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Chapter 1

Introduction

Titanium alloys have been widely used in aerospace applications over the
latter half of the 20th century. Corrosion resistance and reduced density
represent some their advantages in comparison to steels, which dominated
the early engine designs [Bache, 2003].

Capable of operating at elevated temperatures, near α and α/β titanium
alloys are suitable for critical rotating components such as discs or blades,
which experience demanding, principally cyclic loading conditions. Figure 1.1
illustrates the typical loading regimes for gas turbine components [Rugg et al.,
2007].

Despite being in used for the last 50 years, significant gaps in our knowledge
exist. The specific phenomenon of ambient temperature dwell sensitivity
was first observed in 1972. It was shown that the introduction of a hold
time at high mean stress could reduce the fatigue life of a component by
over an order of magnitude [Bache et al., 1997]. Attempts to reproduce the
relations between structure, texture and mechanical properties have not still
been successful.
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1. Introduction

Figure 1.1: Loading regimes for critical parts in a gas turbine engine [Rugg
et al., 2007].

However, it is becoming increasingly recognised that lifetime is dominated
by faceting, that is, micro-crack development at a length of about the grain
size, related to the probability of regions containing “weak” and “strong”
crystallographic combinations.

Crystal plasticity is instrumental in understanding cold dwell fatigue and
facet formation. Models of polycrystals containing sets of grains with par-
ticular lattice orientations permit systematic studies, aiming to explain the
observed behaviour [Dunne et al., 2007b,c, Manonukul and Dunne, 2004].

The present work is conducted in partnership with Rolls-Royce plc, devel-
oped in the context of Ti alloys used for gas turbine components. Rolls-Royce
has active programmes on crystal plasticity modelling. A physically-based,
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1. Introduction

lengthscale- and rate-dependent, elastically anisotropic crystal plasticity for-
mulation, derived by Dunne et al. [2007a], implemented in the commercial FE
package ABAQUS, is employed to further investigate crystallography effects
and failure of the near α alloy Ti-6Al.

The crystal plasticity model is described in the following chapter of this
report, followed by a description of its implementation into ABAQUS code,
in Chapter 3. Crystallographic orientation effects are assessed in Chapter 4.
In addition, lengthscale influence and its interaction with microstructure are
analysed. Chapter 5 addresses failure under monotonic loading. Various
criteria are proposed and predictions are contrasted with experimental data.
Conclusions and further work are presented in the closing Chapter 6.
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Chapter 2

Review and implementation of
crystal plasticity for the uniaxial
load case

This section briefly introduces the origins of yield and plastic flow. The
classic concepts of crystal slip, slip systems and Schmid’s law are reviewed.
A physically-based, lengthscale- and rate-dependent, elastically anisotropic
crystal plasticity formulation, derived by Dunne et al. [2007a], is subsequently
addressed. The constitutive equations of this model are integrated under
both explicit and implicit schemes for a uniaxial case. A comparison of the
results is reported at the end of the section.

2.1 Crystal plasticity

The evidence of crystal slip being the origin of plasticity comes from me-
chanical tests carried out on single crystals of metals [Cottrell, 1949]. The
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2. Crystal Plasticity 2.2. Crystal slip in HCP near-alpha Ti-6Al

slip occurs on planes resulting from many hundreds of dislocations running
through the crystal and emerging at the edge.

Observations on single crystals show that slip tends to occur preferentially
on certain planes and in certain specific crystal directions. These tend to be
the most densely packed planes or slip planes, and in the directions in which
the atoms are packed closest together, or slip directions [Dunne and Petrinic,
2005].

2.2 Crystal slip in HCP near-alpha Ti-6Al

The alloy considered in the present work is the near-alpha titanium alloy
Ti-6Al. It is mostly composed of single HCP α-phase, so that the BCC
β-phase can be neglected.

There is some evidence that in these alloys, slip occurs predominantly on the
basal [Williams et al., 2002] and prismatic [Neeraj et al., 2000, Suri et al.,
1997] planes, since the resolved shear stress necessary to cause slip on the
pyramidal plane is much higher than that on the other planes.

Assuming the inactivity of the pyramidal planes, the basal and prismatic slip
planes and directions, shown in Fig. 2.1, define six slip systems, collected in
Table 2.1.

