CAPÍTULO 6

ANÁLISIS DE LA RESPUESTA TRIDIMENSIONAL AEROLÁSTICA DEL PUENTE DEL GREAT-BELT.

6.1. Método de los elementos finitos.

El método de los elementos finitos (MEF en castellano o FEM en inglés) es un método numérico general para la resolución de ecuaciones diferenciales muy utilizado en diversos problemas de ingeniería y física.

El método se basa en dividir el cuerpo, estructura o dominio (medio continuo) sobre el que están definidas ciertas ecuaciones integrales que caracterizan el comportamiento físico del problema en una serie de subdominios no intersectantes entre sí denominados elementos finitos. El conjunto de elementos finitos forma una partición del dominio también denominada discretización. Dentro de cada elemento se distinguen una serie de puntos representativos llamados nodos. Dos nodos son adyacentes si pertenecen al mismo elemento finito, además un nodo sobre la frontera de un elemento finito puede pertenecer a varios elementos, el conjunto de nodos considerando sus relaciones de adyacencia se llama malla (mesh en inglés). Los cálculos se realizan sobre una malla o discretización creada a partir del dominio con programas especiales llamados generadores de mallas, en una etapa previa a los cálculos que se denomina pre-proceso. De acuerdo con estas relaciones de adyacencia o conectividad se relaciona el valor de un conjunto de variables incógnitas definidas en cada nodo y denominadas grados de libertad. El conjunto de relaciones entre el valor de una determinada variable entre los nodos se puede escribir en forma de sistema de ecuaciones lineales (o linealizadas), la matriz de dicho sistema de ecuaciones se llama matriz de rigidez del sistema. El número de ecuaciones de dicho sistema es proporcional al número de nodos.

Típicamente el método de los elementos finitos, se programa computacionalmente para calcular el campo de desplazamientos y posteriormente a través de relaciones cinemáticas y constitutivas las deformaciones y tensiones respectivamente, cuando se trata de un problema de mecánica de sólidos deformables o más generalmente un problema de mecánica de medios continuos. El método de los elementos finitos es usado enormemente debido a su generalidad y a la facilidad de introducir dominios de cálculo complejos (en dos o tres dimensiones). Además el método es fácilmente adaptable a problemas de difusión del calor, de mecánica de fluidos para calcular campos de velocidades y presiones (fluidodinámica CFD) o de campo electromagnético. Dada la imposibilidad práctica de encontrar la solución analítica de estos problemas, con frecuencia en la práctica ingenieril los métodos numéricos, y en particular los elementos finitos se convierten en la única alternativa práctica de cálculo.

Una importante propiedad del método es la convergencia, si se consideran particiones de elementos finitos sucesivamente más finas la solución numérica calculada generalmente converge más rápidamente hacia la solución exacta del sistema de ecuaciones.

Software de cálculo utilizado. STRAUS7 Release 2.3.

Straus7 ha sido desarrollado por Strand7 en Australia (Sydney), y fuera de la Unión Europea y en Inglaterra es comercializado como Strand7. Es un programa de elementos finitos, destinado al uso estructural civil y mecánico.

Con Straus7 podemos realizar los siguientes análisis.

- Linear Static (Estático lineal).
- Linear Buckling Analysis (Análisis de pandeo lineal).
- Dynamic Analysis (Análisis dinámico).
- Nonlinear Static and Dynamic solver (Solución estática y dinámica no lineal)
- Steady State and Transient Heat solver (Solución de calor de régimen permanente y transitorio)

6.2. Puente colgante sobre el estrecho del Great-Belt.

El Great-Belt es un estrecho situado en Dinamarca, entre las islas de Funen y Zealand, y mide aproximadamente catorce kilómetros. El 14 de Junio de 1998 se abrió al tráfico esta vía de comunicación cuyo elemento más destacado es el puente colgante del sector Este. En la figura 6.2.1 se muestra la ubicación del puente, mientras que en la figura 6.2.2 se muestra una espléndida imagen del mismo.

