Índice general

	_			3		
1.	Intr	roducción				
	1.1.	El problema de rendezvous				
	1.2.	La mis	sión	4		
	1.3.	3. Ecuaciones del problema				
		1.3.1.	Ecuaciones para la trayectoria	8		
		1.3.2.	Ecuaciones para la orientación	10		
			1.3.2.1. Ecuaciones cinemáticas	10		
			1.3.2.2. Ecuaciones dinámicas	11		
2.	Mod	Modelo del problema del centro de masas				
	2.1.	Formu	lación en el espacio de estados	14		
	2.2.	Tratar	niento del tiempo muerto	15		
	2.3.	Formu	lación de las restricciones	16		
	2.4.	Model	o de control predictivo (MPC)	17		
		2.4.1.	Predicción del estado	17		
		2.4.2.	Función objetivo	18		
		2.4.3.	Expresión de las restricciones	19		
		2.4.4.	Cálculo de la señal de control	20		
		2.4.5.	Formulación robusta del problema	22		
		2.4.6.	Estimación de perturbaciones	24		
3.	El p	roblen	na plano	26		
	3.1.	Trayec	etoria: definición del problema	26		
	3.2.	Orient	ación	28		
	3.3.	Resultados				
		3.3.1.	Solución con $\delta = 0$	36		
		3.3.2.	Variación con γ	38		
		3.3.3.	Variación con las condiciones iniciales	39		
		3.3.4.	Variación con la excentricidad	44		
		3.3.5.	Variación con el tiempo de paso por perigeo	49		

	3.4.	Conclusiones	51				
4.	El problema 3D						
	4.1.	Introducción. Trayectoria	52				
	4.2.						
	4.3.	Resultados	56				
		4.3.1. Trayectoria	56				
		4.3.2. Orientación	61				
		4.3.2.1. Variación con el momento de saturación	67				
		4.3.2.2. Variación con la inercia de las ruedas	71				
		4.3.2.3. Variación con las perturbaciones	72				
	4.4.	Conclusiones					
5.	Extensiones del método de control						
	5.1.	1. Norma L1					
	5.2.	Cono de visión	77				
		Resultados					
		Conclusiones					
6.	Con	iclusiones y trabajo futuro	86				