 W.

- Potencia de cálculo: (Según ITC-BT-44):

594 W.(Coef. de Simult.: 1)

I=594/1,732x400x0.8=1.07 A.

Se eligen conductores Unipolares 4x1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 16 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 40.13

e(parcial)=0.3x594/51.49x400x1.5=0.01 V.=0 %

e(total)=0% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CG.AE.01

- Tensión de servicio: 230 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 34 m; Cos □: 1; Xu(m□/m): 0;

- Datos por tramo

Tramo

- Potencia a instalar: 100 W.

- Potencia de cálculo: (Según ITC-BT-44):

100x1.8=180 W.

I=180/230x1=0.78 A.

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 19 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

```
Caída de tensión:
```

```
Temperatura cable (°C): 40.05
e(parcial)=2x34x180/51.51x230x1.5=0.69 V.=0.3 %
e(total)=0.3% ADMIS (4.5% MAX.)
```

Prot. Térmica:

I. Mag. Bipolar Int. 10 A.

Cálculo de la Línea: CG.AE.02

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 18 m; Cos □: 1; Xu(m□/m): 0;
- Datos por tramo

Tramo 1

 $\begin{array}{lll} Longitud(m) & 18 \\ P.des.nu.(W) & 70 \\ P.inc.nu.(W) & 0 \end{array}$

- Potencia a instalar: 70 W.
- Potencia de cálculo: (Según ITC-BT-44):

70x1.8=126 W.

I=126/1,732x400x1=0.18 A.

Se eligen conductores Unipolares 4x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 16 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (ºC): 40

e(parcial)=18x126/51.52x400x1.5=0.07 V.=0.02 %

e(total)=0.02% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A.

Cálculo de la Línea: CG.AE.03

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 50 m; Cos \square : 1; Xu(m \square /m): 0;
- Datos por tramo

Tramo 1

Longitud(m) 50
P.des.nu.(W) 60
P.inc.nu.(W) 0

- Potencia a instalar: 60 W.
- Potencia de cálculo: (Según ITC-BT-44):

```
60x1.8=108 W.
```

I=108/1,732x400x1=0.16 A.

Se eligen conductores Unipolares 4x1.5+TTx1.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 16 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (ºC): 40

e(parcial)=50x108/51.52x400x1.5=0.17 V.=0.04 %

e(total)=0.05% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A.

Cálculo de la Línea: CG.AE.04

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 65 m; Cos □: 1; Xu(m□/m): 0;
- Datos por tramo

Tramo 1

Longitud(m) 65
P.des.nu.(W) 100
P.inc.nu.(W) 0

- Potencia a instalar: 100 W.
- Potencia de cálculo: (Según ITC-BT-44):

100x1.8=180 W.

I=180/1,732x400x1=0.26 A.

Se eligen conductores Unipolares 4x1.5+TTx1.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 16 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 40.01

e(parcial)=65x180/51.52x400x1.5=0.38 V.=0.09 %

e(total)=0.1% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A.

Cálculo de la Línea: AL EXT

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor

```
- Longitud: 0.3 m; Cos □: 0.8; Xu(m□/m): 0;
- Potencia a instalar: 13500 W.
- Potencia de cálculo: (Según ITC-BT-44):
24300 W.(Coef. de Simult.: 1)
I=24300/1,732x400x0.8=43.84 A.
Se eligen conductores Unipolares 4x10mm²Cu
Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.
Desig. UNE: ES07Z1-K(AS)
I.ad. a 40 °C (Fc=1) 52 A. según ITC-BT-19
Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².
Caída de tensión:
Temperatura cable (°C): 61.33
e(parcial)=0.3x24300/47.81x400x10=0.04 V.=0.01 %
e(total)=0.01% ADMIS (4.5% MAX.)
Prot. Térmica:
I. Mag. Tetrapolar Int. 47 A.
Protección diferencial:
Inter. Dif. Tetrapolar Int.: 63 A. Sens. Int.: 30 mA.
Cálculo de la Línea: CG.AEX.01
- Tensión de servicio: 230 V.
- Canalización: Enterrados Bajo Tubo (R.Subt)
- Longitud: 70 m; Cos □: 1; Xu(m□/m): 0;
- Datos por tramo
         Tramo
         Longitud(m)
                            70
         P.des.nu.(W)
                            2000
         P.inc.nu.(W)
                            0
- Potencia a instalar: 2000 W.
- Potencia de cálculo: (Según ITC-BT-44):
2000x1.8=3600 W.
I=3600/230x1=15.65 A.
Se eligen conductores Unipolares 2x6+TTx6mm²Cu
Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol - No propagador incendio y emisión humos y opacidad reducida -.
Desig. UNE: RZ1-K(AS)
I.ad. a 25 °C (Fc=0.8) 70.56 A. según ITC-BT-07
Diámetro exterior tubo: 50 mm.
Caída de tensión:
Temperatura cable (°C): 28.2
e(parcial)=2x70x3600/53.83x230x6=6.79 V.=2.95 %
e(total)=2.96% ADMIS (4.5% MAX.)
```

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: CG.AEX.04

```
- Tensión de servicio: 400 V.
```

- Canalización: B1-Unip.Tubos Superf.o Emp.Obra

- Longitud: 92 m; Cos □: 1; Xu(m□/m): 0;

- Datos por tramo

Tramo

Longitud(m) 92
P.des.nu.(W) 3250
P.inc.nu.(W) 0

- Potencia a instalar: 3250 W.
- Potencia de cálculo: (Según ITC-BT-44):

3250x1.8=5850 W.

I=5850/1,732x400x1=8.44 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: RZ1-K(AS)

I.ad. a 40 °C (Fc=1) 23 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 46.74

e(parcial)=92x5850/50.28x400x2.5=10.7 V.=2.68 %

e(total)=2.69% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A.

Cálculo de la Línea: CG.AEX.03

- Tensión de servicio: 400 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 92 m; Cos □: 1; Xu(m□/m): 0;
- Datos por tramo

Tramo 1

Longitud(m) 92
P.des.nu.(W) 3250
P.inc.nu.(W) 0

- Potencia a instalar: 3250 W.
- Potencia de cálculo: (Según ITC-BT-44):

3250x1.8=5850 W.

I=5850/1,732x400x1=8.44 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: RZ1-K(AS)

I.ad. a $40\,^{\circ}$ C (Fc=1) 23 A. según ITC-BT-19

```
Diámetro exterior tubo: 20 mm.
```

Caída de tensión:

Temperatura cable (°C): 46.74

e(parcial)=92x5850/50.28x400x2.5=10.7 V.=2.68 %

e(total)=2.69% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 10 A.

Cálculo de la Línea: CG.AEX.05

- Tensión de servicio: 400 V.
- Canalización: Enterrados Bajo Tubo (R.Subt)
- Longitud: 225 m; Cos □: 1; Xu(m□/m): 0;
- Datos por tramo

Tramo 1

Longitud(m) 225
P.des.nu.(W) 5000
P.inc.nu.(W) 0

- Potencia a instalar: 5000 W.
- Potencia de cálculo: (Según ITC-BT-44):

5000x1.8=9000 W.

I=9000/1,732x400x1=12.99 A.

Se eligen conductores Unipolares 4x10+TTx10mm²Cu

Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: RZ1-K(AS)

I.ad. a $25\,^{\circ}\text{C}$ (Fc=0.8) 76.8 A. según ITC-BT-07

Diámetro exterior tubo: 63 mm.

Caída de tensión:

Temperatura cable (°C): 26.86

e(parcial)=225x9000/54.1x400x10=9.36 V.=2.34 %

e(total)=2.35% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Cálculo de la Línea: FZA EXTERIOR

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 0.3 m; Cos □: 0.8; Xu(m□/m): 0;
- Potencia a instalar: 7500 W.
- Potencia de cálculo: (Según ITC-BT-47):

2500x1.25+5000=8125 W.(Coef. de Simult.: 1)

I=8125/1,732x400x0.8=14.66 A.

Se eligen conductores Unipolares 4x6mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 37 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable ($^{\circ}$ C): 44.71 e(parcial)=0.3x8125/50.65x400x6=0.02 V.=0.01 % e(total)=0.01% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 20 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CG.FEX.01 (BASC)

- Tensión de servicio: 230 V.

- Canalización: Enterrados Bajo Tubo (R.Subt)

- Longitud: 20 m; Cos \square : 0.8; Xu(m \square/m): 0; R: 1

- Potencia a instalar: 2500 W.

- Potencia de cálculo: (Según ITC-BT-47):

2500x1.25=3125 W.

I=3125/230x0.8x1=16.98 A.

Se eligen conductores Unipolares 2x6+TTx6mm²Cu

Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: RZ1-K(AS)

I.ad. a 25 °C (Fc=0.8) 70.56 A. según ITC-BT-07

Diámetro exterior tubo: 50 mm.

Caída de tensión:

Temperatura cable (°C): 28.77

e(parcial)=2x20x3125/53.71x230x6x1=1.69 V.=0.73 %

e(total)=0.74% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 20 A.

Cálculo de la Línea: CG.FEX.02 (P.EXT)

- Tensión de servicio: 230 V.

- Canalización: Enterrados Bajo Tubo (R.Subt)

- Longitud: 52 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 2500 W.

- Potencia de cálculo: (Según ITC-BT-47):

2500x1.25=3125 W.

I=3125/230x0.8x1=16.98 A.

Se eligen conductores Unipolares 2x6+TTx6mm²Cu

Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: RZ1-K(AS)

I.ad. a 25 °C (Fc=0.8) 70.56 A. según ITC-BT-07

Diámetro exterior tubo: 50 mm.

Caída de tensión:

Temperatura cable (°C): 28.77 e(parcial)=2x52x3125/53.71x230x6x1=4.38 V.=1.91 % e(total)=1.91% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 20 A.

Cálculo de la Línea: CG.FEX.03 (P.EXT)

- Tensión de servicio: 230 V.

Canalización: Enterrados Bajo Tubo (R.Subt)
 Longitud: 30 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 2500 W.

- Potencia de cálculo: (Según ITC-BT-47):

2500x1.25=3125 W.

I=3125/230x0.8x1=16.98 A.

Se eligen conductores Unipolares 2x6+TTx6mm²Cu

Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: RZ1-K(AS)

I.ad. a 25°C (Fc=0.8) 70.56 A. según ITC-BT-07

Diámetro exterior tubo: 50 mm.

Caída de tensión:

Temperatura cable ($^{\circ}$ C): 28.77 e(parcial)=2x30x3125/53.71x230x6x1=2.53 V.=1.1 % e(total)=1.1% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 20 A.

Cálculo de la Línea: CG.FN.CLIMA

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 15 m; Cos □: 0.8; Xu(m □/m): 0; R: 1

- Potencia a instalar: 15300 W.

- Potencia de cálculo: (Según ITC-BT-47):

15300x1.25=19125 W.

I=19125/1,732x400x0.8x1=34.51 A.

Se eligen conductores Unipolares 4x6+TTx6mm²Cu

Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: RZ1-K(AS)

I.ad. a 40 °C (Fc=1) 46 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (ºC): 68.14

e(parcial)=15x19125/46.74x400x6x1=2.56 V.=0.64 %

e(total)=0.64% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 38 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 40 A. Sens. Int.: 30 mA.

Cálculo de la Línea: FUERZA OFICINA

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 0.3 m; Cos □: 0.8; Xu(m□/m): 0;

- Potencia a instalar: 8000 W.

- Potencia de cálculo:

8000 W.(Coef. de Simult.: 1)

I=8000/1,732x400x0.8=14.43 A.

Se eligen conductores Unipolares 4x2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 52.91

e(parcial)=0.3x8000/49.21x400x2.5=0.05 V.=0.01 %

e(total)=0.01% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CG.FN.01

- Tensión de servicio: 230 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 10 m; Cos □: 0.8; Xu(m□/m): 0;

- Datos por tramo

Tramo 1

Longitud(m) 10 Pot.nudo(W) 2000

- Potencia a instalar: 2000 W.

- Potencia de cálculo: 2000 W.

I=2000/230x0.8=10.87 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 26 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 45.24

e(parcial)=2x10x2000/50.55x230x2.5=1.38 V.=0.6 %

e(total)=0.61% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: CG.FN.02

- Tensión de servicio: 230 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 10 m; Cos \square : 0.8; Xu(m \square /m): 0;
- Datos por tramo

Tramo

Longitud(m) 10 Pot.nudo(W) 2000

- Potencia a instalar: 2000 W.
- Potencia de cálculo: 2000 W.

I=2000/230x0.8=10.87 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 26 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 45.24

e(parcial)=2x10x2000/50.55x230x2.5=1.38 V.=0.6 %

e(total)=0.61% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: CG.FN.03

- Tensión de servicio: 230 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 10 m; Cos \square : 0.8; Xu(m \square /m): 0;
- Datos por tramo

Tramo 1

Longitud(m) 10

Pot.nudo(W) 2000

- Potencia a instalar: 2000 W.

- Potencia de cálculo: 2000 W.

I=2000/230x0.8=10.87 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 26 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 45.24

e(parcial)=2x10x2000/50.55x230x2.5=1.38 V.=0.6 %

e(total)=0.61% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: CG.FN.04

- Tensión de servicio: 230 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 15 m; Cos \square : 0.8; Xu(m \square /m): 0;

- Datos por tramo

Tramo 1

Longitud(m) 15 Pot.nudo(W) 2000

- Potencia a instalar: 2000 W.

- Potencia de cálculo: 2000 W.

I=2000/230x0.8=10.87 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 26 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 45.24

e(parcial)=2x15x2000/50.55x230x2.5=2.06 V.=0.9 %

e(total)=0.91% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: FUERZA OFICINA

- Tensión de servicio: 400 V.

```
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 0.3 m; Cos □: 0.8; Xu(m□/m): 0;
- Potencia a instalar: 8000 W.
- Potencia de cálculo:
8000 W.(Coef. de Simult.: 1)
I=8000/1,732x400x0.8=14.43 A.
Se eligen conductores Unipolares 4x2.5mm2Cu
Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.
Desig. UNE: ES07Z1-K(AS)
I.ad. a 40°C (Fc=1) 22 A. según ITC-BT-19
Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².
Caída de tensión:
Temperatura cable (°C): 52.91
e(parcial)=0.3x8000/49.21x400x2.5=0.05 V.=0.01 %
e(total)=0.01% ADMIS (4.5% MAX.)
Prot. Térmica:
I. Mag. Tetrapolar Int. 16 A.
Protección diferencial:
Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.
Cálculo de la Línea: CG.FN.05
- Tensión de servicio: 230 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 15 m; Cos □: 0.8; Xu(m□/m): 0;
- Datos por tramo
         Tramo
         Longitud(m)
                            15
                            2000
         Pot.nudo(W)
- Potencia a instalar: 2000 W.
- Potencia de cálculo: 2000 W.
I=2000/230x0.8=10.87 A.
Se eligen conductores Unipolares 2x2.5+TTx2.5mm2Cu
Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.
Desig. UNE: ES07Z1-K(AS)
I.ad. a 40 °C (Fc=1) 26 A. según ITC-BT-19
```

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 45.24

e(parcial)=2x15x2000/50.55x230x2.5=2.06 V.=0.9 %

e(total)=0.91% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: CG.FN.06

- Tensión de servicio: 230 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 10 m; Cos □: 0.8; Xu(m□/m): 0;

- Datos por tramo

Tramo 1

Longitud(m) 10 Pot.nudo(W) 2000

- Potencia a instalar: 2000 W.
- Potencia de cálculo: 2000 W.

I=2000/230x0.8=10.87 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 26 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (ºC): 45.24

e(parcial)=2x10x2000/50.55x230x2.5=1.38 V.=0.6 %

e(total)=0.61% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: CG.FN.07

- Tensión de servicio: 230 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 10 m; Cos \square : 0.8; Xu(m \square/m): 0;

- Datos por tramo

Tramo 1

Longitud(m) 10 Pot.nudo(W) 2000

- Potencia a instalar: 2000 W.
- Potencia de cálculo: 2000 W.