Figura 6.2.1. Ubicación del puente sobre el estrecho del Great-Belt

Figura 6.2.2. Fotografía del puente del Great-Belt

El diseño del puente corrió a cargo de la empresa consultora COWI ^[C2], caracterizándose por la continuidad del tablero bajo las torres, por una gran relación entre la flecha de los cables principales y la longitud del vano central (1/9), por la estudiada geometría del cajón en sección aerodinámica del tablero y, en general, por una especial atención al impacto ambiental. Dentro de los estudios aerodinámicos realizados sobre este puente, destacan los de Larsen^[L1] en 1993, previos al diseño final del tablero.

6.3. Modelo del puente colgante del Great-Belt con elementos finitos monodimensionales.

Para el estudio de la respuesta tridimensional aerolástica del puente colgante se ha realizado un modelo simplificado de elementos finitos monodimensionales (elementos beam). Dicho modelo consta de las siguientes partes:

- Tablero.
- Pilas.
- Catenaria central.
- Catenarias laterales.
- Tirantes.
- Elementos link.

El modelo incluye:

- 219 nodos.
- 216 beams.
- 84 rigid links.

El tablero, las catenarias y los tirantes están realizados de acero estructural con las siguientes características:

- Módulo elástico: 2·10¹¹ Pa
- Módulo de Poisson: 0.25
- Densidad: 7850 Kg. /m³.

Esquematización del tablero.

El tablero se modela con elementos beam con las siguientes características:

- Momento de inercia a flexión vertical: $I_v = I_{11} = 4.0 m^4$.
- Momento de inercia a flexión lateral: $I_z = I_{22} = 100.0 m^4$.
- Momento de inercia a torsión: $J = 7.6 m^4$
- Área de la sección: $1.9439 m^2$

El modelo del tablero consta de 41 nodos y 40 beams, distribuidos de la siguiente forma:

- Los vanos laterales vienen constituidos por 10 beams (11 nodos), de una longitud cada uno de 53.5m.

- El vano central lo forman 20 beams (21 nodos), de una longitud cada uno de 81.2m.

Esquematización de las pilas.

Formada cada una por 2 elementos estructurales verticales con las vinculaciones adecuadas.

Cada uno de estos elementos verticales tiene las siguientes características:

- Momento de inercia a flexión vertical: $I_y = I_{11} = 303.75 m^4$.
- Momento de inercia a flexión lateral: $I_z = I_{22} = 93.75 m^4$.

- Momento de inercia a torsión: $J = 249.77 m^4$
- Área de la sección: 45.0 m²

North Contraction of the second secon Real Providence

Figura 6.3.1. Modelo de elementos beam del puente del Great-Belt

6.4. Propiedades geométricas y mecánicas del Great-Belt.

Longitud del vano central (m)	1624.0
Longitud de los vanos laterales (m)	535.0
Flecha de los cables principales (m)	180.0
Distancia entre los cables principales (m)	27.0
Anchura total del tablero (m)	31.0
Canto del tablero (m)	4.40
Sección de cada cable principal (m ²)	0.4
Masa de cada cable principal (T/m)	3.74
Momento de inercia a flexión vertical del tablero Iy (m ⁴)	4.0
Momento de inercia a flexión lateral del tablero Iz (m ⁴)	100.0
Momento de inercia a torsión del tablero J (m ⁴)	7.6
Masa del tablero (T/m)	15.26
Momento polar de inercia del tablero (Tm ² /m)	1106.8

Tabla 6.4.1. Propiedades geométricas y mecánicas del Great-Belt.

En Straus7 la correspondencia de las inercias es: $I_{11} = Iy$; $I_{22} = Iz$

El área de la sección del beam que modela el tablero se obtiene a partir de los datos anteriores, dividiendo la masa del tablero entre la densidad del acero:

Masa del tablero: 15.26 T/m

Densidad del acero: 7.85 T/m³

Área de la sección:
$$\frac{15.26}{7.85} = 1.9434 \text{ m}^2$$

 $I_{11} = Iy$; $I_{22} = Iz$ referencia de Straus7.

Figura 6.4.1. Dimensiones geométricas principales del puente del Great-Belt.

6.5. Análisis de las frecuencias naturales de vibración del puente.

A continuación se muestran las frecuencias naturales de vibración del puente del Great-Belt según los diferentes autores de la literatura.