2.2.1 Schmid’s law

Schmid postulated that slip would take place in a given slip system, when
the resolved shear stress τ , on the slip plane in the slip direction reached a
critical value [Dunne and Petrinic, 2005]. When a single crystal is subjected
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2. Crystal Plasticity 2.2. Crystal slip in HCP near-alpha Ti-6Al

z
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Figure 2.1: Schematic of the HCP unit cell showing the possible slip planes.

to a stress σ, the shear stress component resolved on the slip plane of normal
vector n, in the slip direction s is given by

τ = (σn) · s. (2.1)

Considering a uniaxial load applied in the direction t, parallel to the y-axis,
Figure 2.2, the stress can be written as follows:

σ =

 0 0 0

0 σ22 0

0 0 0

 . (2.2)
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Table 2.1: HCP crystal basal and prismatic slip systems

Then the resolved shear stress can be calculated from Eq. 2.1:

τ = σ22 n2 s2, (2.3)

or
τ = σ22 cosφ cosλ ≡ σ(t · n)(t · s), (2.4)

where φ and λ are the angles that the slip plane normal, n, and slip direc-
tion, s, form with the loading axis, respectively. The factor cosφ cosλ is
known as the Schmid factor.

2.2.2 Crystal plasticity constitutive equations

In order to calculate the slip rate on the slip planes, a constitutive equation
is required. Dunne et al. [2007a] derived a physically-based, lengthscale-
and rate-dependent, elastically anisotropic crystal plasticity model, which is
based upon dislocation glide and pinning.

Material hardening is considered to be controlled by the total density of dis-
locations, which includes statistically stored (SSDs), and geometrically nec-
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2. Crystal Plasticity 2.2. Crystal slip in HCP near-alpha Ti-6Al
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Figure 2.2: A single crystal containing a slip plane with normal n and slip
direction s, loaded in direction t.

essary dislocations (GNDs). Both types are generated, move and are stored
when a crystal is plastically deformed. However, the former are stored by
trapping each other randomly while the latter are required for compatible
non-uniform plastic deformation [Fleck et al., 1994]. GNDs do not contribute
to plastic strain because of their sessile nature, but induce additional hard-
ening by hindering the movement of mobile SSDs [Gao and Huang, 2003].

Plastic strain gradients may arise because of the geometry of the loading or
because of the inhomogeneity of the material itself. Thus, the mismatch of
slip bands at the grain boundaries or the presence of hard, non-deforming
particles generate gradients of plastic strain with subsequent formation of
GNDs leading to gradient strain hardening.
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2. Crystal Plasticity 2.2. Crystal slip in HCP near-alpha Ti-6Al

According to Dunne et al. [2007a], the plastic velocity gradient is given by

Lp =
∑
κ

ρ b2ν exp

(
−∆F

kT

)
sinh

(
(τκ − τc − r)b2

kT
√
ρ+ ρG

)
sκ ⊗ nκ, (2.5)

on the basis of planar slip occurring through release and pinning of gliding,
statistically stored dislocations with density ρ and an activation energy ∆F .
ν is the frequency of attempts, successful or otherwise, of dislocations to jump
energy barriers; k the Boltzman constant; T the absolute temperature; τκ the
resolved shear stress on system κ; τc the critical resolved shear stress and sκ
and nκ are the direction and normal associated with the κth slip system,
respectively. The activation volume is b2l, where l is the mean free distance
between dislocations, l = 1/

√
ρ+ ρG, and b the Burger’s vector magnitude.

The density of GNDs is geometrically dependent, thus giving rise to a lengthscale-
dependent slip rule. Busso et al. [2000] showed that the incremental evolution
of ρG on the κth slip plane with normal n may be written as

∆ρκG =
∆γκ

b
curl[nκF p], (2.6)

where the slip rate, ∆γκ, is given by Eq. 2.5, taking into account that

Lp =
∑
κ

γ̇κsκ ⊗ nκ.

GNDs on the κth slip system can be represented as the screw dislocation line
segments parallel to the slip direction s, and the edge dislocation line seg-
ments having directions in the plane normal n and directionsm (m = s× n),
such that ∑

κ

(∆ρκenn+ ∆ρκemm+ ∆ρκs s) =
∑
κ

∆ρκG =
∑
κ

∆ρG, (2.7)

where the densities developing on all the active slip systems are summed up
and assumed to exist on all slip systems. In doing so, the influence of the
active slip system on the hardening of the inactive slip systems, that is, latent
hardening, is included in a simple way.
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2. Crystal Plasticity 2.3. Implicit and explicit integration

The the slip-resistance contribution due to SSDs is included by means of a
strain hardening parameter r, whose evolutionary law is assumed linear. The
increment of r is proportional to the accumulated plastic strain increment,

∆r = h∆p, (2.8)

where h is a constant and the accumulated slip rate, ṗ, is given by

ṗ =

√
2

3
Lp : Lp.

2.3 Implicit and explicit integration

Implicit finite-element methods are considerably robust and can prove advan-
tageous when the stress and deformation paths remain nearly proportional.
Under these conditions, implicit methods can significantly speed up the cal-
culations by enabling the use of larger time steps than otherwise permitted
by their explicit counterpart [Cuitiño and Ortiz, 1993]. On the other hand,
the number of iterations required to solve a stiff set of equations may be
considerably large [Kuchnicki et al., 2006].