I=2000/230x0.8=10.87 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 26 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 45.24

e(parcial)=2x10x2000/50.55x230x2.5=1.38 V.=0.6 %

```
e(total)=0.61% ADMIS (6.5% MAX.)
```

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: CG.FN.08

- Tensión de servicio: 230 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 10 m; Cos \square : 0.8; Xu(m \square /m): 0;
- Datos por tramo

Tramo

Longitud(m) 10 Pot.nudo(W) 2000

- Potencia a instalar: 2000 W.
- Potencia de cálculo: 2000 W.

I=2000/230x0.8=10.87 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 26 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 45.24

e(parcial)=2x10x2000/50.55x230x2.5=1.38 V.=0.6 %

e(total)=0.61% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: FUERZA OFICINA

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 0.3 m; Cos □: 0.8; Xu(m□/m): 0;
- Potencia a instalar: 8000 W.
- Potencia de cálculo:

8000 W.(Coef. de Simult.: 1)

I=8000/1,732x400x0.8=14.43 A.

Se eligen conductores Unipolares 4x2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 52.91

```
e(parcial)=0.3x8000/49.21x400x2.5=0.05 V.=0.01 %
e(total)=0.01% ADMIS (4.5% MAX.)
```

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A. Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CG.FN.09

- Tensión de servicio: 230 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 10 m; Cos \square : 0.8; Xu(m \square /m): 0;
- Datos por tramo

Tramo

Longitud(m) 10 Pot.nudo(W) 2000

- Potencia a instalar: 2000 W.
- Potencia de cálculo: 2000 W.

I=2000/230x0.8=10.87 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 26 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 45.24

e(parcial)=2x10x2000/50.55x230x2.5=1.38 V.=0.6 %

e(total)=0.61% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: CG.FN.10

- Tensión de servicio: 230 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 15 m; Cos \square : 0.8; Xu(m \square /m): 0;
- Datos por tramo

Tramo 1

Longitud(m) 15 Pot.nudo(W) 2000

- Potencia a instalar: 2000 W.
- Potencia de cálculo: 2000 W.

I=2000/230x0.8=10.87 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

```
Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.
Desig. UNE: ES07Z1-K(AS)
I.ad. a 40 °C (Fc=1) 26 A. según ITC-BT-19
Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².
Caída de tensión:
Temperatura cable (ºC): 45.24
e(parcial)=2x15x2000/50.55x230x2.5=2.06 V.=0.9 %
e(total)=0.91% ADMIS (6.5% MAX.)
Prot. Térmica:
I. Mag. Bipolar Int. 16 A.
Cálculo de la Línea: CG.FN.11
- Tensión de servicio: 230 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 10 m; Cos \square: 0.8; Xu(m\square/m): 0;
- Datos por tramo
         Tramo
         Longitud(m)
                            10
         Pot.nudo(W)
                            2000
- Potencia a instalar: 2000 W.
- Potencia de cálculo: 2000 W.
I=2000/230x0.8=10.87 A.
Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu
Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.
Desig. UNE: ES07Z1-K(AS)
I.ad. a 40 °C (Fc=1) 26 A. según ITC-BT-19
Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².
Caída de tensión:
Temperatura cable (°C): 45.24
e(parcial)=2x10x2000/50.55x230x2.5=1.38 V.=0.6 %
e(total)=0.61% ADMIS (6.5% MAX.)
Prot. Térmica:
I. Mag. Bipolar Int. 16 A.
Cálculo de la Línea: CG.FN.12
- Tensión de servicio: 230 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 10 m; Cos □: 0.8; Xu(m□/m): 0;
- Datos por tramo
         Tramo
         Longitud(m)
                            10
```

2000

Pot.nudo(W)

- Potencia a instalar: 2000 W.

- Potencia de cálculo: 2000 W.

I=2000/230x0.8=10.87 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 26 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 45.24

e(parcial)=2x10x2000/50.55x230x2.5=1.38 V.=0.6 %

e(total)=0.61% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Cálculo de la Línea: CP1

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 25 m; Cos □: 0.8; Xu(m□/m): 0;

- Potencia a instalar: 375600 W.

- Potencia de cálculo: (Según ITC-BT-47):

75000x1.25+300600=394350 W.(Coef. de Simult.: 1)

I=394350/1,732x400x0.8=711.51 A.

Se eligen conductores Unipolares $2(4x240+TTx120)mm^2Cu$

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 748 A. según ITC-BT-19

Dimensiones bandeja: 300x60 mm. Sección útil: 14930 mm².

Caída de tensión:

Temperatura cable (°C): 67.14

e(parcial)=25x394350/46.89x400x2x240=1.1 V.=0.27 %

e(total)=0.27% ADMIS (4.5% MAX.)

Protección Termica en Principio de Línea

I. Aut./Tet. In.: 1000 A. Térmico reg. Int.Reg.: 730 A.

Protección Térmica en Final de Línea

I. Aut./Tet. In.: 1000 A. Térmico reg. Int.Reg.: 730 A.

Protección diferencial en Principio de Línea Relé y Transfor. Diferencial Sens.: 300 mA.

SUBCUADRO

CP1

DEMANDA DE POTENCIAS

- Potencia total instalada:

CP1.FN.01	6000 W
CP1.FN.02	15000 W
CP1.FN.03	25000 W
CP1.FN.24	6000 W
CP1.FN.29	1000 W
CP1.FN.25	6000 W
CP1.FN.26	6000 W
CP1.FN.28	12000 W
CP1.FN.18	55000 W
CP1.FN.27	5000 W
CP1.FN.19	2500 W
CP1.FN.20	12000 W
CP1.FN.22	12000 W
CP1.FN.23	75000 W
CP1.FN.04	7500 W
CP1.FN.06	7500 W
CP1.FN.05	250 W
CP1.FN.07	250 W
CP1.FN.08	50000 W
CP1.FN.10	7500 W
CP1.FN.11	2200 W
CP1.FN.09	2500 W
CP1.FN.12	7500 W
CP1.FN.15	35000 W
CP1.FN.13	2200 W
CP1.FN.14	7500 W
CP1.FN.16	5000 W
CP1.FN.17	2200 W
TOTAL	375600

TOTAL.... 375600 W

- Potencia Instalada Fuerza (W): 375600

Cálculo de la Línea: CP1.FN.01

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor - Longitud: 20 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 6000 W.

- Potencia de cálculo: (Según ITC-BT-47):

6000x1.25=7500 W.

I=7500/1,732x400x0.8x1=13.53 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 51.35

e(parcial)=20x7500/49.48x400x2.5x1=3.03 V.=0.76 %

e(total)=1.03% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.02

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 20 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 15000 W.

- Potencia de cálculo: (Según ITC-BT-47):

15000x1.25=18750 W.

I=18750/1,732x400x0.8x1=33.83 A.

Se eligen conductores Unipolares 4x10+TTx10mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 52 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (ºC): 52.7

e(parcial)=20x18750/49.24x400x10x1=1.9 V.=0.48 %

e(total)=0.75% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 38 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 40 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.03

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 22 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 25000 W.

- Potencia de cálculo: (Según ITC-BT-47):

25000x1.25=31250 W.

I=31250/1,732x400x0.8x1=56.38 A.

Se eligen conductores Unipolares 4x16+TTx16mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a $40\,^{\circ}$ C (Fc=1) 70 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 59.46

e(parcial)=22x31250/48.11x400x16x1=2.23 V.=0.56 %

e(total)=0.83% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 63 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 63 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.24

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 26 m; Cos \square : 0.8; Xu(m \square/m): 0; R: 1

- Potencia a instalar: 6000 W.

- Potencia de cálculo: (Según ITC-BT-47):

6000x1.25=7500 W.

I=7500/1,732x400x0.8x1=13.53 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 51.35

e(parcial)=26x7500/49.48x400x2.5x1=3.94 V.=0.99 %

e(total)=1.26% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.29

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 18 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 1000 W.

- Potencia de cálculo: (Según ITC-BT-47):

1000x1.25=1250 W.

I=1250/1,732x400x0.8x1=2.26 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 40.32

e(parcial)=18x1250/51.46x400x2.5x1=0.44 V.=0.11 %

e(total)=0.38% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.25

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 26 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 6000 W.

- Potencia de cálculo: (Según ITC-BT-47):

6000x1.25=7500 W.

I=7500/1,732x400x0.8x1=13.53 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 51.35

e(parcial)=26x7500/49.48x400x2.5x1=3.94 V.=0.99 %

e(total)=1.26% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.26

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 26 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 6000 W.

- Potencia de cálculo: (Según ITC-BT-47):

6000x1.25=7500 W.

I=7500/1,732x400x0.8x1=13.53 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (9 C): 51.35 e(parcial)=26x7500/49.48x400x2.5x1=3.94 V.=0.99 %

e(total)=1.26% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.28

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 17 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 12000 W.

- Potencia de cálculo: (Según ITC-BT-47):

12000x1.25=15000 W.

I=15000/1,732x400x0.8x1=27.06 A.

Se eligen conductores Unipolares 4x4+TTx4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 30 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 64.42

e(parcial)=17x15000/47.32x400x4x1=3.37 V.=0.84 %

e(total)=1.12% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 30 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 40 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.18

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 9 m; Cos \square : 0.8; Xu(m \square /m): 0; R: 1

- Potencia a instalar: 55000 W.

- Potencia de cálculo: (Según ITC-BT-47):

55000x1.25=68750 W.

I=68750/1,732x400x0.8x1=124.04 A.

Se eligen conductores Unipolares 4x50+TTx25mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 133 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 66.1

e(parcial)=9x68750/47.05x400x50x1=0.66 V.=0.16 %

e(total)=0.44% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Aut./Tet. In.: 160 A. Térmico reg. Int.Reg.: 129 A.

Protección diferencial:

Relé y Transfor. Diferencial Sens.: 30 mA.

Cálculo de la Línea: CP1.FN.27

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 20 m; Cos □: 0.8; Xu(m□/m): 0;

- Datos por tramo

Tramo 1

Longitud(m) 20 Pot.nudo(kW) 5

- Potencia a instalar: 5000 W.

- Potencia de cálculo: 5000 W.

I=5000/1,732x400x0.8=9.02 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 45.04

 $e(parcial) = 20x5000/50.59x400x2.5 = 1.98\ V. = 0.49\ \%$

e(total)=0.77% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.19

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 12 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 2500 W.

- Potencia de cálculo: (Según ITC-BT-47):

2500x1.25=3125 W.

I=3125/1,732x400x0.8x1=5.64 A.

Se eligen conductores Unipolares 4x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 16 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 43.73

e(parcial)=12x3125/50.83x400x1.5x1=1.23 V.=0.31 %

e(total)=0.58% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.20

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 9 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 12000 W.

- Potencia de cálculo: (Según ITC-BT-47):

12000x1.25=15000 W.

I=15000/1,732x400x0.8x1=27.06 A.

Se eligen conductores Unipolares 4x4+TTx4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 30 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 64.42

e(parcial)=9x15000/47.32x400x4x1=1.78 V.=0.45 %

e(total)=0.72% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 30 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 40 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.22

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 16 m; Cos □: 0.8; Xu(m □/m): 0; R: 1

- Potencia a instalar: 12000 W.

- Potencia de cálculo: (Según ITC-BT-47):

12000x1.25=15000 W.

I=15000/1,732x400x0.8x1=27.06 A.

Se eligen conductores Unipolares 4x4+TTx4mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 30 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 64.42

e(parcial)=16x15000/47.32x400x4x1=3.17 V.=0.79 %

e(total)=1.07% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 30 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 40 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.23

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 16 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 75000 W.

- Potencia de cálculo: (Según ITC-BT-47):

75000x1.25=93750 W.

I=93750/1,732x400x0.8x1=169.15 A.

Se eligen conductores Unipolares 4x70+TTx35mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 171 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 69.35

e(parcial)=16x93750/46.55x400x70x1=1.15 V.=0.29 %

e(total)=0.56% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Aut./Tet. In.: 250 A. Térmico reg. Int.Reg.: 170 A.

Protección diferencial:

Relé y Transfor. Diferencial Sens.: 30 mA.

Cálculo de la Línea: CP1.FN.04

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 15 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 7500 W.

- Potencia de cálculo: (Según ITC-BT-47):

7500x1.25=9375 W.

I=9375/1,732x400x0.8x1=16.92 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 57.73

e(parcial)=15x9375/48.4x400x2.5x1=2.91 V.=0.73 %

e(total)=1% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 20 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.06

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 15 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 7500 W.

- Potencia de cálculo: (Según ITC-BT-47):

7500x1.25=9375 W.

I=9375/1,732x400x0.8x1=16.92 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 57.73

e(parcial)=15x9375/48.4x400x2.5x1=2.91 V.=0.73 %

e(total)=1% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 20 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.05

- Tensión de servicio: 230 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor - Longitud: 15 m; Cos □: 0.8; Xu(m□/m): 0;

Potencia a instalar: 250 W.Potencia de cálculo: 250 W.

I=250/230x0.8=1.36 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 26 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable ($^{\circ}$ C): 40.08 e(parcial)=2x15x250/51.5x230x2.5=0.25 V.=0.11 % e(total)=0.38% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.07

- Tensión de servicio: 230 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 15 m; Cos □: 0.8; Xu(m□/m): 0;

Potencia a instalar: 250 W.Potencia de cálculo: 250 W.

I=250/230x0.8=1.36 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 26 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (ºC): 40.08

e(parcial)=2x15x250/51.5x230x2.5=0.25 V.=0.11 %

e(total)=0.38% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.08

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 18 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 50000 W.

- Potencia de cálculo: (Según ITC-BT-47):

50000x1.25=62500 W.

I=62500/1,732x400x0.8x1=112.77 A.

Se eligen conductores Unipolares 4x50+TTx25mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 133 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (ºC): 61.57

e(parcial)=18x62500/47.77x400x50x1=1.18 V.=0.29 %

e(total)=0.57% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Aut./Tet. In.: 160 A. Térmico reg. Int.Reg.: 123 A.

Protección diferencial:

Relé y Transfor. Diferencial Sens.: 30 mA.

Cálculo de la Línea: CP1.FN.10

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 20 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 7500 W.

- Potencia de cálculo: (Según ITC-BT-47):

7500x1.25=9375 W.

I=9375/1,732x400x0.8x1=16.92 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 57.73

e(parcial)=20x9375/48.4x400x2.5x1=3.87 V.=0.97 %

e(total)=1.24% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 20 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.11

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 20 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 2200 W.

- Potencia de cálculo: (Según ITC-BT-47):

2200x1.25=2750 W.

I=2750/1,732x400x0.8x1=4.96 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (ºC): 41.53

e(parcial)=20x2750/51.23x400x2.5x1=1.07 V.=0.27 %

e(total)=0.54% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.09

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 25 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 2500 W.

- Potencia de cálculo: (Según ITC-BT-47):

2500x1.25=3125 W.

I=3125/1,732x400x0.8x1=5.64 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 41.97

e(parcial)=25x3125/51.15x400x2.5x1=1.53 V.=0.38 %

e(total)=0.66% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.12

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 25 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 7500 W.

- Potencia de cálculo: (Según ITC-BT-47):

7500x1.25=9375 W.

I=9375/1,732x400x0.8x1=16.92 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 57.73

e(parcial)=25x9375/48.4x400x2.5x1=4.84 V.=1.21 %

e(total)=1.48% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 20 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.15

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 20 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 35000 W.

- Potencia de cálculo: (Según ITC-BT-47):

35000x1.25=43750 W.

I=43750/1,732x400x0.8x1=78.94 A.

Se eligen conductores Unipolares 4x25+TTx16mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 88 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 64.14

e(parcial)=20x43750/47.36x400x25x1=1.85 V.=0.46 %

e(total)=0.74% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Aut./Tet. In.: 100 A. Térmico reg. Int.Reg.: 83 A.

Protección diferencial:

Relé y Transfor. Diferencial Sens.: 30 mA.