Número del mode	Descripción	Nieto	Larsen	Cobo
Numero dei modo		[Hz]	[Hz]	[Hz]
1	LS	0.052	0.052	0.052
2	VS	0.096	0.1	0.099
3	VA	0.11	0.115	0.113
4	LA	0.124	0.123	0.122
5	VS	0.129	0.135	0.132
6	VA	0.175		0.179
10	VA	0.197		0.189
12	VS	0.217		0.215
13	LS	0.22	0.187	0.199
18	VS	0.248		
19	VA	0.278		
20	VS	0.286		
21	VA	0.29		
22	TS	0.295	0.278	0.275
27	VS	0.337		
28	LTA	0.351		
29	LS	0.387		
30	TA	0.392	0.383	0.353

Tabla 6.5.1. Frecuencias naturales y modos de vibración del puente del Great-Belt.

Los significados de las letras empleadas en la descripción de los modos de vibración son los siguientes:

- V: modo de vibración fundamentalmente vertical.
- L: modo de vibración fundamentalmente lateral.
- T: modo de vibración fundamentalmente torsional.
- S: modo de vibración simétrico.
- A: modo de vibración antisimétrico.

6.6. Análisis de la pretensión y de la masa no estructural en el modelo del puente.

De la bibliografía consultada no se han encontrado los datos correspondientes a las pretensiones de los tirantes del puente, ni de la masa no estructural añadida. Ambos datos tienen una influencia importante en el comportamiento dinámico del puente, por lo que se ha tratado de calcular unos valores que sean los más adecuados posibles.

Para ello se ha analizado el problema dividiendo el estudio en dos partes, primero se ha analizado el problema de las pretensiones, y posteriormente el de la masa no estructural. Para el primer estudio de las pretensiones se han aplicado diferentes combinaciones de pretensiones tanto a las catenarias principales como a los tirantes verticales, y se han comparado las frecuencias propias obtenidas con las que aparecen en la literatura. Tras realizar esta comparativa se obtiene aquella combinación de pretensiones que proporciona unas frecuencias naturales más cercanas a las reales proporcionadas por la bibliografía.

DATOS	
Relación entre diámetros	Dcatenaria = 4 Dtirante
Tensión límite catenaria y tirantes	2000 N/mm ²
Área sección catenaria	0.44 m ²
Área sección tirante	0.088 m ²
Nlim catenaria [N]	8.80E+08
Nlim tirante [N]	1.76E+08

Tabla 6.6.1. Datos geométricos y mecánicos del puente del Great-Belt.

Estudio de las pretensiones.

A continuación se muestran los valores de las pretensiones de las catenarias y de los tirantes para las 8 pruebas realizadas.

	PRETENSIONES [N]								
Prueba	Catenaria central	Catenaria lateral	Tirantes centrales	Tirantes laterales					
Prueba 1	2.20E+08	2.20E+08	4.40E+07	4.40E+07					
Prueba 2	1.76E+08	1.76E+08	3.52E+07	3.52E+07					
Prueba 3	8.80E+07	1.76E+08	3.52E+07	3.52E+07					
Prueba 4	2.64E+08	1.76E+08	3.52E+07	3.52E+07					
Prueba 5	1.76E+08	8.80E+07	3.52E+07	3.52E+07					
Prueba 6	1.76E+08	2.64E+08	3.52E+07	3.52E+07					
Prueba 7	1.76E+08	1.76E+08	1.76E+07	1.76E+07					
Prueba 8	1.76E+08	1.76E+08	5.28E+07	5.28E+07					

Tabla 6.6.2. Valores de las pretensiones de las diferentes pruebas realizadas.

Presentamos a continuación el criterio de pretensiones que se ha adoptado. Los coeficientes que se muestran en la tabla 6.6.4, son los factores multiplicativos utilizados en el análisis no lineal. Es decir, multiplican a los axiles de referencia que se han adoptado que sean el 20% del axil límite.

	Axiles de referencia	[Newton]		
Catenaria	20% Nlim	1.76E+08		
Tirante	20% Nlim	3.52E+07		

Tabla 6.6.3. Axiles de referencia en el análisis de las pretensiones.