This section describes the implementation of the crystal plasticity model
introduced above, using both explicit and implicit formulations. In order to
do so, a single HCP unit cell, subjected to a uniaxial load is considered. A
strain parallel to the y-axis is applied, at a constant strain rate, during a
certain time period. The crystal position is established to be the reference
configuration described in Section 2.2, Table 2.1.
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2. Crystal Plasticity 2.3. Implicit and explicit integration

2.3.1 Explicit Formulation

Given a time increment, ∆t, and a strain rate, ε̇, the stress and strain at the
end of the interval are

σ(t+1) = σ(t) + σ̇∆t and
ε(t+1) = ε(t) + ε̇∆t,

where
σ̇ = E(ε̇− ε̇p). (2.9)

The plastic strain rate, ε̇p in Eq. 2.9, is calculated from the proposal of Dunne
et al. [2007a], reduced for one dimension:

ε̇p =
∑
κ

α sinh(β(τκ − τc))sκnκ, (2.10)

in which α and β are just groupings of the material properties given in
Eq. 2.5, while nκ and sκ are the components of the normal and slip directions
in the y-axis, respectively. The resolved shear stress is given by Schmid’s
law, Eq. 2.3.

It is important to notice that ε̇p is taken as the plastic strain rate at the
end of the previous time increment and it is assumed constant. This fact
precludes large time increments, as in this case, the calculated stress would
not be accurate enough. In this analysis, the loading history is divided into
1000 steps.

The material properties arising in Eq. 2.9 are collected in Table 2.2. The
critical resolved shear stress, τc, and the Helmholtz free energy, ∆F , rep-
resent the macroscale, uniaxial, rate-dependent stress-strain response of the
titanium alloy at room temperature, [Hasija et al., 2003]. The density of
the GNDs is not updated, so that strain hardening is not activated. On the
other hand, Schmid’s law predicts first slip on the first and third prismatic
slip planes, at a stress level of 600.4 MPa.
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2. Crystal Plasticity 2.3. Implicit and explicit integration

τc [MPa] b [m] k [JK−1] ∆F [J]
260 2.5× 10−10 1.38× 10−23 11.71× 10−20

ν [s−1] ρ [m−2] ρG0 [m−2]
5.0× 1019 1.0× 1010 23.9× 103

Table 2.2: Material properties of alloy Ti-6Al at room temperature

The stress obtained is plotted against the total strain in Figure 2.3. The yield
point is observed at around 600 MPa, matching the expected value. Further-
more, no hardening is shown in the plastic period, proving the legitimacy of
this approach.

2.3.2 Implicit Formulation

The implicit formulation implemented here is that followed by Dunne et al.
[2007a], except for it has been specialised for just one dimension. This has
been done by simply substituting the tensor and vector quantities by the
appropriate component. In this study, an imposed deformation is applied
along the y-axis. Therefore, the only components of interest are σ22 and
ε22. In what follows, the subscripts have been eliminated for expediency.
Moreover, all quantities are written at the end of the time increment, unless
explicitly specified otherwise, so that σ(t+∆t), will be referred to as σ.

The stress may be expressed in terms of a trial stress, σtr, which considers
the deformation to be entirely elastic, and afterwords modified by a plastic
corrector term

σ = Eεe = E(εe
(t) + ∆εe) = E(εe

(t) + ∆ε)− E∆εp = σtr − E∆εp. (2.11)

The implicit scheme is carried out by means of a Newton-type algorithm,
which is performed until a specified residual tolerance is achieved. This

12



2. Crystal Plasticity 2.3. Implicit and explicit integration

residual is defined as

Ψ = σ − σtr + E∆εp = 0, (2.12)

which differentiated gives

δΨ = δσ − δσtr + Eδ∆εp = 0. (2.13)

The differential of the plastic strain increment, δ∆εp, is again calculated from
Dunne’s model, which for one dimension takes the form of Eq. 2.10, so

δ∆εp = δ

(∑
κ

α sinh(β(τκ − τc))∆tsκnκ
)

=
∑
κ

αβ cosh(β(τκ − τc))∆tsκnκδτκ, (2.14)

in which α and β are just groupings of the material properties given in
Eq. 2.5, while nκ and sκ are the components in the y-axis of the normal and
slip directions respectively.