Cálculo de la Línea: CP1.FN.13

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor - Longitud: 25 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 2200 W.

- Potencia de cálculo: (Según ITC-BT-47):

2200x1.25=2750 W.

I=2750/1,732x400x0.8x1=4.96 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 41.53

e(parcial)=25x2750/51.23x400x2.5x1=1.34 V.=0.34 %

e(total)=0.61% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.14

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 28 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 7500 W.

- Potencia de cálculo: (Según ITC-BT-47):

7500x1.25=9375 W.

I=9375/1,732x400x0.8x1=16.92 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a $40\,^{\circ}$ C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 57.73

e(parcial)=28x9375/48.4x400x2.5x1=5.42 V.=1.36 %

e(total)=1.63% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 20 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.16

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 30 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 5000 W.

- Potencia de cálculo: (Según ITC-BT-47):

5000x1.25=6250 W.

I=6250/1,732x400x0.8x1=11.28 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (ºC): 47.88

e(parcial)=30x6250/50.08x400x2.5x1=3.74 V.=0.94 %

e(total)=1.21% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP1.FN.17

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 32 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 2200 W.

- Potencia de cálculo: (Según ITC-BT-47):

2200x1.25=2750 W.

I=2750/1,732x400x0.8x1=4.96 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 41.53

e(parcial)=32x2750/51.23x400x2.5x1=1.72 V.=0.43 %

e(total)=0.7% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

CALCULO DE EMBARRADO CP1

Datos

- Metal: Cu
- Estado pletinas: desnudas
- nº pletinas por fase: 1
- Separación entre pletinas, d(cm): 10
- Separación entre apoyos, L(cm): 25
- Tiempo duración c.c. (s): 0.5

Pletina adoptada

- Sección (mm²): 300
- Ancho (mm): 60
- Espesor (mm): 5
- Wx, Ix, Wy, Iy (cm^3, cm^4) : 3, 9, 0.25, 0.063
- I. admisible del embarrado (A): 750

a) Cálculo electrodinámico

```
\squaremax = Ipcc<sup>2</sup> · L<sup>2</sup> / ( 60 · d · Wy · n) = 11.2<sup>2</sup> · 25<sup>2</sup> /(60 · 10 · 0.25 · 1) = 523.128 <= 1200 kg/cm<sup>2</sup> Cu
```

b) Cálculo térmico, por intensidad admisible

```
Ical = 711.51 A
Iadm = 750 A
```

c) Comprobación por solicitación térmica en cortocircuito

```
lpcc = 11.2 kA 
lcccs = Kc · S / ( 1000 \cdot \Box tcc) = 164 \cdot 300 \cdot 1 / (1000 \cdot \Box 0.5) = 69.58 kA
```

Cálculo de la Línea: CP2

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 60 m; Cos \square : 0.8; Xu(m \square /m): 0;
- Potencia a instalar: 217300 W.
- Potencia de cálculo: (Según ITC-BT-47):

52500x1.25+164800=230425 W.(Coef. de Simult.: 1)

I=230425/1,732x400x0.8=415.75 A.

Se eligen conductores Unipolares 2(4x120+TTx70)mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 480 A. según ITC-BT-19

Dimensiones bandeja: 150x60 mm. Sección útil: 6905 mm².

Caída de tensión:

Temperatura cable (°C): 62.51

e(parcial)=60x230425/47.62x400x2x120=3.02 V.=0.76 %

e(total)=0.76% ADMIS (4.5% MAX.)

Protección Termica en Principio de Línea

I. Aut./Tet. In.: 630 A. Térmico reg. Int.Reg.: 448 A.

Protección Térmica en Final de Línea

I. Aut./Tet. In.: 630 A. Térmico reg. Int.Reg.: 448 A. Protección diferencial en Principio de Línea Relé y Transfor. Diferencial Sens.: 30 mA.

SUBCUADRO CP2

DEMANDA DE POTENCIAS

- Potencia total instalada:

CP2.FN.04	7700 W
CP2.FN.05	22000 W
CP2.FN.06	6500 W
CP2.FN.19	5000 W
CP2.FN.21	6000 W
CP2.FN.22	30000 W
CP2.FN.23	52500 W
CP2.FN.19	4000 W
CP2.FN.18	4000 W
CP2.FN.14	4000 W
CP2.FN.09	4000 W
CP2.FN.17	3000 W
CP2.FN.16	3000 W
CP2.FN.15	3000 W
CP2.FN.10	2500 W
CP2.FN.11	2500 W
CP2.FN.12	2500 W
CP2.FN.13	2500 W
CP2.FN.07	6000 W
CP2.FN.08	26000 W
CP2.FN.01	5000 W
CP2.FN.02	7500 W
CP2.FN.03	600 W
CP2.FN.21	7500 W

TOTAL.... 217300 W

⁻ Potencia Instalada Fuerza (W): 217300

Cálculo de la Línea: CP2.FN.04

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 18 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Datos por tramo

Tramo 1

Longitud(m) 18 Pot.nudo(kW) 7.7

- Potencia a instalar: 7700 W.

- Potencia de cálculo: (Según ITC-BT-47):

7700x1.25=9625 W.

I=9625/1,732x400x0.8x1=17.37 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 58.69

e(parcial)=18x9625/48.24x400x2.5x1=3.59 V.=0.9 %

e(total)=1.65% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 20 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP2.FN.05

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 17 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 22000 W.

- Potencia de cálculo: (Según ITC-BT-47):

22000x1.25=27500 W.

I=27500/1,732x400x0.8x1=49.62 A.

Se eligen conductores Unipolares 4x10+TTx10mm²Cu

Nivel Aislamiento, Aislamiento: $450/750\ V$, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 52 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (ºC): 67.31

e(parcial)=17x27500/46.86x400x10x1=2.49 V.=0.62 %

```
e(total)=1.38% ADMIS (6.5% MAX.)
```

Prot. Térmica:

I. Mag. Tetrapolar Int. 50 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 63 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP2.FN.06

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 18 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 6500 W.

- Potencia de cálculo: (Según ITC-BT-47):

6500x1.25=8125 W.

I=8125/1,732x400x0.8x1=14.66 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 53.32

e(parcial)=18x8125/49.14x400x2.5x1=2.98 V.=0.74 %

e(total)=1.5% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP2.FN.19

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 22 m; Cos □: 0.8; Xu(m□/m): 0;

- Datos por tramo

Tramo

Longitud(m) 22 Pot.nudo(kW) 5

- Potencia a instalar: 5000 W.

- Potencia de cálculo: 5000 W.

I=5000/1,732x400x0.8=9.02 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a $40\,^{\circ}$ C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 45.04

e(parcial)=22x5000/50.59x400x2.5=2.17 V.=0.54 %

e(total)=1.3% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A. Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP2.FN.21

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 18 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 6000 W.

- Potencia de cálculo: (Según ITC-BT-47):

6000x1.25=7500 W.

I=7500/1,732x400x0.8x1=13.53 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 51.35

e(parcial)=18x7500/49.48x400x2.5x1=2.73 V.=0.68 %

e(total)=1.44% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP2.FN.22

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 22 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 30000 W.

- Potencia de cálculo: (Según ITC-BT-47):

30000x1.25=37500 W.

I=37500/1,732x400x0.8x1=67.66 A.

Se eligen conductores Unipolares 4x16+TTx16mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

```
I.ad. a 40 °C (Fc=1) 70 A. según ITC-BT-19
```

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 68.03

e(parcial)=22x37500/46.75x400x16x1=2.76 V.=0.69 %

e(total)=1.45% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Aut./Tet. In.: 100 A. Térmico reg. Int.Reg.: 69 A.

Protección diferencial:

Relé y Transfor. Diferencial Sens.: 30 mA.

Cálculo de la Línea: CP2.FN.23

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 28 m; Cos □: 0.8; Xu(m□/m): 0; R: 1
- Datos por tramo

Tramo

Longitud(m) 28 Pot.nudo(kW) 52.5

- Potencia a instalar: 52500 W.
- Potencia de cálculo: (Según ITC-BT-47):

52500x1.25=65625 W.

I=65625/1,732x400x0.8x1=118.41 A.

Se eligen conductores Unipolares 4x50+TTx25mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 133 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 63.78

e(parcial)=28x65625/47.42x400x50x1=1.94 V.=0.48 %

e(total)=1.24% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Aut./Tet. In.: 160 A. Térmico reg. Int.Reg.: 126 A.

Protección diferencial:

Relé y Transfor. Diferencial Sens.: 30 mA.

Cálculo de la Línea: FUERZA MAQUINAS

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 0.3 m; Cos □: 0.8; Xu(m□/m): 0;
- Potencia a instalar: 16000 W.
- Potencia de cálculo: (Según ITC-BT-47):

4000x1.25+12000=17000 W.(Coef. de Simult.: 1)

I=17000/1,732x400x0.8=30.67 A.

Se eligen conductores Unipolares 4x6mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 37 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 60.62

e(parcial)=0.3x17000/47.93x400x6=0.04 V.=0.01 %

e(total)=0.77% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 32 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 40 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP2.FN.19

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 25 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 4000 W.

- Potencia de cálculo: (Según ITC-BT-47):

4000x1.25=5000 W.

I=5000/1,732x400x0.8x1=9.02 A.

Se eligen conductores Unipolares $4x1.5 + TTx1.5 mm^2Cu$

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 16 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (ºC): 49.54

e(parcial)=25x5000/49.79x400x1.5x1=4.18 V.=1.05 %

e(total)=1.81% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Cálculo de la Línea: CP2.FN.18

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 30 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 4000 W.

- Potencia de cálculo: (Según ITC-BT-47):

4000x1.25=5000 W.

I=5000/1,732x400x0.8x1=9.02 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 45.04

e(parcial)=30x5000/50.59x400x2.5x1=2.97 V.=0.74 %

e(total)=1.51% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Cálculo de la Línea: CP2.FN.14

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 30 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 4000 W.

- Potencia de cálculo: (Según ITC-BT-47):

4000x1.25=5000 W.

I=5000/1,732x400x0.8x1=9.02 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 45.04

e(total)=1.51% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Cálculo de la Línea: CP2.FN.09

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor - Longitud: 18 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 4000 W.

- Potencia de cálculo: (Según ITC-BT-47):

4000x1.25=5000 W.

I=5000/1,732x400x0.8x1=9.02 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 45.04 e(parcial)=18x5000/50.59x400x2.5x1=1.78 V.=0.44 % e(total)=1.21% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Cálculo de la Línea: FUERZA MAQUINAS

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 0.3 m; Cos □: 0.8; Xu(m□/m): 0;

- Potencia a instalar: 9000 W.

- Potencia de cálculo: (Según ITC-BT-47): 3000x1.25+6000=9750 W.(Coef. de Simult.: 1)

I=9750/1,732x400x0.8=17.59 A.

Se eligen conductores Unipolares 4x2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable ($^{\circ}$ C): 59.18 e(parcial)=0.3x9750/48.16x400x2.5=0.06 V.=0.02 % e(total)=0.77% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 20 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP2.FN.17

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 15 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 3000 W.

- Potencia de cálculo: (Según ITC-BT-47):

3000x1.25=3750 W.

I=3750/1,732x400x0.8x1=6.77 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (9 C): 42.84 e(parcial)=15x3750/50.99x400x2.5x1=1.1 V.=0.28 % e(total)=1.05% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Cálculo de la Línea: CP2.FN.16

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 18 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 3000 W.

- Potencia de cálculo: (Según ITC-BT-47):

3000x1.25=3750 W.

I=3750/1,732x400x0.8x1=6.77 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (9 C): 42.84 e(parcial)=18x3750/50.99x400x2.5x1=1.32 V.=0.33 % e(total)=1.1% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Cálculo de la Línea: CP2.FN.15

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 20 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 3000 W.

- Potencia de cálculo: (Según ITC-BT-47):

3000x1.25=3750 W.

I=3750/1,732x400x0.8x1=6.77 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 42.84

e(parcial)=20x3750/50.99x400x2.5x1=1.47 V.=0.37 %

e(total)=1.14% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Cálculo de la Línea: FUERZA MAQUINAS

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 0.3 m; Cos □: 0.8; Xu(m□/m): 0;

- Potencia a instalar: 10000 W.

- Potencia de cálculo: (Según ITC-BT-47):

2500x1.25+7500=10625 W.(Coef. de Simult.: 1)

I=10625/1,732x400x0.8=19.17 A.

Se eligen conductores Unipolares 4x2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40°C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 62.78

 $e(parcial) = 0.3x10625/47.58x400x2.5 = 0.07\ V. = 0.02\ \%$

e(total)=0.77% ADMIS (4.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 20 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP2.FN.10

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 30 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 2500 W.

- Potencia de cálculo: (Según ITC-BT-47):

2500x1.25=3125 W.

I=3125/1,732x400x0.8x1=5.64 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 41.97

e(parcial)=30x3125/51.15x400x2.5x1=1.83 V.=0.46 %

e(total)=1.23% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Cálculo de la Línea: CP2.FN.11

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 30 m; Cos □: 0.8; Xu(m□/m): 0; R: 1
- Potencia a instalar: 2500 W.
- Potencia de cálculo: (Según ITC-BT-47):

2500x1.25=3125 W.

I=3125/1,732x400x0.8x1=5.64 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 41.97

e(parcial)=30x3125/51.15x400x2.5x1=1.83 V.=0.46 %

e(total)=1.23% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Cálculo de la Línea: CP2.FN.12

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 30 m; Cos □: 0.8; Xu(m□/m): 0; R: 1
- Potencia a instalar: 2500 W.
- Potencia de cálculo: (Según ITC-BT-47):

2500x1.25=3125 W.

I=3125/1,732x400x0.8x1=5.64 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 41.97

```
e(parcial)=30x3125/51.15x400x2.5x1=1.83 V.=0.46 %
e(total)=1.23% ADMIS (6.5% MAX.)
```

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Cálculo de la Línea: CP2.FN.13

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor - Longitud: 30 m; Cos □: 0.8; Xu(m□/m): 0; R: 1
- Potencia a instalar: 2500 W.
- Potencia de cálculo: (Según ITC-BT-47):

2500x1.25=3125 W.

I=3125/1,732x400x0.8x1=5.64 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 41.97

e(parcial)=30x3125/51.15x400x2.5x1=1.83 V.=0.46 %

e(total)=1.23% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Cálculo de la Línea: CP2.FN.07

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 15 m; Cos \square : 0.8; Xu(m \square /m): 0; R: 1
- Potencia a instalar: 6000 W.
- Potencia de cálculo: (Según ITC-BT-47):

6000x1.25=7500 W.

I=7500/1,732x400x0.8x1=13.53 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 51.35

e(parcial)=15x7500/49.48x400x2.5x1=2.27 V.=0.57 %

e(total)=1.32% ADMIS (6.5% MAX.)

```
Prot. Térmica:
```

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP2.FN.08

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 15 m; Cos □: 0.8; Xu(m□/m): 0; R: 1
- Datos por tramo

Tramo

Longitud(m) 15 Pot.nudo(kW) 26

- Potencia a instalar: 26000 W.
- Potencia de cálculo: (Según ITC-BT-47):

26000x1.25=32500 W.

I=32500/1,732x400x0.8x1=58.64 A.

Se eligen conductores Unipolares 4x16+TTx16mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 70 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 61.05

e(parcial)=15x32500/47.85x400x16x1=1.59 V.=0.4 %

e(total)=1.15% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 63 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 63 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP2.FN.01

- Tensión de servicio: 400 V.
- Canalización: E-Unip.o Mult.Bandeja Perfor
- Longitud: 20 m; Cos □: 0.8; Xu(m □/m): 0; R: 1
- Potencia a instalar: 5000 W.
- Potencia de cálculo: (Según ITC-BT-47):

5000x1.25=6250 W.

I=6250/1,732x400x0.8x1=11.28 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 47.88

e(parcial)=20x6250/50.08x400x2.5x1=2.5 V.=0.62 %

e(total)=1.38% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 16 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP2.FN.02

- Tensión de servicio: 400 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 22 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 7500 W.