	COMBINACIO	NTES		
Número de Prueba	Catenaria central	Catenaria lateral	Tirante central	Tirante Lateral
Prueba 1	1.25	1.25	1.25	1.25
Prueba 2	1	1	1	1
Prueba 3	0.5	1	1	1
Prueba 4	1.5	1	1	1
Prueba 5	1	0.5	1	1
Prueba 6	1	1.5	1	1
Prueba 7	1	1	0.5	0.5
Prueba 8	1	1	1.5	1.5

Tabla 6.6.4. Coeficientes multiplicadores de las pruebas de pretensiones.

Figura 6.6.1. Ilustración de las pretensiones de las catenarias centrales.

Figura 6.6.2. Ilustración de las pretensiones de las catenarias laterales.

Figura 6.6.3. Ilustración de las pretensiones de los tirantes.

Número de mode	Descripción	Nieto	Larsen	Diferencia	Cobo	Diferencia
Numero de modo		[Hz]	[Hz]	[%]	[Hz]	[%]
1	LS	0.052	0.0519	-0.22	0.0522	0.39
2	VS	0.096	0.0999	4.11	0.099	3.12
3	VA	0.11	0.1151	4.61	0.1133	3.02
4	LA	0.124	0.123	-0.78	0.1218	-1.81
5	VS	0.129	0.135	4.62	0.1324	2.65
6	VA	0.175			0.1787	2.13
10	VA	0.197			0.1892	-3.94
12	VS	0.217			0.215	-0.91
13	LS	0.22	0.187	-15	0.1991	-9.5
18	VS	0.248				
19	VA	0.278				
20	VS	0.286				
21	VA	0.29				
22	TS	0.295	0.278	-5.75	0.2753	-6.67
27	VS	0.337				
28	LTA	0.351				
29	LS	0.387				
30	TA	0.392	0.3829	-2.31	0.3527	-10.03

Tabla 6.6.5. Frecuencias naturales y modos de vibración del puente del Great-Belt.

En la columna de diferencia, lo que se lleva a cabo es la diferencia porcentual de la frecuencia de cada modo de vibración de cada autor con respecto el autor Nieto.

Número de mode	Descripción	Nieto	Prueba 1	Diferencia	Prueba 2	Diferencia	
Numero de modo		[Hz]	[Hz]	[%]	[Hz]	[%]	
1	LS	0.052	0.055	5.119	0.055	5.097	
2	VS	0.096	0.111	15.104	0.111	15.521	
3	VA	0.11	0.101	-7.818	0.101	-8	
4	LA	0.124	0.131	5.242	0.13	5.161	
5	VS	0.129	0.148	14.651	0.148	14.419	
6	VA	0.175	0.184	5.086	0.182	4.171	
10	VA	0.197	0.192	-2.386	0.192	-2.589	
12	VS	0.217	0.242	11.521	0.242	11.336	
13	LS	0.22	0.221	0.636	0.196	-10.727	
18	VS	0.248	0.315	27.056	0.316	27.258	
19	VA	0.278	0.298	7.23	0.298	7.086	
20	VS	0.286	0.338	18.217	0.337	17.832	
21	VA	0.29	0.282	-2.828	0.34	17.31	
22	TS	0.295	0.298	1.051	0.283	-3.966	
27	VS	0.337	0.364	8.098	0.364	7.923	
28	LTA	0.351	0.308	-12.365	0.352	0.142	
29	LS	0.387	0.384	-0.698	0.384	-0.698	
30	TA	0.392	0.267	-32.015	0.266	-32.27	

Tabla 6.6.6. Frecuencia naturales para las pruebas de pretensión 1 y 2.

Número de mode	Descripción	Nieto	Prueba 3	Diferencia	Prueba 4	Diferencia
Numero de modo		[Hz]	[Hz]	[%]	[Hz]	[%]
1	LS	0.052	0.0549	5.577	0.0544	4.615
2	VS	0.096	0.1119	16.563	0.1105	15.104
3	VA	0.11	0.10169	-7.555	0.1009	-8.273
4	LA	0.124	0.1391	12.177	0.10129	-18.315
5	VS	0.129	0.1482	14.884	0.1301	0.853
6	VA	0.175	0.1807	3.257	0.1472	-15.886
10	VA	0.197	0.1929	-2.081 0.19708		0.041
12	VS	0.217	0.2429	11.935	0.2408	10.968
13	LS	0.22	0.2216	0.727	0.2209	0.409
18	VS	0.248	0.3166	27.661	0.3149	26.976
19	VA	0.278	0.2992	7.626	0.2966	6.691
20	VS	0.286	0.3361	17.517	0.338	18.182
21	VA	0.29	0.3393	17	0.3414	17.724
22	TS	0.295	0.2849	-3.424	0.2817	-4.508
27	VS	0.337	0.3651	8.338	0.3628	7.656
28	LTA	0.351	0.3034	-13.561	0.3518	0.228
29	LS	0.387	0.3845	-0.646	0.3841	-0.749
30	TA	0.392	0.2643	-32.577	0.2668	-31.939