In order to obtain δτκ, Schmid’s law for the uniaxial case, Eq. 2.3, is differ-
entiated

δτκ = δσsκnκ. (2.15)

Introducing then Eq. 2.15 into Eq. 2.14 one obtains

δ∆εp =
∑
κ

αβ cosh(β(τκ − τc))∆t(sκnκ)2δσ ≡ Pδσ, (2.16)

which substituted into Eq. 2.13 gives

δΨ = δσ − δσtr + EPδσ = [1 + EP ]δσ, (2.17)

as σtr is fixed during the iteration.

Newton algorithm scheme states that

Ψ +
∂Ψ

∂σ
δσ = [σ − σtr + E∆εp] + [1 + EP ]δσ = 0,

13



2. Crystal Plasticity 2.3. Implicit and explicit integration

so the stress can be updated iteratively by

δσ = [1 + EP ]−1

{
σ − σtr + E

(∑
κ

α sinh(β(τκ − τc))∆tsκnκ
)}

,

with
σ(n+1) = σ(n) + δσ,

until the specified tolerance is reached

|Φ| = |σ − σtr + E∆εp| ≤ 10−12

As mentioned before, this procedure permits a larger time increment to be
employed, which means that the total strain may be applied in only a few
steps. Therefore, this simulation has been implemented for 1000, 100 and
just 10 time increments, resulting in identical values of stress and strain. The
stress-strain curves, obtained from the implicit integration, lay over that from
the explicit scheme, as depicted in Figure 2.3.

It may be concluded, therefore, that both schemes provide satisfactory so-
lutions, which fit the theoretical values. In addition, the advantages of the
implicit integration are proved by setting a time increment up to ten times
longer.

14



2. Crystal Plasticity 2.3. Implicit and explicit integration

Explicit vs. Implicit Formulations 
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Figure 2.3: Implementation of crystal plasticity for the uniaxial loading case.
Comparison between implicit and explicit formulations. (The curves plotted
in solid lines overwrite one another)
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Chapter 3

Implementation of crystal
plasticity into FE code

The implementation of crystal plasticity into numerical analysis is done
by means of an ABAQUS-Standard user-defined finite element subroutine
(UEL). This section gives a summary of the finite element implicit integra-
tion algorithm and how it is transferred into ABAQUS.

3.1 Finite Element implicit integration scheme

A Finite Element implicit integration is based on a residual, r, defined as
the difference between the internal and external forces applied to the sys-
tem [Zienkiewicz, 1977, Fenner, 1975], such that

r = f int − f ext.

A Newton iteration is performed until a specified tolerance is reached. The

16



3. FE Implementation 3.1. Finite Element implicit integration scheme

displacements are then updated according to:

r +
∂r

∂u
∆u = 0 ⇒ ∆u = −

[
∂r

∂u

]−1

r ⇒ u(n+1) = u(n) + ∆u.

Furthermore, in the absence of external forces, the residual vector equals the
internal force vector, which may be expressed as

r = f int =

∫
BTσdV =

∫
BT [σt +Cep∆ε] dV , (3.1)

where the stress has been written in terms of the elastic-plastic tangent stiff-
ness matrix, Cep, and the stress at the beginning of a given time incre-
ment, σt.

Differentiating this equation and taking into account that ε = Bu, gives

δf int =

∫
BT [δσt +Cepδ∆ε] dV =

∫
BTCepBdV δu,

so the Jacobian may be finally be obtained from

J =
∂f int

∂u
=

∫
BTCepBdV . (3.2)

It may be concluded, therefore, that both the residual, r, and its Jaco-
bian, J = ∂r/∂u, are necessary in order to solve the boundary value prob-
lem, which implies the knowledge of the consistent elastic-plastic tangent
stiffness matrix, addressed in Section 3.2.1.

In this 3D scheme, an isoparametric element is defined by quadratic shape
functions, N , such that x = N (ξ)xN, with ξ = [ν, η, ξ]. Thus, the volume
differential is expressed as

dV = t det (J)dνdηdξ,

where t is the element thickness and J the Jacobian of the transforma-
tion, J = ∂x/∂ξ.