- Potencia de cálculo: (Según ITC-BT-47):

7500x1.25=9375 W.

I=9375/1,732x400x0.8x1=16.92 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (ºC): 57.73

e(parcial)=22x9375/48.4x400x2.5x1=4.26 V.=1.07 %

e(total)=1.82% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 20 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP2.FN.03

- Tensión de servicio: 230 V.

- Canalización: E-Unip.o Mult.Bandeja Perfor

- Longitud: 22 m; Cos □: 0.8; Xu(m□/m): 0;

- Datos por tramo

Tramo 1

Longitud(m) 22 Pot.nudo(kW) 0.6

- Potencia a instalar: 600 W.
- Potencia de cálculo: 600 W.

I=600/230x0.8=3.26 A.

Se eligen conductores Unipolares 2x2.5+TTx2.5mm2Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 26 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 40.47

e(parcial)=2x22x600/51.43x230x2.5=0.89 V.=0.39 %

e(total)=1.14% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A.

Protección diferencial:

Inter. Dif. Bipolar Int.: 25 A. Sens. Int.: 30 mA.

Cálculo de la Línea: CP2.FN.21

- Tensión de servicio: 400 V.

Canalización: E-Unip.o Mult.Bandeja Perfor
 Longitud: 25 m; Cos □: 0.8; Xu(m□/m): 0; R: 1

- Potencia a instalar: 7500 W.

- Potencia de cálculo: (Según ITC-BT-47):

7500x1.25=9375 W.

I=9375/1,732x400x0.8x1=16.92 A.

Se eligen conductores Unipolares 4x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, Poliolef. - No propagador incendio y emisión humos y opacidad reducida -.

Desig. UNE: ES07Z1-K(AS)

I.ad. a 40 °C (Fc=1) 22 A. según ITC-BT-19

Dimensiones bandeja: 75x60 mm. Sección útil: 2770 mm².

Caída de tensión:

Temperatura cable (°C): 57.73

e(parcial)=25x9375/48.4x400x2.5x1=4.84 V.=1.21 %

e(total)=1.97% ADMIS (6.5% MAX.)

Prot. Térmica:

I. Mag. Tetrapolar Int. 20 A.

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 25 A. Sens. Int.: 30 mA.

CALCULO DE EMBARRADO CP2

<u>Datos</u>

- Metal: Cu

- Estado pletinas: desnudas

- nº pletinas por fase: 1

- Separación entre pletinas, d(cm): 10

- Separación entre apoyos, L(cm): 25

- Tiempo duración c.c. (s): 0.5

Pletina adoptada

- Sección (mm²): 120
- Ancho (mm): 40
- Espesor (mm): 3
- Wx, Ix, Wy, Iy (cm^3, cm^4) : 0.8, 1.6, 0.06, 0.009
- I. admisible del embarrado (A): 420

a) Cálculo electrodinámico

```
\squaremax = Ipcc<sup>2</sup> · L<sup>2</sup> / ( 60 · d · Wy · n) = 9.02<sup>2</sup> · 25<sup>2</sup> / (60 · 10 · 0.06 · 1) = 1411.927 <= 1200 kg/cm<sup>2</sup> Cu
```

b) Cálculo térmico, por intensidad admisible

```
Ical = 415.75 A
Iadm = 420 A
```

c) Comprobación por solicitación térmica en cortocircuito

```
lpcc = 9.02 kA lcccs = Kc · S / ( 1000 \cdot \Box tcc) = 164 \cdot 120 \cdot 1 / (1000 \cdot \Box 0.5) = 27.83 kA
```

CALCULO DE EMBARRADO CUADRO GENERAL DE MANDO Y PROTECCION

Datos

- Metal: Cu
- Estado pletinas: desnudas
- nº pletinas por fase: 1
- Separación entre pletinas, d(cm): 10
- Separación entre apoyos, L(cm): 25
- Tiempo duración c.c. (s): 0.5

Pletina adoptada

- Sección (mm²): 24
- Ancho (mm): 12
- Espesor (mm): 2
- Wx, Ix, Wy, Iy (cm^3, cm^4) : 0.048, 0.0288, 0.008, 0.0008
- I. admisible del embarrado (A): 110

a) Cálculo electrodinámico

```
\Box max = Ipcc<sup>2</sup> · L<sup>2</sup> / (60 · d · Wy · n) =0<sup>2</sup> · 25<sup>2</sup> /(60 · 10 · 0.008 · 1) = 0 <= 1200 kg/cm<sup>2</sup> Cu
```

b) Cálculo térmico, por intensidad admisible

|cal = 0 A||adm = 110 A|

c) Comprobación por solicitación térmica en cortocircuito

lpcc = 0 kA lcccs = Kc · S / (1000 · \Box tcc) = 164 · 24 · 1 / (1000 · \Box 0.5) = 5.57 kA

Los resultados obtenidos se reflejan en las siguientes tablas:

Cuadro General de Mando y Protección

Denominación		Dist.Cálc						I Dimensio	nes(mm)	
(W)	(m)	(mm²)	(A)	(A)	(%)	(%)	Tubo,Cai	nai,bano.		
CP3 59000	40	4x35+TT	x16Cu	106.45	110	0.9	0.9	75x60		
AL NAVE NORMA	L22950	0.3	4x10Cu	41.41	52	0.01	0.01	75x60		
CG.AN.01	7200	85	4x4+TTx	4Cu	10.39	30	1.88	1.89	75x60	
CG.AN.02	7200	90	4x4+TTx	4Cu	10.39	30	1.99	2	75x60	
CG.AN.06	4050	36	4x1.5+TT	x1.5Cu	5.85	16	1.2	1.21	75x60	
CG.AN.07	4500	75	4x1.5+TT	x1.5Cu	6.5	16	2.78	2.79	75x60	
AL OFICINA NOR	MAL	1814.4	0.3	4x1.5Cu	3.27	16	0	0	75x60	
CG.AN.09	831.6	24	2x1.5+TT	x1.5Cu	3.62	19	0.98	0.98	75x60	
CG.AN.10	680.4	30	4x1.5+TT	x1.5Cu	0.98	16	0.17	0.17	75x60	
CG.AN.11	302.4	15	4x1.5+TT	x1.5Cu	0.44	16	0.04	0.04	75x60	
AL EMERG	594	0.3	4x1.5Cu	1.07	16	0	0	75x60		
CG.AE.01	180	34	2x1.5+TT	x1.5Cu	0.78	19	0.3	0.3	75x60	
CG.AE.02	126	18	4x1.5+TT	x1.5Cu	0.18	16	0.02	0.02	75x60	
CG.AE.03	108	50	4x1.5+TT	x1.5Cu	0.16	16	0.04	0.05	75x60	
CG.AE.04	180	65	4x1.5+TT	x1.5Cu	0.26	16	0.09	0.1	75x60	
AL EXT 24300	0.3	4x10Cu	43.84	52	0.01	0.01	75x60			
CG.AEX.01	3600	70	2x6+TTx	6Cu	15.65	70.56	2.95	2.96	50	
CG.AEX.04	5850	92	4x2.5+TT	x2.5Cu	8.44	23	2.68	2.69	20	
CG.AEX.03	5850	92	4x2.5+TT	x2.5Cu	8.44	23	2.68	2.69	20	
CG.AEX.05	9000	225	4x10+TT	x10Cu	12.99	76.8	2.34	2.35	63	
FZA EXTERIOR	8125	0.3	4x6Cu	14.66	37	0.01	0.01	75x60		
CG.FEX.01 (BASC	3125	20	2x6+TTx	6Cu	16.98	70.56	0.73	0.74	50	
CG.FEX.02 (P.EX	Γ)	3125	52	2x6+TTx6	6Cu	16.98	70.56	1.91	1.91	50
CG.FEX.03 (P.EX	Γ)	3125	30	2x6+TTx6	6Cu	16.98	70.56	1.1	1.1	50
CG.FN.CLIMA	19125	15	4x6+TTx	6Cu	34.51	46	0.64	0.64	75x60	
FUERZA OFICINA	8000	0.3	4x2.5Cu	14.43	22	0.01	0.01	75x60		
CG.FN.01	2000	10	2x2.5+TT	x2.5Cu	10.87	26	0.6	0.61	75x60	
CG.FN.02	2000	10	2x2.5+TT	x2.5Cu	10.87	26	0.6	0.61	75x60	
CG.FN.03	2000	10	2x2.5+TT	x2.5Cu	10.87	26	0.6	0.61	75x60	
CG.FN.04	2000	15	2x2.5+TT	x2.5Cu	10.87	26	0.9	0.91	75x60	
FUERZA OFICINA	8000	0.3	4x2.5Cu	14.43	22	0.01	0.01	75x60		
CG.FN.05	2000	15	2x2.5+TT	x2.5Cu	10.87	26	0.9	0.91	75x60	
CG.FN.06	2000	10	2x2.5+TT	x2.5Cu	10.87	26	0.6	0.61	75x60	

00 511 07	2222	40	0 0 F T		10.07	00	0.0	0.04	75.00	
CG.FN.07	2000	10	2x2.5+T		10.87	26	0.6	0.61	75x60	
CG.FN.08	2000	10	2x2.5+T		10.87	26	0.6	0.61	75x60	
FUERZA OFIC		0.3	4x2.5Cu		22	0.01	0.01	75x60	7500	
CG.FN.09	2000	10	2x2.5+T		10.87	26	0.6	0.61	75x60	
CG.FN.10	2000	15	2x2.5+T		10.87	26	0.9	0.91	75x60	
CG.FN.11	2000	10	2x2.5+T		10.87	26	0.6	0.61	75x60	
CG.FN.12	2000	10	2x2.5+T		10.87	26	0.6	0.61	75x60	
CP1 3943		•	+TTx120)(711.51	748	0.27	0.27	300x60	
CP2 2304	25 60	2(4x120	+TTx70)Cı	J 415.75	480	0.76	0.76	150x60		
Cortocircuito										
Denominación	Longitur	d Sección	Incel	P de C	IpccF	tmcicc	tficc	Lmáx	Curvas v	álidas
(m)	(mm²)	(kA)	(kA)	(A)	(sg)	(sg)	(m)	Liliax	Ouivas v	andas
()	(111111)	(101)	(101)	(71)	(39)	(39)	(111)			
CP3 40	4x35+T	Гх16Си	12	15	2355.87	2.92			160;B,C	
AL NAVE NOR	MAL0.3	4x10Cu	12	15	5755.29	0.04			47	
CG.AN.01	85	4x4+TTx	4Cu	11.56	15	195.71	5.52			16;B,C
CG.AN.02	90	4x4+TTx	4Cu	11.56	15	185.16	6.17			16;B,C
CG.AN.06	36	4x1.5+T	Tx1.5Cu	11.56	15	173.91	0.98			10;B,C
CG.AN.07	75	4x1.5+T	Tx1.5Cu	11.56	15	84.7	4.15			10;B
AL OFICINA N	ORMAL	0.3	4x1.5Cu	12	15	4745.46				10
CG.AN.09	24	2x1.5+T	Tx1.5Cu	9.53	10	254.67	0.46			10;B,C,D
CG.AN.10	30	4x1.5+T	Tx1.5Cu	9.53	10	205.84	0.7			10;B,C,D
CG.AN.11	15	4x1.5+T	Tx1.5Cu	9.53	10	395.35	0.19			10;B,C,D
AL EMERG	0.3	4x1.5Cu	12	15	4745.46				10	
CG.AE.01	34	2x1.5+T	Tx1.5Cu	9.53	10	182.51	0.89			10;B,C
CG.AE.02	18	4x1.5+T	Tx1.5Cu	9.53	10	333.88	0.27			10;B,C,D
CG.AE.03	50	4x1.5+T	Tx1.5Cu	9.53	10	125.57	1.89			10;B,C
CG.AE.04	65	4x1.5+T	Tx1.5Cu	9.53	10	97.16	3.15			10;B
AL EXT 0.3	4x10Cu	12	15	5755.29	0.04			47		
CG.AEX.01	70	2x6+TTx	6Cu	11.56	15	347.47	6.1			16;B,C,D
CG.AEX.04	92	4x2.5+T	Tx2.5Cu	11.56	15	114.53	9.74			10;B,C
CG.AEX.03	92	4x2.5+T	Tx2.5Cu	11.56	15	114.53	9.74			10;B,C
CG.AEX.05	225	4x10+T7	x10Cu	11.56	15	185.16	59.65			16;B,C
FZA EXTERIO	R 0.3	4x6Cu	12	15	5616.57	0.02			20	
CG.FEX.01 (BA	ASC)20	2x6+TTx		11.28	15	1060.16	0.65			20;B,C,D
CG.FEX.02 (P.	EXT)	52	2x6+TTx	6Cu	11.28	15	457.86	3.51		
20;B,										
CG.FEX.03 (P.		30	2x6+TTx	:6Cu	11.28	15	751.47	1.3		
20;B,										
CG.FN.CLIMA	15	4x6+TTx		12	15	1354.64	0.4			38;B,C,D
FUERZA OFIC		4x2.5Cu		15	5176.02				16	
CG.FN.01	10	2x2.5+T		10.39	15	897.3	0.1			16;B,C,D
CG.FN.02	10	2x2.5+T		10.39	15	897.3	0.1			16;B,C,D
CG.FN.03	10	2x2.5+T		10.39	15	897.3	0.1			16;B,C,D
CG.FN.04	15	2x2.5+T		10.39	15	633.04	0.21			16;B,C,D
FUERZA OFIC		4x2.5Cu		15	5176.02	000.04	0.04		16	10:D 0 D
CG.FN.05	15	2x2.5+T		10.39	15	633.04	0.21			16;B,C,D
CG.FN.06	10	2x2.5+T		10.39	15	897.3	0.1			16;B,C,D
CG.FN.07	10	2x2.5+T		10.39	15	897.3	0.1			16;B,C,D
CG.FN.08	10	2x2.5+T		10.39	15	897.3	0.1			16;B,C,D

FUERZA	OFICINA	0.3	4x2.5Cu 12	15	5176.02			16	
CG.FN.0	9	10	2x2.5+TTx2.5Cu	10.39	15	897.3	0.1		16;B,C,D
CG.FN.1	0	15	2x2.5+TTx2.5Cu	10.39	15	633.04	0.21		16;B,C,D
CG.FN.1	1	10	2x2.5+TTx2.5Cu	10.39	15	897.3	0.1		16;B,C,D
CG.FN.1	2	10	2x2.5+TTx2.5Cu	10.39	15	897.3	0.1		16;B,C,D
CP1	25	2(4x240+	-TTx120)Cu	12	15	5602.47	97.08		1000;B
CP2	60	2(4x120+	-TTx70)Cu 12	15	4509.07	37.47		630;B	

Subcuadro CP3

Denominación	P.Cálcul	o Dist.Cálc	Sección	I.Cálculo	I.Adm	C.T.Parc	. C.T.Tot	al Dimensio	ones(mm)
(W)	(m)	(mm²)	(A)	(A)	(%)	(%)	Tubo, Ca	anal,Band.	
CP3.FN.01	10000	12	4x2.5+T	Tx2.5Cu	18.04	22	0.63	1.53	75x60
CP3.FN.02	25000	15	4x10+TT	x10Cu	45.11	52	0.49	1.39	75x60
CP3.FN.03	6250	20	4x2.5+T	Tx2.5Cu	11.28	22	0.62	1.53	75x60
CP3.FN.07	2500	20	4x2.5+T	Tx2.5Cu	4.51	22	0.24	1.15	75x60
CP3.FN.06	1250	20	4x2.5+T	Tx2.5Cu	2.26	22	0.12	1.02	75x60
CP3.FN.04	18750	10	4x10+TT	x10Cu	33.83	52	0.24	1.14	75x60
CP3.FN.05	3750	20	4x2.5+T	Tx2.5Cu	6.77	22	0.37	1.27	75x60
Cortocircuito									
Denominación	Longitud	Sección	Ipccl	P de C	IpccF	tmcicc	tficc	Lmáx	Curvas válidas
(m)	(mm²)	(kA)	(kA)	(A)	(sg)	(sg)	(m)		
CP3.FN.01	12	4x2.5+T	Γx2.5Cu	4.73	6	650	0.2		20;B,C,D
CP3.FN.02	15	4x10+TT	x10Cu	4.73	6	1296.45	0.79		47;B,C,D
CP3.FN.03	20	4x2.5+T	Γx2.5Cu	4.73	6	437.96	0.43		16;B,C,D
CP3.FN.07	20	4x2.5+T	Tx2.5Cu	4.73	6	437.96	0.43		16;B,C,D
CP3.FN.06	20	4x2.5+T	Tx2.5Cu	4.73	6	437.96	0.43		16;B,C,D
CP3.FN.04	10	4x10+TT	x10Cu	4.73	6	1525.74	0.57		38;B,C,D
CP3.FN.05	20	4x2.5+T	Tx2.5Cu	4.73	6	437.96	0.43		16;B,C,D