Tabla 6.6.7. Frecuencia naturales para las pruebas de pretensión 3 y 4.

Número de modo	Descripción	Nieto	Prueba 5	Diferencia	Prueba 6	Diferencia
Numero de modo		[Hz] [Hz]		[%]	[Hz]	[%]
1	LS	0.052	0.0544	4.615	0.0548	5.385
2	VS	0.096	0.1109	15.521	0.111	15.625
3	VA	0.11	0.1006	-8.545	0.1019	-7.364
4	LA	0.124	0.13	4.839	0.1309	5.565
5	VS	0.129	0.1467	13.721	0.1486	15.194
6	VA	0.175	0.18067	3.24	0.18399	5.137
10	VA	0.197	0.1908	-3.147	0.1932	-1.929
12	VS	0.217	0.2403	10.737	0.2432	12.074
13	LS	0.22	0.2207	0.318	0.2219	0.864
18	VS	0.248	0.316	27.419	0.3153	27.137
19	VA	0.278	0.2961	6.511	0.2995	7.734
20	VS	0.286	0.336	17.483	0.3382	18.252
21	VA	0.29	0.3392	16.966	0.3414	17.724
22	TS	0.295	0.2844	-3.593	0.2822	-4.339
27	VS	0.337	0.3621	7.448	0.3655	8.457
28	LTA	0.351	0.3044	-13.276	0.3071	-12.507
29	LS	0.387	0.2437	-37.028	0.2468	-36.227
30	TA	0.392	0.2651	-32.372	0.266	-32.143

Tabla 6.6.8. Frecuencia naturales para las pruebas de pretensión 5 y 6.

Número de mode	Descripción	Nieto	Prueba 7	Diferencia	Prueba 8	Diferencia
Numero de modo		[Hz] [Hz]		[%]	[Hz]	[%]
1	LS	0.052	0.0546	5.077	0.0547	5.096
2	VS	0.096	0.111	15.625	0.1109	15.521
3	VA	0.11	0.101308	-7.902	0.101311	-7.899
4	LA	0.124	0.1304	5.161	0.1304	5.161
5	VS	0.129	0.1476	14.419	0.1476	14.419
6	VA	0.175	0.1821	4.057	0.1824	4.229
10	VA	0.197	0.1918	1918 -2.64 0.1919		-2.589
12	VS	0.217	0.2416	11.336	0.2416	11.336
13	LS	0.22	0.2212	0.545	0.2213	0.591
18	VS	0.248	0.3156	27.258	0.3156	27.258
19	VA	0.278	0.2976	7.05	0.2978	7.122
20	VS	0.286	0.3369	17.797	0.337	17.832
21	VA	0.29	0.34009	17.272	0.3404	17.379
22	TS	0.295	0.2835	-3.898	0.2831	-4.034
27	VS	0.337	0.3635	7.864	0.3639	7.982
28	LTA	0.351	0.3056	-12.934	0.3059	-12.849
29	LS	0.387	0.2451	-36.667	0.3845	-0.646
30	TA	0.392	0.2653	-32.321	0.2399	-38.801

Tabla 6.6.9. Frecuencia naturales para las pruebas de pretensión 7 y 8.

Para realizar la elección de la mejor combinación de pretensiones se han realizado cuatro divisiones, que serán los cuatro puntos comparativos entre las diferentes pruebas.

Total: se tienen en cuenta todas las frecuencias propias.

- *Lateral:* sólo se tienen en cuenta las frecuencias propias de los modos de vibración fundamentalmente laterales.
- *Vertical:* sólo se tienen en cuenta las frecuencias propias de los modos de vibración fundamentalmente verticales.
- *Torsional:* sólo se tienen en cuenta las frecuencias propias de los modos de vibración fundamentalmente torsionales.
- Vpi: valor de la frecuencia propia del puente de nuestro proyecto para el modo i.