17



3. FE Implementation 3.2. Commercial FE package ABAQUS

In this way, the integrals of Eq. 3.1 and 3.2, are approximated as

f int = t

∫ ∫ ∫
BTσ det (J)dνdηdξ ≈ t

2∑
i=1

2∑
j=1

2∑
k=1

HiHjHkB
Tσ det (J),

(3.3)

J = t

∫ ∫ ∫
BTCepBdνdηdξ ≈ t

2∑
i=1

2∑
j=1

2∑
k=1

HiHjHkB
TCepB det (J),

(3.4)
where Hn, n = i, j, k are the Gauss integration weighting values at the inte-
gration points.

3.2 Commercial FE package ABAQUS

The implementation of user-defined materials into ABAQUS is usually done
by means of the user-defined material subroutine, (UMAT). This code com-
putes the stress at each integration point at the end of the increment while
ABAQUS performs the remaining calculations. However, the crystal plasti-
city model, described in Chapter 2, is based on the density of GNDs, which
necessitates the knowledge of the spatial gradients of the plastic deformation
gradients. This spatial gradient is calculated from the plastic deformation
at all the integration points of a given element. For this reason, a more gen-
eral subroutine is used, which includes the state of the whole element. The
ABAQUS-Standard user-defined finite element subroutine, (UEL), fulfils this
condition.

Thus, a user-defined 20-noded, reduced integration element subroutine is
developed. For each element specified as user-defined, ABAQUS calls this
subroutine when the element Jacobian or stiffness matrix and the element
residuals are required. The Gaussian integration rules, the shape functions
and the model integration scheme should be therefore defined in this subrou-
tine. In this way, ABAQUS is essentially used to solve the overall system of
equations.

18



3. FE Implementation 3.2. Commercial FE package ABAQUS

An array containing the solution dependent state variables at the start of
the current increment is passed into the UEL. These quantities are updated
to be the values at the end of the increment. However, as the state variables
are assembled into an array for the entire element, ABAQUS is not able to
generate spatial contour plots for them.

In order to view the results, an auxiliary mesh, with matching nodes, inte-
gration points and elements is laid on top of the model mesh. This auxiliary
mesh is purely needed for visualisation purposes. The state dependent vari-
ables computed by the UEL subroutine for each element are assigned to the
overlay element by means of a user defined material subroutine (UMAT),
which supports visualisation.

The function of a UMAT is to define the material behaviour. This subrou-
tine is provided with the strains at each integration point in order to update
the stresses and the solution dependent state variables to the values at the
end of the increment. Moreover, it must return the material Jacobian ma-
trix, δ∆σ/δ∆ε. For the UMAT assigned to the fictitious mesh, both the
stresses and the material Jacobian matrix are assigned null values so as not
to have any influence on the boundary value problem. The state variables
are then transferred from the UEL subroutine for each integration point.

Each time the UEL solves an element, the updated state variables are stored
in a common block, which is accessible to all subroutines. Then, when the
UMAT is called for each integration point of the overlay mesh, the variables
are extracted from the common block, so they can be plotted.

In addition, along with the code defining the subroutines, ABAQUS requires
an input file in which the boundary value problem is defined. The two meshes,
the boundary and loading conditions, the output requests and the properties
of each user defined element are included in this file.

A more detailed description of the UEL subroutine is given in the following
section.

19



3. FE Implementation 3.2. Commercial FE package ABAQUS

3.2.1 UEL algorithm

As mentioned earlier, this routine is aimed to calculate the spatial gradient
of the plastic deformation gradient, (curl[F p]), so that the consistent elastic-
plastic tangent stiffness matrix may be obtained.

In order to determine this, an internal, eight-noded, linear element is intro-
duced within each eight-noded element, such that the nodes of the former
coincide with the Gauss points of the later [Dunne et al., 2007a, Busso et al.,
2000]. The spatial derivatives may be then obtained from

∂F p

∂x
=

∂

∂x
(nF p

i ) =
∂n

∂x
F p
i =

∂n

∂α
J−1F p

i ,

in which n(α) are the linear shape functions, J the appropriate Jacobian
transformation mapping from the external to the internal elements, and F p

i the
plastic deformation gradients at each integration point.

Finally, the contribution of a given element to the residual vector, and the Ja-
cobian of the overall system of equations are approximated by Eq. 3.3 and 3.4
and returned to the main program. In order to obtain the updated stress
and the consistent elastic-plastic tangent stiffness matrix, the integration of
the constitutive equation needs to be performed as described next.