Subcuadro CP1

Denominación	P.Cálculo	Dist.Cálc	Sección	I.Cálculo	I.Adm	C.T.Parc	. C.T.Total	Dim ensio	nes(mm)
(W)	(m)	(mm²)	(A)	(A)	(%)	(%)	Tubo,Car	nal,Band.	
CP1.FN.01	7500	20	4x2.5+TT	x2.5Cu	13.53	22	0.76	1.03	75x60
CP1.FN.02	18750	20	4x10+TT	x10Cu	33.83	52	0.48	0.75	75x60
CP1.FN.03	31250	22	4x16+TT	x16Cu	56.38	70	0.56	0.83	75x60
CP1.FN.24	7500	26	4x2.5+TT	x2.5Cu	13.53	22	0.99	1.26	75x60
CP1.FN.29	1250	18	4x2.5+TT	x2.5Cu	2.26	22	0.11	0.38	75x60
CP1.FN.25	7500	26	4x2.5+TT	x2.5Cu	13.53	22	0.99	1.26	75x60
CP1.FN.26	7500	26	4x2.5+TT	x2.5Cu	13.53	22	0.99	1.26	75x60
CP1.FN.28	15000	17	4x4+TTx	4Cu	27.06	30	0.84	1.12	75x60
CP1.FN.18	68750	9	4x50+TT	x25Cu	124.04	133	0.16	0.44	75x60
CP1.FN.27	5000	20	4x2.5+TT	x2.5Cu	9.02	22	0.49	0.77	75x60
CP1.FN.19	3125	12	4x1.5+TT	x1.5Cu	5.64	16	0.31	0.58	75x60
CP1.FN.20	15000	9	4x4+TTx	4Cu	27.06	30	0.45	0.72	75x60

CP1.FN.22	15000	16	4x4+TTx	4Cu	27.06	30	0.79	1.07	75x60	
CP1.FN.23	93750	16	4x70+TT	x35Cu	169.15	171	0.29	0.56	75x60	
CP1.FN.04	9375	15	4x2.5+T	Γx2.5Cu	16.92	22	0.73	1	75x60	
CP1.FN.06	9375	15	4x2.5+T	Гх2.5Си	16.92	22	0.73	1	75x60	
CP1.FN.05	250	15	2x2.5+T	Гх2.5Си	1.36	26	0.11	0.38	75x60	
CP1.FN.07	250	15	2x2.5+T	Гх2.5Си	1.36	26	0.11	0.38	75x60	
CP1.FN.08	62500	18	4x50+TT	x25Cu	112.77	133	0.29	0.57	75x60	
CP1.FN.10	9375	20	4x2.5+T	Γx2.5Cu	16.92	22	0.97	1.24	75x60	
CP1.FN.11	2750	20	4x2.5+T	Γx2.5Cu	4.96	22	0.27	0.54	75x60	
CP1.FN.09	3125	25	4x2.5+T	Γx2.5Cu	5.64	22	0.38	0.66	75x60	
CP1.FN.12	9375	25	4x2.5+T	Γx2.5Cu	16.92	22	1.21	1.48	75x60	
CP1.FN.15	43750	20	4x25+TT	x16Cu	78.94	88	0.46	0.74	75x60	
CP1.FN.13	2750	25	4x2.5+T	Γx2.5Cu	4.96	22	0.34	0.61	75x60	
CP1.FN.14	9375	28	4x2.5+T	Γx2.5Cu	16.92	22	1.36	1.63	75x60	
CP1.FN.16	6250	30	4x2.5+T	Γx2.5Cu	11.28	22	0.94	1.21	75x60	
CP1.FN.17	2750	32	4x2.5+T	Γx2.5Cu	4.96	22	0.43	0.7	75x60	
Cortocircuito										
Denominación	Longitud	Sección	Ipccl	P de C	IpccF	tmcicc	tficc	Lmáx	Curvas v	álidas
(m)	(mm²)	(kA)	(kA)	(A)	(sg)	(sg)	(m)			
CP1.FN.01	20	4x2.5+T1	Γx2.5Cu	11.25	15	492.76	0.34			16;B,C,D
CP1.FN.02	20	4x10+TT	x10Cu	11.25	15	1576.3	0.53			38;B,C,D
CP1.FN.03	22	4x16+TT	x16Cu	11.25	15	2041.14	0.81			63;B,C,D
CP1.FN.24	26	4x2.5+T1	Γx2.5Cu	11.25	15	386.38	0.55			16;B,C,D
CP1.FN.29	18	4x2.5+T1	Γx2.5Cu	11.25	15	542.55	0.28			16;B,C,D
CP1.FN.25	26	4x2.5+T1	Γx2.5Cu	11.25	15	386.38	0.55			16;B,C,D
CP1.FN.26	26	4x2.5+T1	Γx2.5Cu	11.25	15	386.38	0.55			16;B,C,D
CP1.FN.28	17	4x4+TTx	4Cu	11.25	15	864.46	0.28			30;B,C,D
CP1.FN.18	9	4x50+TT	x25Cu	11.25	15	4591.17	1.57			160;B,C,D
CP1.FN.27	20	4x2.5+T1	Γx2.5Cu	11.25	15	492.76	0.34			16;B,C,D
CP1.FN.19	12	4x1.5+T1	Γx1.5Cu	11.25	15	492.76	0.12			16;B,C,D
CP1.FN.20	9	4x4+TTx	4Cu	11.25	15	1444.43	0.1			30;B,C,D
CP1.FN.22	16	4x4+TTx		11.25	15	910.19	0.26			30;B,C,D
CP1.FN.23	16	4x70+TT	x35Cu	11.25	15	4374.89	3.39			250;B,C
CP1.FN.04	15	4x2.5+T1	Γx2.5Cu	11.25	15	639.44	0.2			20;B,C,D
CP1.FN.06	15	4x2.5+T1	Γx2.5Cu	11.25	15	639.44	0.2			20;B,C,D
CP1.FN.05	15	2x2.5+T1	Γx2.5Cu	11.25	15	639.44	0.2			16;B,C,D
CP1.FN.07	15	2x2.5+T1	Γx2.5Cu	11.25	15	639.44	0.2			16;B,C,D
CP1.FN.08	18	4x50+TT	x25Cu	11.25	15	3876.74	2.2			160;B,C,D
CP1.FN.10	20	4x2.5+T1	Γx2.5Cu	11.25	15	492.76	0.34			20;B,C,D
CP1.FN.11	20	4x2.5+T1	Гх2.5Cu	11.25	15	492.76	0.34			16;B,C,D
CP1.FN.09	25	4x2.5+T1	Гх2.5Cu	11.25	15	400.8	0.51			16;B,C,D
CP1.FN.12	25	4x2.5+T1	Γx2.5Cu	11.25	15	400.8	0.51			20;B,C,D
CP1.FN.15	20	4x25+TT	x16Cu	11.25	15	2794.89	1.06			100;B,C,D
CP1.FN.13	25	4x2.5+T1	Гх2.5Cu	11.25	15	400.8	0.51			16;B,C,D
CP1.FN.14	28	4x2.5+T1	Гх2.5Cu	11.25	15	360.44	0.64			20;B,C
CP1.FN.16	30	4x2.5+T1	Гх2.5Cu	11.25	15	337.76	0.72			16;B,C,D
CP1.FN.17	32	4x2.5+T7	Гх2.5Cu	11.25	15	317.77	0.82			16;B,C

Denominación	P.Cálcul	o Dist.Cálc	Sección	I.Cálculo	I.Adm	C.T.Parc	. C.T.Tota	al Dimensio	ones(mm)	
(W)	(m)	(mm²)	(A)	(A)	(%)	(%)		nal,Band.	, ,	
()	()	,	()	()	()	()		,		
CP2.FN.04	9625	18	4x2.5+T	Гх2.5Си	17.37	22	0.9	1.65	75x60	
CP2.FN.05	27500	17	4x10+TT	x10Cu	49.62	52	0.62	1.38	75x60	
CP2.FN.06	8125	18	4x2.5+T	Гх2.5Си	14.66	22	0.74	1.5	75x60	
CP2.FN.19	5000	22	4x2.5+T	Гх2.5Си	9.02	22	0.54	1.3	75x60	
CP2.FN.21	7500	18	4x2.5+T	Гх2.5Си	13.53	22	0.68	1.44	75x60	
CP2.FN.22	37500	22	4x16+TT	x16Cu	67.66	70	0.69	1.45	75x60	
CP2.FN.23	65625	28	4x50+TT	x25Cu	118.41	133	0.48	1.24	75x60	
FUERZA MAQUIN	AS	17000	0.3	4x6Cu	30.67	37	0.01	0.77	75x60	
CP2.FN.19	5000	25	4x1.5+T	Гх1.5Си	9.02	16	1.05	1.81	75x60	
CP2.FN.18	5000	30	4x2.5+T	Гх2.5Си	9.02	22	0.74	1.51	75x60	
CP2.FN.14	5000	30	4x2.5+T	Гх2.5Си	9.02	22	0.74	1.51	75x60	
CP2.FN.09	5000	18	4x2.5+T	Гх2.5Сu	9.02	22	0.44	1.21	75x60	
FUERZA MAQUIN	AS	9750	0.3	4x2.5Cu	17.59	22	0.02	0.77	75x60	
CP2.FN.17	3750	15	4x2.5+T	Гх2.5Си	6.77	22	0.28	1.05	75x60	
CP2.FN.16	3750	18	4x2.5+T	Гх2.5Си	6.77	22	0.33	1.1	75x60	
CP2.FN.15	3750	20	4x2.5+T	Гх2.5Си	6.77	22	0.37	1.14	75x60	
FUERZA MAQUIN	AS	10625	0.3	4x2.5Cu	19.17	22	0.02	0.77	75x60	
CP2.FN.10	3125	30	4x2.5+T	Гх2.5Си	5.64	22	0.46	1.23	75x60	
CP2.FN.11	3125	30	4x2.5+T	Гх2.5Си	5.64	22	0.46	1.23	75x60	
CP2.FN.12	3125	30	4x2.5+T		5.64	22	0.46	1.23	75x60	
CP2.FN.13	3125	30	4x2.5+T		5.64	22	0.46	1.23	75x60	
CP2.FN.07	7500	15	4x2.5+T		13.53	22	0.57	1.32	75x60	
CP2.FN.08	32500	15	4x16+TT		58.64	70	0.4	1.15	75x60	
CP2.FN.01	6250	20	4x2.5+T		11.28	22	0.62	1.38	75x60	
CP2.FN.02	9375	22	4x2.5+T		16.92	22	1.07	1.82	75x60	
CP2.FN.03	600	22	2x2.5+T		3.26	26	0.39	1.14	75x60	
CP2.FN.21	9375	25	4x2.5+T		16.92	22	1.21	1.97	75x60	
Cortocircuito										
Denominación	Longitud	Sección	Ipccl	P de C	IpccF	tmcicc	tficc	Lmáx	Curvas	/álidas
(m)	(mm²)	(kA)	(kA)	(A)	(sg)	(sg)	(m)			
, ,		. ,	, ,		,		, ,			
CP2.FN.04	18	4x2.5+T	Гх2.5Cu	9.06	10	529.32	0.3			20;B,C,D
CP2.FN.05	17	4x10+TT	x10Cu	9.06	10	1637.29	0.49			50;B,C,D
CP2.FN.06	18	4x2.5+T	Гх2.5Cu	9.06	10	529.32	0.3			16;B,C,D
CP2.FN.19	22	4x2.5+T	Гх2.5Cu	9.06	10	442.15	0.42			16;B,C,D
CP2.FN.21	18	4x2.5+T	Гх2.5Cu	9.06	10	529.32	0.3			16;B,C,D
CP2.FN.22	22	4x16+TT	x16Cu	9.06	10	1867.03	0.97			100;B,C
CP2.FN.23	28	4x50+TT	x25Cu	9.06	10	2872.08	4.01			160;B,C
FUERZA MAQUIN	AS	0.3	4x6Cu	9.06	10	4294.05	0.03			32
CP2.FN.19	25	4x1.5+T	Гх1.5Cu	8.62	10	243.6	0.5			16;B,C
CP2.FN.18	30	4x2.5+T	Гх2.5Cu	8.62	10	331.3	0.75			16;B,C,D
CP2.FN.14	30	4x2.5+T	Гх2.5Cu	8.62	10	331.3	0.75			16;B,C,D
CP2.FN.09	18	4x2.5+T	Гх2.5Cu	8.62	10	526.08	0.3			16;B,C,D
FUERZA MAQUIN	AS	0.3	4x2.5Cu	9.06	10	4023.96	0.01			20
CP2.FN.17	15	4x2.5+T	Гх2.5Cu	8.08	10	610.56	0.22			16;B,C,D
CP2.FN.16	18	4x2.5+T	Гх2.5Cu	8.08	10	521.61	0.3			16;B,C,D

CP2.FN.15	20	4x2.5+TTx2.5Cu	8.08	10	475.43	0.37	16;B,C,D
FUERZA MAQUIN	IAS	0.3 4x2.5Cu	9.06	10	4023.96	0.01	20
CP2.FN.10	30	4x2.5+TTx2.5Cu	8.08	10	329.52	0.76	16;B,C,D
CP2.FN.11	30	4x2.5+TTx2.5Cu	8.08	10	329.52	0.76	16;B,C,D
CP2.FN.12	30	4x2.5+TTx2.5Cu	8.08	10	329.52	0.76	16;B,C,D
CP2.FN.13	30	4x2.5+TTx2.5Cu	8.08	10	329.52	0.76	16;B,C,D
CP2.FN.07	15	4x2.5+TTx2.5Cu	9.06	10	621.15	0.21	16;B,C,D
CP2.FN.08	15	4x16+TTx16Cu	9.06	10	2300.24	0.64	63;B,C,D
CP2.FN.01	20	4x2.5+TTx2.5Cu	9.06	10	481.83	0.36	16;B,C,D
CP2.FN.02	22	4x2.5+TTx2.5Cu	9.06	10	442.15	0.42	20;B,C,D
CP2.FN.03	22	2x2.5+TTx2.5Cu	9.06	10	442.15	0.42	16;B,C,D
CP2.FN.21	25	4x2.5+TTx2.5Cu	9.06	10	393.53	0.53	20;B,C

CALCULO DE LA PUESTA A TIERRA

- La resistividad del terreno es 300 ohmiosxm.
- El electrodo en la puesta a tierra del edificio, se constituye con los siguientes elementos:

M. conductor de Cu desnudo 35 mm² 180 m.
 M. conductor de Acero galvanizado 95 mm²

Picas verticales de Cobre 14 mm

de Acero recubierto Cu 14 mm 4 picas de 2m.

de Acero galvanizado 25 mm

Con lo que se obtendrá una Resistencia de tierra de 3.06 ohmios.

Los conductores de protección, se calcularon adecuadamente y según la ITC-BT-18, en el apartado del cálculo de circuitos.

