Índice general

1.	\mathbf{Intr}	oducción	13
	1.1.	Introducción.Conformado de chapa por estirado	13
		1.1.1. Comportamiento plástico de la chapa	15
	1.2.	Criterios de fractura dúctil	25
	1.3.	Motivación	27
	1.4.	Objetivos del proyecto	28
2.	Aná	disis Experimental	31
	2.1.	Determinación de las propiedades del material. Anisotropía	31
	2.2.	Planificación de los ensayos de estirado	33
	2.3.	Ensayos de estirado. Geometría y lubricación	39
	2.4.	Medida de las deformaciones	41
	2.5.	Determinanción del FLDF. Resultados	42
		2.5.1. Rozamiento	42
		2.5.2. Diagramas Límites de Conformado en Fractura	44
3.	Aná	disis Numérico	45
	3.1.	Discusión del problema	45
	3.2.	Simulación numérica del problema. Datos del material	46
	3.3.	Geometría de los elementos. Módulo Part	48
	3.4.	Propiedades del material. Módulo Property	52
	3.5.	El ensamblado del conjunto. Módulo Assembly	53
	3.6.	Secuencia de pasos. Módulo Step	54
	3.7.	Interacciones entre elementos. Módulo Interaction	55
	3.8.	Cargas y condiciones de contorno. Módulo Contact	57
	3.9.	Mallado de los componentes. Módulo Mesh	60
	3.10.	El módulo Job	63
	3.11.	Tratamiento de los resultados. El módulo Visualization	64
4.		ultados	67
		Obtención de los FLDs empleando $ARAMIS$	68
	4.2.	Obtención de los FLDs empleando $ABAQUS$	79
5.		clusiones. Desarrollos futuros	91
	5.1.	Modelo de elementos finitos	91
	5.2.	Desarrollos futuros	92
		5.2.1. El estudio de la flexión	92
		5.2.2. Otros modelos para predecir al estricción	03

4 ÍNDICE GENERAL

6.	THICKO II	97
	6.1. Otros resultados	97
	6.1.1. Gráficas. Predicción FLDF por <i>ABAQUS</i>	97
	6.1.2. Gráficas. Extricción	102
	6.1.3. Gráficas. Evolución de la variable epsilon II	105
7.	Anexo B	L 0 9
	7.1. Constantes de los criterios	109
8.	Anexo C: ARAMIS y LabVIEW.	L 1 3
	8.1. Captación y Procesamiento de datos. LabVIEW	113
	8.2. Proceso de videogrametría. El programa Aramis	115
9.	Bibliografía 1	121