Vni: valor de la frecuencia propia del puente según el autor Nieto para el modo i.

		P1	P2	P3	P4	P5	P6	P7	P8
	∑ (Vpi-Vni) ²	0.0275	0.0312	0.0289	0.0507	0.0503	0.0505	0.0375	0.0289
Total	[∑ (Vpi-Vni)²]^0.5	0.1658	0.1767	0.1699	0.2252	0.2243	0.2248	0.1937	0.1699
Lateral	[∑ (Vpli-Vnli)²]^0.5	0.0077	0.0157	0.0230	0.1434	0.1404	0.1421	0.0075	0.0247
Vertical	[∑ (Vpvi-Vnvi)²]^0.5	0.0990	0.1109	0.1117	0.1083	0.1124	0.1099	0.1103	0.1101
Torsional	[∑ (Vpti-Vnti)²]^0.5	0.1255	0.1281	0.1259	0.1273	0.1266	0.1272	0.1526	0.1270

Tabla 6.6.10. Resultados de las pruebas de pretensiones.

Tal y como se ha señalado, la combinación de pretensiones de la prueba 1 es la más adecuada, ya que se obtienen las diferencias más pequeñas con respecto a los valores de referencia del autor Nieto.

Estudio de la masa no estructural añadida.

A continuación se muestran los resultados de las frecuencias propias obtenidas para las combinaciones de la masa no estructural. Estas pruebas de adicción de masa se han llevado a cabo sobre el modelo de pretensiones de la prueba 1, que tal y como se ha visto anteriormente era la más adecuada.

Figura 6.6.4. Ilustración de la masa añadida no estructural sobre el tablero.

Número	Descripción	Nieto	Prueba 1 +5T	Diferencia	Prueba 1 +10T	Diferencia
de modo		[Hz]	[Hz]	[%]	[Hz]	[%]
1	LS	0.052	0.0523	0.577	0.0505	-2.885
2	VS	0.096	0.1079	12.396	0.1056	10
3	VA	0.11	0.1011	-8.091	0.1006	-8.545
4	LA	0.124	0.1226	-1.129	0.1053	-15.081
5	VS	0.129	0.1458	13.023	0.144	11.628
6	VA	0.175	0.1836	4.914	0.1824	4.229
10	VA	0.197	0.1896	-3.756	0.1875	-4.822
12	VS	0.217	0.2373	9.355	0.2335	7.604
13	LS	0.22	0.2031	-7.682	0.18899	-14.095
18	VS	0.248	0.2918	17.661	0.2788	12.419
19	VA	0.278	0.3294	18.489	0.28689	3.198
20	VS	0.286	0.3326	16.294	0.3225	12.762
21	VA	0.29	0.2862	-1.31	0.3253	12.172
22	TS	0.295	0.2948	-0.068	0.2908	-1.424
27	VS	0.337	0.3531	4.777	0.3447	2.285
28	LTA	0.351	0.311	-11.396	0.3135	-10.684
29	LS	0.387	0.3525	-8.915	0.3535	-8.656
30	ТА	0.392	0.2773	-29.26	0.2867	-26.862

Tabla 6.6.11. Frecuencias naturales para las pruebas de masa no estructural de 5 y 10 Tn/m.

Número de	Descripción	Nieto	Prueba 1 +15T Diferencia		Prueba 1 +20T	Diferencia
modo		[Hz]	[Hz]	[%]	[Hz]	[%]
1	LS	0.052	0.0491	-5.577	0.0478	-8.077
2	VS	0.096	0.1035	7.812	0.1063	10.729
3	VA	0.11	0.1001	-9.000	0.0995	-9.545
4	LA	0.124	0.1137	-8.306	0.1114	-10.161
5	VS	0.129	0.1425	10.465	0.1411	9.380
6	VA	0.175	0.1809	3.371	0.1793	2.457
10	VA	0.197	0.1858	-5.685	0.1843	-6.447
12	VS	0.217	0.2302	6.083	0.2272	4.700
13	LS	0.22	0.1779	-19.136	0.1692	-23.091
18	VS	0.248	0.2661	7.298	0.2558	3.145
19	VA	0.278	0.2829	1.763	0.2795	0.540
20	VS	0.286	0.3167	10.734	0.3117	8.986
21	VA	0.29	0.3191	10.034	0.3138	8.207
22	TS	0.295	0.2944	-0.203	0.2976	0.881
27	VS	0.337	0.3381	0.326	0.3327	-1.276
28	LTA	0.351	0.3259	-7.151	0.3372	-3.932
29	LS	0.387	0.3471	-10.310	0.3212	-17.003
30	ТА	0.392	0.2828	-27.857	0.3032	-22.653