Así mismo cabe señalar que la linea principal de tierra no será inferior a 16 mm² en Cu, y la linea de enlace con tierra, no será inferior a 25 mm² en Cu.

4.5 ANEXOS DE CÁLCULO DE LA INSTALACIÓN DE BIES.

Cálculo red BIE

1.- FÓRMULA DE CÁLCULO

Se empleará la fórmula de Colebrook-White para fluidos que circulan por tuberías llenas en régimen turbulento, conjuntamente con la fórmula de Darcy.

Fórmula de Colebrook-White

$$\frac{1}{\sqrt{\lambda}} = \frac{-2^* \log \left[\frac{K}{3,71^* d} + \frac{2,51}{Re^* \sqrt{\lambda}} \right]}{\frac{1}{Re^* \sqrt{\lambda}}}$$

Fórmula de Darcy

$$J = \frac{\sum * V^2}{2^* q^* d}$$

$$V = -2 (2*g*d*j)^{(1/2)}*log[(k/(3,71*d)) + 2,51*z/(d*(2*g*d*j)^{(1/2)})]$$

Donde:

V = Velocidad de circulación del fluido en m/s

g = 9.8 m/s

d = diámetro interior de la tubería en m

j = pérdida de carga unitaria en m/m

k = rugosidad equivalente en m

z = viscosidad cinemática del fluido en m²/s

Acometida varias BIE'S

Acero al carbono

	Parámetro	Unidad	Valor		
DATOS	Caudal	m³/h	12		
	Diámetro int.	mm	50,8	DN50	2"
	Material	Acero al carbono)		
	k	m	0,0000460		
	Fluido	Agua			
	Temperatura	oC	15,0		
	Z	(m²/s)	0,000001572		
CÁLCULOS	Caudal	m³/s	0,0033		
-	Diámetro	m	0,0508		
	Sección Int.	m²	0,0020		
	V real	m/s	1,64		
	j	m/m	0,0455		
	V calculada	_	1,46		
	Diferencia Vr	-Vc	0,181		

Tenemos que garantizar una bomba que nos de un caudal de 0.033m3/s con una presión dinámica entre 2 y 5 bares.

Tenemos que garantizar el suministro de dos BIES simultáneamente durante una hora, por lo que dispondremos de un depósito como mínimo de 24m3.

4.6 ANEXOS DE CÁLCULO DE ALCANTARILLADO PLUVIAL

Descripción de la red de saneamiento

- Título: Alcantarillado de recogida de aguas pluviales

Notas: Se efectúa la recogida de aguas pluviales en un sistema separativo.

La velocidad de la instalación deberá quedar por encima del mínimo establecido, para evitar sedimentación, incrustaciones y estancamiento, y por debajo del máximo, para que no se produzca erosión.

Descripción de los materiales empleados

Los materiales utilizados para esta instalación son:

1A 2000 TUBO UPVC - Coeficiente de Manning: 0.00900

Descripció	Geometrí	Dimensió	Diámetros
DN110	Circular	Diámetro	103.0
DN125	Circular	Diámetro	117.8
DN160	Circular	Diámetro	151.0
DN200	Circular	Diámetro	188.8
DN250	Circular	Diámetro	236.0
DN315	Circular	Diámetro	297.6

El diámetro a utilizar se calculará de forma que la velocidad en la conducción no exceda la velocidad máxima y supere la velocidad mínima establecidas para el cálculo.

Descripción de terrenos

Las características de los terrenos a excavar se detallan a continuación.

Descripción	Lecho cm	Relleno cm	Ancho mínimo cm	Distancia lateral cm	Talud	
Terrenos sueltos	20	20	70	25	2/1	1

Formulación

Para el cálculo de conducciones de saneamiento, se emplea la fórmula de Manning - Strickler.

$$Q = \frac{A \cdot Rh^{2}(2/3) \cdot So^{1/2}}{n}$$

$$V = \frac{Rh^{2}(2/3) \cdot So^{1/2}}{n}$$

donde:

- Q es el caudal en m3/s
- v es la velocidad del fluido en m/s
- A es la sección de la lámina de fluido (m2).
- Rh es el radio hidráulico de la lámina de fluido (m).
- So es la pendiente de la solera del canal (desnivel por longitud de conducción).
- n es el coeficiente de Manning.

Resultados

Listado de nudos

Combinación: Pluviales

Nudo	Cota	Prof. Pozo	Caudal sim.	Coment.
	m	m	l/s	
N1	0.00	2.24		
N3	0.00	2.06		
N4	0.00	1.73		
N5	0.00	1.77		
N6	0.00	2.01		
N7	0.00	2.15		
N8	0.00	2.46		
N9	0.00	2.82		

				i
N10	0.00	2.60		
N11	0.00	2.38		
N13	0.00	2.94		
PS2	0.00	1.60	3.00	
PS3	0.00	1.60	4.00	
PS4	0.00	1.60	4.00	
PS5	0.00	1.60	5.00	
PS6	0.00	1.60	6.00	
PS7	0.00	1.60	6.00	
PS8	0.00	1.60	6.00	
PS9	0.00	1.60	6.00	
PS10	0.00	1.60	5.00	
PS11	0.00	1.60	6.00	
PS12	0.00	1.60	7.00	
PS13	0.00	1.60	7.00	
PS14	0.00	1.60	4.00	
PS15	0.00	1.60	5.00	
PS16	0.00	1.60	3.00	
PS17	0.00	1.60	3.00	
PS18	0.00	1.60	3.00	
SM1	0.00	3.13	83.00	

Listado de tramos

Valores negativos en caudal o velocidad indican que el sentido de circulación es de nudo final a nudo de inicio.

Combinación: Pluviales

Ī	Inicio	Final	Longitud	Diámetros	Pendiente	Caudal	Calado	Velocidad	Coment.	ı
			m	mm	%	l/s	mm	m/s		ì
	N1	N3	18.29	DN125	1.00	-9.00	78.21	-1.17		ì
	N1	N11	14.12	DN125	1.00	12.00	101.31	1.20		ı
	N1	PS2	10.80	DN110	1.00	-3.00	43.48	-0.90		ı
	N3	N4	32.35	DN110	1.00	-6.00	66.14	-1.06		ı
	N3	PS18	5.48	DN110	1.00	-3.00	43.48	-0.90		ı
	N4	PS16	11.79	DN110	1.00	-3.00	43.48	-0.90		ı
	N4	PS17	13.10	DN110	1.00	-3.00	43.48	-0.90	Vel.mín.	ı
	N5	N6	23.30	DN160	1.00	16.00	94.39	1.36		ı
	N5	PS13	14.17	DN110	1.00	-7.00	74.10	-1.09		ì
	N5	PS14	14.49	DN110	1.00	-4.00	51.23	-0.97		ı
	N5	PS15	17.08	DN110	1.00	-5.00	58.66	-1.02		ı
	N6	N7	14.73	DN200	1.00	29.00	117.93	1.58		ı
	N6	PS11	14.81	DN110	1.00	-6.00	66.14	-1.06		ı
	N6	PS12	14.21	DN110	1.00	-7.00	74.10	-1.09		ı
	N7	N8	30.65	DN200	1.00	40.00	152.18	1.65		ı
	N7	PS9	9.44	DN110	1.00	-6.00	66.14	-1.06		ı
	N7	PS10	14.95	DN110	1.00	-5.00	58.66	-1.02		ı
	N8	N9	36.05	DN250	1.00	46.00	135.11	1.78		

- 1		l .	i i		İ	i i		1		1
	N8	PS8	6.65	DN110	1.00	-6.00	66.14	-1.06		
	N9	N13	11.58	DN250	1.00	58.00	157.84	1.87		
	N9	PS6	13.68	DN110	1.00	-6.00	66.14	-1.06		
	N9	PS7	13.72	DN110	1.00	-6.00	66.14	-1.06		
	N10	N11	21.80	DN160	1.00	-20.00	111.29	-1.41		
	N10	N13	4.15	DN200	1.00	25.00	107.09	1.53		
	N10	PS5	11.81	DN110	1.00	-5.00	58.66	-1.02		
	N11	PS3	12.54	DN110	1.00	-4.00	51.23	-0.97		
	N11	PS4	13.82	DN110	1.00	-4.00	51.23	-0.97		
	N13	SM1	19.30	DN315	1.00	83.00	167.37	2.06	Vel.máx.	

Envolvente

Se indican los máximos de los valores absolutos.

Envolvente de máximos

Inicio	Final	Longitud	Diámetros	Pendiente	Caudal	Calado	Velocidad
		m	mm	%	l/s	mm	m/s
N1	N3	18.29	DN125	1.00	9.00	78.21	1.17
N1	N11	14.12	DN125	1.00	12.00	101.31	1.20
N1	PS2	10.80	DN110	1.00	3.00	43.48	0.90
N3	N4	32.35	DN110	1.00	6.00	66.14	1.06
N3	PS18	5.48	DN110	1.00	3.00	43.48	0.90
N4	PS16	11.79	DN110	1.00	3.00	43.48	0.90
N4	PS17	13.10	DN110	1.00	3.00	43.48	0.90
N5	N6	23.30	DN160	1.00	16.00	94.39	1.36
N5	PS13	14.17	DN110	1.00	7.00	74.10	1.09
N5	PS14	14.49	DN110	1.00	4.00	51.23	0.97
N5	PS15	17.08	DN110	1.00	5.00	58.66	1.02
N6	N7	14.73	DN200	1.00	29.00	117.93	1.58
N6	PS11	14.81	DN110	1.00	6.00	66.14	1.06
N6	PS12	14.21	DN110	1.00	7.00	74.10	1.09
N7	N8	30.65	DN200	1.00	40.00	152.18	1.65
N7	PS9	9.44	DN110	1.00	6.00	66.14	1.06
N7	PS10	14.95	DN110	1.00	5.00	58.66	1.02
N8	N9	36.05	DN250	1.00	46.00	135.11	1.78
N8	PS8	6.65	DN110	1.00	6.00	66.14	1.06
N9	N13	11.58	DN250	1.00	58.00	157.84	1.87
N9	PS6	13.68	DN110	1.00	6.00	66.14	1.06
N9	PS7	13.72	DN110	1.00	6.00	66.14	1.06
N10	N11	21.80	DN160	1.00	20.00	111.29	1.41
N10	N13	4.15	DN200	1.00	25.00	107.09	1.53
N10	PS5	11.81	DN110	1.00	5.00	58.66	1.02
N11	PS3	12.54	DN110	1.00	4.00	51.23	0.97
N11	PS4	13.82	DN110	1.00	4.00	51.23	0.97
N13	SM1	19.30	DN315	1.00	83.00	167.37	2.06

Se indican los mínimos de los valores absolutos.

Envolvente de mínimos

Inicio	Final	Longitud	Diámetros	Pendiente	Caudal	Calado	Velocidad
		m	mm	%	l/s	mm	m/s
N1	N3	18.29	DN125	1.00	9.00	78.21	1.17
N1	N11	14.12	DN125	1.00	12.00	101.31	1.20
N1	PS2	10.80	DN110	1.00	3.00	43.48	0.90
N3	N4	32.35	DN110	1.00	6.00	66.14	1.06
N3	PS18	5.48	DN110	1.00	3.00	43.48	0.90
N4	PS16	11.79	DN110	1.00	3.00	43.48	0.90
N4	PS17	13.10	DN110	1.00	3.00	43.48	0.90
N5	N6	23.30	DN160	1.00	16.00	94.39	1.36
N5	PS13	14.17	DN110	1.00	7.00	74.10	1.09
N5	PS14	14.49	DN110	1.00	4.00	51.23	0.97
N5	PS15	17.08	DN110	1.00	5.00	58.66	1.02
N6	N7	14.73	DN200	1.00	29.00	117.93	1.58
N6	PS11	14.81	DN110	1.00	6.00	66.14	1.06
N6	PS12	14.21	DN110	1.00	7.00	74.10	1.09
N7	N8	30.65	DN200	1.00	40.00	152.18	1.65
N7	PS9	9.44	DN110	1.00	6.00	66.14	1.06
N7	PS10	14.95	DN110	1.00	5.00	58.66	1.02
N8	N9	36.05	DN250	1.00	46.00	135.11	1.78
N8	PS8	6.65	DN110	1.00	6.00	66.14	1.06
N9	N13	11.58	DN250	1.00	58.00	157.84	1.87
N9	PS6	13.68	DN110	1.00	6.00	66.14	1.06
N9	PS7	13.72	DN110	1.00	6.00	66.14	1.06
N10	N11	21.80	DN160	1.00	20.00	111.29	1.41
N10	N13	4.15	DN200	1.00	25.00	107.09	1.53
N10	PS5	11.81	DN110	1.00	5.00	58.66	1.02
N11	PS3	12.54	DN110	1.00	4.00	51.23	0.97
N11	PS4	13.82	DN110	1.00	4.00	51.23	0.97
N13	SM1	19.30	DN315	1.00	83.00	167.37	2.06

<u>Medición</u>

A continuación se detallan las longitudes totales de los materiales utilizados en la instalación.

1A 2000 TUBO UPVC

Descripció	Longitud
DN110	244.88
DN125	32.41
DN160	45.10
DN200	49.53
DN250	47.63
DN315	19.30

Medición excavación

Los volúmenes de tierra removidos para la ejecución de la obra son:

Descripción	Vol. excavado	Vol. arenas	Vol. zahorras	
	m3	m3	m3	
Terrenos sueltos	3816.94	423.09	3385.84	
Total	3816.94	423.09	3385.84	

Volumen de tierras por tramos

Inicio	Final	Terreno	Terreno	Longitud	Prof.	Prof.	Ancho	Talud	Vol.	Vol.	Vol.	Superficie
		Inicio	Final		Inicio	Final	fondo		excavado	arenas	zahorras	pavimento
N1	N3	-0.35	-0.35	18.29	2.24	2.06	70.00	2/1	171.80	16.23	155.37	159.00
N1	N11	-0.35	-0.35	14.12	2.24	2.38	70.00	2/1	153.29	12.54	140.60	131.95
N1	PS2	-0.35	-0.35	10.80	1.71	1.60	70.00	2/1	60.45	9.18	51.18	72.64
N3	N4	-0.35	-0.35	32.35	2.06	1.73	70.00	2/1	237.26	27.49	209.50	248.54
N3	PS18	-0.35	-0.35	5.48	1.66	1.60	70.00	2/1	29.71	4.66	25.00	36.29
N4	PS16	-0.35	-0.35	11.79	1.72	1.60	70.00	2/1	66.42	10.02	56.30	79.57
N4	PS17	-0.35	-0.35	13.10	1.73	1.60	70.00	2/1	74.36	11.13	63.12	88.72
N5	N6	-0.35	-0.35	23.30	1.77	2.01	70.00	2/1	169.73	22.72	146.60	178.51
N5	PS13	-0.35	-0.35	14.17	1.74	1.60	70.00	2/1	80.97	12.04	68.81	96.29
N5	PS14	-0.35	-0.35	14.49	1.75	1.60	70.00	2/1	82.93	12.31	70.50	98.52
N5	PS15	-0.35	-0.35	17.08	1.77	1.60	70.00	2/1	99.35	14.52	84.69	117.09
N6	N7	-0.35	-0.35	14.73	2.01	2.15	70.00	2/1	129.75	15.87	113.46	124.05
N6	PS11	-0.35	-0.35	14.81	1.75	1.60	70.00	2/1	84.93	12.58	72.23	100.80
N6	PS12	-0.35	-0.35	14.21	1.75	1.60	70.00	2/1	81.21	12.07	69.01	96.56
N7	N8	-0.35	-0.35	30.65	2.15	2.46	70.00	2/1	332.06	33.03	298.18	285.95
N7	PS9	-0.35	-0.35	9.44	1.70	1.60	70.00	2/1	52.42	8.02	44.32	63.25
N7	PS10	-0.35	-0.35	14.95	1.75	1.60	70.00	2/1	85.80	12.70	72.97	101.79
N8	N9	-0.35	-0.35	36.05	2.46	2.82	80.00	2/1	519.96	45.93	472.45	388.03
N8	PS8	-0.35	-0.35	6.65	1.67	1.60	70.00	2/1	36.30	5.65	30.60	44.19
N9	N13	-0.35	-0.35	11.58	2.82	2.94	80.00	2/1	197.76	14.75	182.51	135.65
N9	PS6	-0.35	-0.35	13.68	1.74	1.60	70.00	2/1	77.91	11.62	66.18	92.79
N9	PS7	-0.35	-0.35	13.72	1.74	1.60	70.00	2/1	78.19	11.66	66.41	93.11
N10	N11	-0.35	-0.35	21.80	2.60	2.38	70.00	2/1	274.73	21.25	253.09	219.35
N10	N13	-0.35	-0.35	4.15	2.60	2.64	70.00	2/1	57.83	4.47	53.24	43.91
N10	PS5	-0.35	-0.35	11.81	1.72	1.60	70.00	2/1	66.53	10.04	56.40	79.70
N11	PS3	-0.35	-0.35	12.54	1.73	1.60	70.00	2/1	70.95	10.66	60.19	84.80
N11	PS4	-0.35	-0.35	13.82	1.74	1.60	70.00	2/1	78.78	11.74	66.93	93.79
N13	SM1	-0.35	-0.35	19.30	2.94	3.13	80.00	2/1	365.57	28.21	336.02	238.05

Número de pozos por profundidades

Profundidad	Número de pozos
m	
2.24	1
2.06	1

1.73	1
1.77	1
2.01	1
2.15	1
2.46	1
2.82	1
2.60	1
2.38	1
1.60	17
3.13	1
2.94	1
Total	29

4.7 ANEXOS DE CÁLCULO DE LA INSTALACIÓN DE FONTANERÍA.

DATOS DE GRUPOS Y PLANTAS

Planta	Altura	Cotas	Grupos (Fontanería)
Cubierta	0.00	8.00	Cubierta
Planta primera	4.00	4.00	Planta primera
Planta baja	4.00	0.00	Planta baja

DATOS DE OBRA

Caudal acumulado con simultaneidad

Presión de suministro en acometida: 25.0 m.c.a.

Velocidad mínima: 0.5 m/s Velocidad máxima: 2.0 m/s Velocidad óptima: 1.0 m/s

Coeficiente de pérdida de carga: 1.2

Presión mínima en puntos de consumo: 10.0 m.c.a. Presión máxima en puntos de consumo: 50.0 m.c.a.

Viscosidad de agua fría: 1.01 x10-6 m2/s Viscosidad de agua caliente: 0.478 x10-6 m2/s

Factor de fricción: Colebrook-White

Pérdida de temperatura admisible en red de agua caliente: 5 $^{\circ}$ C

BIBLIOTECAS

BIBLIOTECA DE TUBOS DE ABASTECIMIENTO

Serie: COBRE			
Descripció	n: Tubo de cobre		
Rugosidad absoluta: 0.0420 mm			
Referencias	Diámetro interno		
Ø12	10.4		
Ø15	13.0		
Ø18	16.0		
Ø22 20.0			
Ø28 25.6			
Ø35	32.0		
Ø42	39.0		
Ø54	50.0		
Ø64 60.0			
Ø76 72.0			
Ø89 85.0			
Ø108 103.0			

	Serie: PEX - 1 Descripción: Polietileno reticulado - 10Kg/cm² (60°) Rugosidad absoluta: 0.0200 mm			
	Referencias Diámetro interno			
Ø12		8.4		
Ø16	12.4			
Ø20	16.2			
Ø25	20.4			
Ø32	26.1			
Ø40	32.6			
Ø50	40.8			
Ø63	51.6			

BIBLIOTECA DE AISLANTES

Serie: AISL1			
Descripción: Coquilla	a de espuma de polietileno		
Conductivida	d: 0.03 kcal/h m°C		
Referencias	Espesor interno		
10 mm	10.0		
20 mm 20.0			
30 mm 30.0			
40 mm	40.0		

BIBLIOTECA DE ELEMENTOS

Referencias	Tipo de pérdida	Descripción
Caldera	Pérdida de presión	2.50 m.c.a.
Llave de paso	Pérdida de presión	0.25 m.c.a.

MONTANTES

Referencia	Planta	Descripción	Resultados	Comprobación
V2	Planta baja - Planta primera	PEX - 1-Ø25	Caudal: 0.37 l/s Caudal bruto: 0.90 l/s Velocidad: 1.12 m/s Pérdida presión: 0.79	Se cumplen todas las comprobaciones
.: ·	Planta baja - Planta primera	PEX - 1-Ø25 (AISL1-10 mm)	Caudal: 0.40 l/s Caudal bruto: 0.70 l/s Velocidad: 1.22 m/s Pérdida presión: 0.82	Se cumplen todas las comprobaciones

TUBERÍAS

Grupo: Planta primera			
Referencia	Descripción	Resultados	Comprobación
N2 -> N4	PEX - 1-Ø25 Longitud: 0.87 m	Caudal: 0.37 l/s Caudal bruto: 0.90 l/s Velocidad: 1.12 m/s Pérdida presión: 0.09 m.c.a.	Se cumplen todas las comprobaciones
N4 -> A15	PEX - 1-Ø20 Longitud: 0.28 m	Caudal: 0.21 l/s Caudal bruto: 0.30 l/s Velocidad: 1.03 m/s Pérdida presión: 0.03 m.c.a.	Se cumplen todas las comprobaciones
N4 -> N6	PEX - 1-Ø25 Longitud: 3.57 m	Caudal: 0.35 l/s Caudal bruto: 0.60 l/s Velocidad: 1.06 m/s Pérdida presión: 0.33 m.c.a.	Se cumplen todas las comprobaciones
N6 -> A9	PEX - 1-Ø20 Longitud: 0.20 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.02 m.c.a.	Se cumplen todas las comprobaciones
N10 -> A9	Agua caliente, PEX - 1-Ø20 Longitud: 0.15 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.01 m.c.a.	Se cumplen todas las comprobaciones
N6 -> A10	PEX - 1-Ø20 Longitud: 0.55 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.06 m.c.a.	Se cumplen todas las comprobaciones
N10 -> A10	Agua caliente, PEX - 1-Ø20 Longitud: 0.60 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.06 m.c.a.	Se cumplen todas las comprobaciones
N6 -> A11	PEX - 1-Ø20 Longitud: 1.81 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.19 m.c.a.	Se cumplen todas las comprobaciones
A11 -> A12	PEX - 1-Ø16 Longitud: 1.08 m	Caudal: 0.10 l/s Velocidad: 0.83 m/s Pérdida presión: 0.12 m.c.a.	Se cumplen todas las comprobaciones
A14 -> A13	Agua caliente, PEX - 1-Ø16 Longitud: 0.78 m	Caudal: 0.10 l/s Velocidad: 0.83 m/s Pérdida presión: 0.08 m.c.a.	Se cumplen todas las comprobaciones
N7 -> N8	Agua caliente, PEX - 1-Ø25 Longitud: 0.94 m	Caudal: 0.40 l/s Caudal bruto: 0.70 l/s Velocidad: 1.22 m/s Pérdida presión: 0.10 m.c.a.	Se cumplen todas las comprobaciones
N8 -> N10	Agua caliente, PEX - 1-Ø25 Longitud: 3.45 m	Caudal: 0.40 l/s Velocidad: 1.22 m/s Pérdida presión: 0.37 m.c.a.	Se cumplen todas las comprobaciones

A15 -> A14	Agua caliente, PEX - 1-Ø20 Longitud: 0.81 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.08 m.c.a.	Se cumplen todas las comprobaciones
A14 -> A13	PEX - 1-Ø16 Longitud: 0.80 m	Caudal: 0.10 l/s Velocidad: 0.83 m/s Pérdida presión: 0.09 m.c.a.	Se cumplen todas las comprobaciones
N8 -> A15	Agua caliente, PEX - 1-Ø20 Longitud: 0.22 m	Caudal: 0.21 l/s Caudal bruto: 0.30 l/s Velocidad: 1.03 m/s Pérdida presión: 0.02 m.c.a.	Se cumplen todas las comprobaciones
A15 -> A14	PEX - 1-Ø20 Longitud: 0.81 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.09 m.c.a.	Se cumplen todas las comprobaciones

Grupo: Planta baja			
Referencia	Descripción	Resultados	Comprobación
N2 -> N11	PEX - 1-Ø32 Longitud: 0.26 m	Caudal: 0.64 l/s Caudal bruto: 2.70 l/s Velocidad: 1.19 m/s Pérdida presión: 0.02 m.c.a.	Se cumplen todas las comprobaciones
N2 -> N11	PEX - 1-Ø32 Longitud: 0.25 m	Caudal: 0.64 l/s Caudal bruto: 2.70 l/s Velocidad: 1.19 m/s Pérdida presión: 0.02 m.c.a.	Se cumplen todas las comprobaciones
N2 -> N11	PEX - 1-Ø32 Longitud: 20.80 m	Caudal: 0.64 l/s Caudal bruto: 2.70 l/s Velocidad: 1.19 m/s Pérdida presión: 1.75 m.c.a.	Se cumplen todas las comprobaciones
N4 -> N10	PEX - 1-Ø32 Longitud: 3.57 m	Caudal: 0.42 l/s Caudal bruto: 0.60 l/s Velocidad: 0.79 m/s Pérdida presión: 0.14 m.c.a.	Se cumplen todas las comprobaciones
N4 -> A21	PEX - 1-Ø20 Longitud: 1.32 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.14 m.c.a.	Se cumplen todas las comprobaciones
N6 -> N8	PEX - 1-Ø25 Longitud: 0.73 m	Caudal: 0.40 l/s Velocidad: 1.22 m/s Pérdida presión: 0.09 m.c.a.	Se cumplen todas las comprobaciones
N6 -> A22	PEX - 1-Ø20 Longitud: 1.36 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.14 m.c.a.	Se cumplen todas las comprobaciones
N8 -> A24	PEX - 1-Ø20 Longitud: 42.75 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 4.53 m.c.a.	Se cumplen todas las comprobaciones
N8 -> A23	PEX - 1-Ø20 Longitud: 1.33 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.14 m.c.a.	Se cumplen todas las comprobaciones
N10 -> N12	PEX - 1-Ø32 Longitud: 0.44 m	Caudal: 0.42 l/s Caudal bruto: 0.60 l/s Velocidad: 0.79 m/s Pérdida presión: 0.02 m.c.a.	Se cumplen todas las comprobaciones
N12 -> N6	PEX - 1-Ø32 Longitud: 1.21 m	Caudal: 0.42 l/s Caudal bruto: 0.60 l/s Velocidad: 0.79 m/s Pérdida presión: 0.05 m.c.a.	Se cumplen todas las comprobaciones

N11 -> N4	PEX - 1-Ø32 Longitud: 22.89 m	Caudal: 0.46 l/s Caudal bruto: 0.80 l/s Velocidad: 0.86 m/s Pérdida presión: 1.07 m.c.a.	Se cumplen todas las comprobaciones
N11 -> N3	PEX - 1-Ø32 Longitud: 0.43 m	Caudal: 0.51 l/s Caudal bruto: 1.90 l/s Velocidad: 0.95 m/s Pérdida presión: 0.02 m.c.a.	Se cumplen todas las comprobaciones
N11 -> N3	PEX - 1-Ø32 Longitud: 8.07 m	Caudal: 0.51 Vs Caudal bruto: 1.90 l/s Velocidad: 0.95 m/s Pérdida presión: 0.45 m.c.a.	Se cumplen todas las comprobaciones
N15 -> A20	PEX - 1-Ø20 Longitud: 16.05 m	Caudal: 0.20 Vs Velocidad: 0.97 m/s Pérdida presión: 1.70 m.c.a.	Se cumplen todas las comprobaciones
N15 -> N21	PEX - 1-Ø32 Longitud: 0.56 m	Caudal: 0.47 l/s Caudal bruto: 1.70 l/s Velocidad: 0.88 m/s Pérdida presión: 0.03 m.c.a.	Se cumplen todas las comprobaciones
N17 -> A19	PEX - 1-Ø20 Longitud: 0.26 m	Caudal: 0.21 l/s Caudal bruto: 0.30 l/s Velocidad: 1.03 m/s Pérdida presión: 0.03 m.c.a.	Se cumplen todas las comprobaciones
N17 -> N19	PEX - 1-Ø25 Longitud: 1.92 m	Caudal: 0.29 l/s Caudal bruto: 0.50 l/s Velocidad: 0.88 m/s Pérdida presión: 0.13 m.c.a.	Se cumplen todas las comprobaciones
N19 -> N27	PEX - 1-Ø25 Longitud: 0.30 m	Caudal: 0.29 l/s Caudal bruto: 0.50 l/s Velocidad: 0.88 m/s Pérdida presión: 0.02 m.c.a.	Se cumplen todas las comprobaciones
N21 -> N17	PEX - 1-Ø25 Longitud: 0.38 m	Caudal: 0.33 l/s Caudal bruto: 0.80 l/s Velocidad: 1.00 m/s Pérdida presión: 0.03 m.c.a.	Se cumplen todas las comprobaciones
N21 -> N17	PEX - 1-Ø25 Longitud: 0.32 m	Caudal: 0.33 l/s Caudal bruto: 0.80 l/s Velocidad: 1.00 m/s Pérdida presión: 0.03 m.c.a.	Se cumplen todas las comprobaciones
N22 -> N24	Agua caliente, PEX - 1-Ø25 Longitud: 0.65 m	Caudal: 0.29 l/s Caudal bruto: 0.50 l/s Velocidad: 0.88 m/s Pérdida presión: 0.04 m.c.a.	Se cumplen todas las comprobaciones
N1 -> N22	Agua caliente, COBRE-Ø28 Longitud: 0.35 m	Caudal: 0.42 l/s Caudal bruto: 1.20 l/s Velocidad: 0.82 m/s Pérdida presión: 0.01 m.c.a.	Se cumplen todas las comprobaciones
N24 -> A19	Agua caliente, PEX - 1-Ø20 Longitud: 0.32 m	Caudal: 0.21 l/s Caudal bruto: 0.30 l/s Velocidad: 1.03 m/s Pérdida presión: 0.03 m.c.a.	Se cumplen todas las comprobaciones
N24 -> N26	Agua caliente, PEX - 1-Ø20 Longitud: 2.10 m	Caudal: 0.20 Vs Velocidad: 0.97 m/s Pérdida presión: 0.19 m.c.a.	Se cumplen todas las comprobaciones
N27 -> A13	PEX - 1-Ø20 Longitud: 0.70 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.07 m.c.a.	Se cumplen todas las comprobaciones
N26 -> A13	Agua caliente, PEX - 1-Ø20 Longitud: 0.65 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.06 m.c.a.	Se cumplen todas las comprobaciones
	I .	1	