Tabla 6.6.12. Frecuencias naturales para las pruebas de masa no estructural de 15 y 20 Tn/m.

		P1	P1+ 5T	P1 +10T	P1 +15T	P1 +20T
_	∑ (Vpi-Vni) ²	0.0275	0.1084	0.0194	0.0188	0.0171
Total	[∑ (Vpi-Vni)²]^0.5	0.1658	0.3293	0.1394	0.1373	0.1309
Lateral	[∑ (Vpli-Vnli)²]^0.5	0.0077	0.0384	0.0494	0.0590	0.0842
Vertical	[∑ (Vpvi-Vnvi) ²]^0.5	0.0990	0.0721	0.0670	0.0530	0.0442
Torsional	[Σ (Vpti-Vnti) ²]^0.5	0.1255	0.1150	0.1054	0.1092	0.0888

Tabla 6.6.13. Resultados de las pruebas de masa no estructural.

En la tabla 6.6.13 se visualizan los resultados de las diferentes pruebas de masa no estructural añadida. Se observa que las diferencias más pequeñas con las frecuencias propias de referencia del autor Nieto, se obtienen para una masa no estructural de 20 T/m. Por tanto el modelo sobre el cuál se realizará el estudio aeroelástico tendrá los valores de pretensiones de la prueba 1 y con una masa añadida de 20 Tn/m.

A continuación se ilustrarán los modos de vibración del modelo adoptado, es decir, con los valores de las pretensiones de la prueba 1 y con una masa añadida no estructural de 20 Tn/m.

Modo 1. LS. f = 0.0478 Hz.

Modo 2. VS. f = 0.1063 Hz.

Modo 4. LA. f = 0.1114Hz.

Modo 5. VS. f = 0.1411 Hz.

Modo 6. LA. *f* = 0.1793Hz.

Modo 12. VS. f = 0.2272Hz.

Modo 13. LS. *f*=0.1692Hz.

Modo 19. VA. *f*=0.2795Hz.

Modo 20. VS. *f* = 0.3117Hz.

المال

Modo 22 . TS. f = 0.2976Hz.

Modo 27. VS. f = 0.3327Hz.

Modo 28. LTA. *f* = **0.3372Hz**.

Modo 29. LS. *f* = 0.3212Hz.

Modo 30. TA. f = 0.3032Hz.

6.7. Resultados de la respuesta aeroelástica del modelo tridimensional del puente.

Para obtener la respuesta aeroelástica del modelo del puente tridimensional, se ha llevado a cabo un procedimiento en lenguaje Pascal haciendo uso de la programación API de Straus7.

A continuación se muestran los resultados de los desplazamientos laterales, verticales y de rotación del nodo central del tablero (nodo 21) del modelo del puente con un factor de amortiguamiento del 1%, cuando se le somete a un viento de una velocidad de 90 m/s que sigue una evolución temporal tal y como se muestra en la figura 6.7.1.

Figura 6.7.1. Evolución temporal del viento.

Figura 6.7.2. Desplazamientos laterales del tablero, nodo central (21).

Figura 6.7.3. Desplazamientos verticales del tablero, nodo central (21).

Figura 6.7.4. Desplazamientos de rotación del tablero, nodo central (21).

Se puede observar como en las figuras anteriores que representan los desplazamientos del nodo central (21) con la evolución temporal del viento, se empiezan a amplificar los desplazamientos y rotaciones, alcanzándose la inestabilidad aeroelástica de flameo.

En la figura 6.7.3 se aprecia como para el instante de tiempo inicial ya existe un desplazamiento vertical negativo del nodo central, esto se debe a la flecha de la estructura debido a las cargas permanentes.