N27 -> A14	PEX - 1-Ø20 Longitud: 1.90 m	Caudal: 0.21 l/s Caudal bruto: 0.30 l/s Velocidad: 1.03 m/s Pérdida presión: 0.22 m.c.a.	Se cumplen todas las comprobaciones
A14 -> A15	PEX - 1-Ø20 Longitud: 1.08 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.11 m.c.a.	Se cumplen todas las comprobaciones
A15 -> A16	PEX - 1-Ø16 Longitud: 1.19 m	Caudal: 0.10 l/s Velocidad: 0.83 m/s Pérdida presión: 0.13 m.c.a.	Se cumplen todas las comprobaciones
A17 -> A18	Agua caliente, PEX - 1-Ø16 Longitud: 0.83 m	Caudal: 0.10 l/s Velocidad: 0.83 m/s Pérdida presión: 0.08 m.c.a.	Se cumplen todas las comprobaciones
A17 -> A18	PEX - 1-Ø16 Longitud: 0.82 m	Caudal: 0.10 l/s Velocidad: 0.83 m/s Pérdida presión: 0.09 m.c.a.	Se cumplen todas las comprobaciones
A19 -> A17	Agua caliente, PEX - 1-Ø20 Longitud: 0.79 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.07 m.c.a.	Se cumplen todas las comprobaciones
A19 -> A17	PEX - 1-Ø20 Longitud: 0.79 m	Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.08 m.c.a.	Se cumplen todas las comprobaciones
N3 -> N1	Agua caliente, COBRE-Ø28 Longitud: 0.29 m	Caudal: 0.42 l/s Caudal bruto: 1.20 l/s Velocidad: 0.82 m/s Pérdida presión: 0.01 m.c.a.	Se cumplen todas las comprobaciones
N3 -> N1	Agua caliente, PEX - 1-Ø32 Longitud: 0.26 m	Caudal: 0.42 l/s Caudal bruto: 1.20 l/s Velocidad: 0.79 m/s Pérdida presión: 0.01 m.c.a.	Se cumplen todas las comprobaciones
N3 -> N15	PEX - 1-Ø32 Longitud: 0.43 m	Caudal: 0.51 l/s Caudal bruto: 1.90 l/s Velocidad: 0.95 m/s Pérdida presión: 0.02 m.c.a.	Se cumplen todas las comprobaciones

NUDOS

Grupo: Planta primera			
Referencia	Descripción	Resultados	Comprobación
N2	Cota: 3.70 m	Presión: 13.34 m.c.a.	
A13	Cota: 1.00 m COBRE-Ø12 Longitud: 2.70 m Lavabo: Lv	Presión: 13.04 m.c.a. Caudal: 0.10 l/s Velocidad: 1.18 m/s Pérdida presión: 0.78 m.c.a. Presión: 14.97 m.c.a.	Se cumplen todas las comprobaciones
N4	Cota: 3.70 m	Presión: 13.25 m.c.a.	
A12	Cota: 0.50 m COBRE-Ø12 Longitud: 3.20 m Inodoro con cisterna: Sd	Presión: 12.61 m.c.a. Caudal: 0.10 l/s Velocidad: 1.18 m/s Pérdida presión: 0.92 m.c.a. Presión: 14.89 m.c.a.	Se cumplen todas las comprobaciones

A9	Cota: 2.00 m PEX - 1-Ø20 Longitud: 1.70 m Ducha: Du	Presión: 12.90 m.c.a. Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.18 m.c.a. Presión: 14.42 m.c.a.	Se cumplen todas las comprobaciones
A 9	Cota: 2.00 m Agua caliente, PEX - 1-Ø20 Longitud: 1.70 m Ducha: Du	Presión: 10.35 m.c.a. Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.16 m.c.a. Presión: 11.89 m.c.a.	Se cumplen todas las comprobaciones
A10	Cota: 2.00 m PEX - 1-Ø20 Longitud: 1.70 m Ducha: Du	Presión: 12.86 m.c.a. Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.18 m.c.a. Presión: 14.38 m.c.a.	Se cumplen todas las comprobaciones
A10	Cota: 2.00 m Agua caliente, PEX - 1-Ø20 Longitud: 1.70 m Ducha: Du	Presión: 10.30 m.c.a. Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.16 m.c.a. Presión: 11.84 m.c.a.	Se cumplen todas las comprobaciones
N6	Cota: 3.70 m	Presión: 12.92 m.c.a.	
A11	Cota: 0.50 m PEX - 1-Ø16 Longitud: 3.20 m Inodoro con cisterna: Sd	Presión: 12.73 m.c.a. Caudal: 0.10 l/s Velocidad: 0.83 m/s Pérdida presión: 0.36 m.c.a. Presión: 15.57 m.c.a.	Se cumplen todas las comprobaciones
A13	Cota: 1.00 m COBRE-Ø12 Longitud: 2.70 m Lavabo: Lv	Presión: 10.55 m.c.a. Caudal: 0.10 l/s Velocidad: 1.18 m/s Pérdida presión: 0.78 m.c.a. Presión: 12.48 m.c.a.	Se cumplen todas las comprobaciones
N7	Cota: 3.70 m	Presión: 10.83 m.c.a.	
N8	Cota: 3.70 m	Presión: 10.73 m.c.a.	
N10	Cota: 3.70 m	Presión: 10.36 m.c.a.	
A14	Cota: 1.00 m COBRE-Ø12 Longitud: 2.70 m Lavabo: Lv	Presión: 10.63 m.c.a. Caudal: 0.10 l/s Velocidad: 1.18 m/s Pérdida presión: 0.78 m.c.a. Presión: 12.55 m.c.a.	Se cumplen todas las comprobaciones
A14	Cota: 1.00 m COBRE-Ø12 Longitud: 2.70 m Lavabo: Lv	Presión: 13.13 m.c.a. Caudal: 0.10 l/s Velocidad: 1.18 m/s Pérdida presión: 0.78 m.c.a. Presión: 15.06 m.c.a.	Se cumplen todas las comprobaciones
A15	Cota: 1.00 m COBRE-Ø12 Longitud: 2.70 m Lavabo: Lv	Presión: 10.71 m.c.a. Caudal: 0.10 l/s Velocidad: 1.18 m/s Pérdida presión: 0.78 m.c.a. Presión: 12.63 m.c.a.	Se cumplen todas las comprobaciones

Cota: 1.00 m
COBRE-Ø12
Longitud: 2.70 m
Lavabo: Lv

Cota: 1.00 m
Caudal: 0.10 l/s
Velocidad: 1.18 m/s
Pérdida presión: 0.78 m.c.a.
Presión: 15.14 m.c.a.

Se cumplen todas las comprobaciones

Grupo: Planta baja					
Referencia	Descripción	Resultados	Comprobación		
N2	Cota: 0.00 m	NUDO ACOMETIDA Presión: 25.00 m.c.a.			
A24	Cota: 1.00 m COBRE-Ø18 Longitud: 1.00 m Consumo genérico (agua fría): Gf	Presión: 16.71 m.c.a. Caudal: 0.20 l/s Velocidad: 0.99 m/s Pérdida presión: 0.12 m.c.a. Presión: 15.59 m.c.a.	Se cumplen todas las comprobaciones		
N4	Cota: 0.00 m	Presión: 21.54 m.c.a.			
A21	Cota: 1.00 m COBRE-Ø18 Longitud: 1.00 m Consumo genérico (agua fría): Gf	Presión: 21.40 m.c.a. Caudal: 0.20 l/s Velocidad: 0.99 m/s Pérdida presión: 0.12 m.c.a. Presión: 20.28 m.c.a.	Se cumplen todas las comprobaciones		
N6	Cota: 0.00 m	Presión: 21.33 m.c.a.			
A22	Cota: 1.00 m COBRE-Ø18 Longitud: 1.00 m Consumo genérico (agua fría): Gf	Presión: 21.18 m.c.a. Caudal: 0.20 l/s Velocidad: 0.99 m/s Pérdida presión: 0.12 m.c.a. Presión: 20.06 m.c.a.	Se cumplen todas las comprobaciones		
N8	Cota: 0.00 m	Presión: 21.24 m.c.a.			
A23	Cota: 1.00 m COBRE-Ø18 Longitud: 1.00 m Consumo genérico (agua fría): Gf	Presión: 21.10 m.c.a. Caudal: 0.20 l/s Velocidad: 0.99 m/s Pérdida presión: 0.12 m.c.a. Presión: 19.98 m.c.a.	Se cumplen todas las comprobaciones		
N10	Cota: 0.00 m	Presión: 21.39 m.c.a.			
N12	Cota: 0.00 m	Presión: 21.38 m.c.a.			
N11	Cota: 0.00 m	Presión: 22.61 m.c.a.			
A20	Cota: 1.00 m COBRE-Ø18 Longitud: 1.00 m Consumo genérico (agua fría): Gf	Presión: 20.16 m.c.a. Caudal: 0.20 l/s Velocidad: 0.99 m/s Pérdida presión: 0.12 m.c.a. Presión: 19.04 m.c.a.	Se cumplen todas las comprobaciones		
N15	Cota: 0.00 m	Presión: 21.86 m.c.a.			
A18	Cota: 1.00 m COBRE-Ø12 Longitud: 1.00 m Lavabo: Lv	Presión: 21.32 m.c.a. Caudal: 0.10 l/s Velocidad: 1.18 m/s Pérdida presión: 0.29 m.c.a. Presión: 20.03 m.c.a.	Se cumplen todas las comprobaciones		
N17	Cota: 0.00 m	Presión: 21.53 m.c.a.			
N19	Cota: 0.00 m	Presión: 21.40 m.c.a.			

A16			
AIO	Cota: 0.50 m COBRE-Ø12 Longitud: 0.50 m Inodoro con cisterna: Sd	Presión: 20.91 m.c.a. Caudal: 0.10 l/s Velocidad: 1.18 m/s Pérdida presión: 0.14 m.c.a. Presión: 20.26 m.c.a.	Se cumplen todas las comprobaciones
N21	Cota: 0.00 m	Presión: 21.84 m.c.a.	
N22	Cota: 0.00 m	Presión: 19.35 m.c.a.	
A18	Cota: 1.00 m COBRE-Ø12 Longitud: 1.00 m Lavabo: Lv	Presión: 19.13 m.c.a. Caudal: 0.10 l/s Velocidad: 1.18 m/s Pérdida presión: 0.29 m.c.a. Presión: 17.84 m.c.a.	Se cumplen todas las comprobaciones
N24	Cota: 0.00 m	Presión: 19.31 m.c.a.	
A13	Cota: 2.00 m PEX - 1-Ø20 Longitud: 2.00 m Ducha: Du	Presión: 21.31 m.c.a. Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.21 m.c.a. Presión: 19.09 m.c.a.	Se cumplen todas las comprobaciones
A13	Cota: 2.00 m Agua caliente, PEX - 1-Ø20 Longitud: 2.00 m Ducha: Du	Presión: 19.06 m.c.a. Caudal: 0.20 l/s Velocidad: 0.97 m/s Pérdida presión: 0.19 m.c.a. Presión: 16.87 m.c.a.	Se cumplen todas las comprobaciones
N26	Cota: 0.00 m	Presión: 19.12 m.c.a.	
N27	Cota: 0.00 m	Presión: 21.38 m.c.a.	
A14	Cota: 0.50 m PEX - 1-Ø16 Longitud: 0.50 m Inodoro con cisterna: Sd	Presión: 21.16 m.c.a. Caudal: 0.10 l/s Velocidad: 0.83 m/s Pérdida presión: 0.06 m.c.a. Presión: 20.60 m.c.a.	Se cumplen todas las comprobaciones
A15	Cota: 0.50 m PEX - 1-Ø16 Longitud: 0.50 m Inodoro con cisterna: Sd	Presión: 21.04 m.c.a. Caudal: 0.10 l/s Velocidad: 0.83 m/s Pérdida presión: 0.06 m.c.a. Presión: 20.49 m.c.a.	Se cumplen todas las comprobaciones
A17	Cota: 1.00 m COBRE-Ø12 Longitud: 1.00 m Lavabo: Lv	Presión: 19.21 m.c.a. Caudal: 0.10 l/s Velocidad: 1.18 m/s Pérdida presión: 0.29 m.c.a. Presión: 17.92 m.c.a.	Se cumplen todas las comprobaciones
A17	Cota: 1.00 m COBRE-Ø12 Longitud: 1.00 m Lavabo: Lv	Presión: 21.41 m.c.a. Caudal: 0.10 l/s Velocidad: 1.18 m/s Pérdida presión: 0.29 m.c.a. Presión: 20.13 m.c.a.	Se cumplen todas las comprobaciones
A19	Cota: 1.00 m COBRE-Ø12 Longitud: 1.00 m Lavabo: Lv	Presión: 19.28 m.c.a. Caudal: 0.10 l/s Velocidad: 1.18 m/s Pérdida presión: 0.29 m.c.a. Presión: 17.99 m.c.a.	Se cumplen todas las comprobaciones

A19	Cota: 1.00 m COBRE-Ø12 Longitud: 1.00 m Lavabo: Lv	Presión: 21.50 m.c.a. Caudal: 0.10 l/s Velocidad: 1.18 m/s Pérdida presión: 0.29 m.c.a. Presión: 20.21 m.c.a.	Se cumplen todas las comprobaciones
N1	Cota: 0.00 m	Presión: 19.37 m.c.a.	
N3	Cota: 0.00 m	Presión: 21.89 m.c.a.	

ELEMENTOS

Grupo: Planta baja				
Referencia	Descripción	Resultados		
N2 -> N11, (0.26, 0.00), 0.26 m	Llave general Pérdida de carga: 0.30 m.c.a.	Presión de entrada: 24.98 m.c.a. Presión de salida: 24.68 m.c.a.		
N2 -> N11, (0.50, 0.00), 0.50 m	Contador Pérdida de carga: 0.30 m.c.a.	Presión de entrada: 24.66 m.c.a. Presión de salida: 24.36 m.c.a.		
N11 -> N3, (21.30, 0.43), 0.43 m	Pérdida de carga: Llave de paso 0.25 m.c.a.	Presión de entrada: 22.59 m.c.a. Presión de salida: 22.34 m.c.a.		
N21 -> N17, (22.24, 8.93), 0.38 m	Pérdida de carga: Llave de paso 0.25 m.c.a.	Presión de entrada: 21.81 m.c.a. Presión de salida: 21.56 m.c.a.		
N3 -> N1, (21.56, 8.50), 0.29 m	Pérdida de carga: Caldera 2.50 m.c.a.	Presión de entrada: 21.88 m.c.a. Presión de salida: 19.38 m.c.a.		

Mediciones Totales

Tubos de abastecimiento		
Referencias	Longitud (m)	
PEX - 1-Ø25	28.54	
PEX - 1-Ø32	58.90	
PEX - 1-Ø20	87.63	
COBRE-Ø28	0.90	
PEX - 1-Ø16	9.70	
COBRE-Ø18	5.00	
COBRE-Ø12	25.90	

Aislam	ientos
Referencias	Longitud (m)
AISL1-10 mm	26.29

Consumos	
Referencias	Cantidad
Consumo genérico: 0.20 l/s	5
Lavabo (Lv)	6
Ducha (Du)	3
Inodoro con cisterna (Sd)	5

Elementos			
Referencias	Cantidad		
Llave de paso	2		
Caldera	1		

Llaves en consumo 19

Llaves generales		
Referencias Cantidad		
Llave general	1	

Contadores		
Referencias	Cantidad	
Contador	1	

4.8 ANEXOS DE CÁLCULO DE LA INSTALACIÓN DE VAPOR DE AGUA.

Vamos a dimensionar los distintos tramos de acuerdo al reglamento de aparatos a presión de acuerdo al material escogido (acero al carbono, con una rugosidad de 0.0450mm)

Tramo 1

Longitud (m)	Caudal(kg/h)	Elevación (m)	Presión (bar)	
35	80	8	8	
Flujo	Reynold	Factor de fricción	Velocidad del fluido	Dmin interno (mm)
Turbulento	1130231	0.014	49	225

Tramo 2

Longitud (m)	Caudal(kg/h)	Elevación (m)	Presión (bar)	
25	4400	4	8	
Flujo	Reynold	Factor de fricción	Velocidad del fluido	Dmin interno (mm)
Turbulento	8231231	0.014	41	185

Tramo 3

Longitud (m)	Caudal(kg/h)	Elevación (m)	Presión (bar)	
20	3200	4	8	
Flujo	Reynold	Factor de fricción	Velocidad del fluido	Dmin interno (mm)
Turbulento	6764212	0.015	39	154

Tramo 4

Longitud (m)	Caudal(kg/h)	Elevación (m)	Presión (bar)	
6	800	4	8	
Flujo	Reynold	Factor de fricción	Velocidad del fluido	Dmin interno (mm)
Turbulento	2874251	0.017	30	96

El resto de tramos son menos desfavorables que estos, con lo que pondremos los conductos por el lado de la seguridad para el resto de la red, quedando así adecuadamente justificada.