Implicit integration of the constitutive equations. The implicit inte-
gration of the constitutive equations is carried out by means of a Newton-type
algorithm, which is performed until a specified residual tolerance is achieved.

The stress is expressed in terms of a trial stress, σtr, which considers the
deformation to be entirely elastic, and afterwords modified by a plastic cor-
rector term

σ = Dεe = D
(
εe

(t) + ∆εe) = D
(
εe

(t) + ∆ε
)
−D∆εp = σtr−D∆εp, (3.5)
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3. FE Implementation 3.2. Commercial FE package ABAQUS

in which D is the global elastic stiffness matrix determined from the local
stiffness C by

D = T−1
σ CT ε,

where T σ and T ε are the rotation matrices mapping the reference crystal
coordinate system into the local one for each particular grain orientation,
detailed in Dunne et al. [2007a].

The residual is then defined as

Ψ = σ − σtr +D∆εp = 0, (3.6)

and differentiated to give

δΨ = δσ − δσtr +Dδ∆εp = 0. (3.7)

The differential of the plastic strain tensor increment, δ∆εp, described in
Chapter 2, is calculated from

δ∆εp = δsym

(∑
κ

α sinh β(τκ − τc)∆tsκ ⊗ nκ
)
,

= sym

(∑
κ

αβ cosh β(τκ − τc)∆tsκ ⊗ nκδτκ
)
, (3.8)

in which α and β are just groupings of the material properties given in Eq. 2.5,
nκ and sκ are the the normal and slip directions respectively, and δτκ is given
by

δτκ = δ(σnκ) · sκ ≡ (nκ ⊗ sκ) : δσ. (3.9)

Introducing then Eq. 3.9 into Eq. 3.8 with all tensors written in Voigt nota-
tion,

δ∆εp =
∑
κ

αβ cosh β(τκ − τc)∆t(Aκ ⊗Aκ)δσ = P δσ, (3.10)

in which Aκ = sκ ⊗ nκ.
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Substituting Eq. 3.10 into Eq. 3.7 gives

δΨ = δσ − δσtr +DP δσ = [I +DP ]δσ. (3.11)

Newton algorithm scheme states that

Ψ +
∂Ψ

∂σ
δσ = [σ − σtr +D∆εp] + [I +DP ]δσ = 0,

so the stress can be updated iteratively by

δσ = [I +DP ]−1

{
σ − σtr +Dsym

(∑
κ

α sinh β(τκ − τc)∆tAκ

)}
,

with
σ(n+1) = σ(n) + δσ,

until the specified tolerance is reached

|Ψ| = |σ − σtr +D∆εp| ≤ 10−12.

When this algorithm is completed, the consistent elastic-plastic tangent stiff-
ness matrix is finally determined.

Consistent elastic-plastic tangent stiffness matrix. From the defini-
tion of the trial stress in Eq. 3.5,

δσ = δσtr +Dδ∆εp (3.12)

In addition, the differential of the trial stress over the increment is

δσtr = δ
[
D
(
εe

(t) + ∆ε
)]
≡Dδε. (3.13)

Introducing Eq. 3.10 and 3.13 into Eq. 3.12, the consistent elastic-plastic
tangent stiffness matrix is finally given by

Cep =
∂σ

∂ε
= [I +DP ]−1D. (3.14)
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3.3 Verification of the code

In order to ensure correct implementation into the code, a simple problem
is simulated. An elastically isotropic model of only two grains with specific
lattice orientations each is loaded in tension. Depending on the arrangement
of the grains and their orientations, dissimilar evolutions of the local strain
and stress are expected.

3.3.1 Test 1: Horizontal arrangement

The first test consists of a 3D plate composed of two adjacent grains of 2500
elements each. The bottom, left and back surfaces are constricted in the y-, x-
and z-directions respectively. A uniform, ramp-type displacement is applied
to the top surface nodes. In such an arrangement, both grains experience the
same amount of total strain. A sketch of the model is depicted in Figure 3.1.

The orientation of the unit cell of the left grain corresponds to the reference
configuration shown in Figure 2.1. Conversely, the right grain is rotated 90◦

around the x-axis such that its c-axis is parallel to the loading direction. In
doing so, this grain becomes a hard or a badly oriented grain, since much
higher stress is required to activate any of its slip systems, in comparison
with a soft grain such as the left grain, whose c-axis is normal to the load.
Furthermore, the density of the GNDs is set constant, so that no strain
hardening is expected after the stress has stabilised. For the left grain, the
Schmid’s Law, Eq. 2.1, predicts a yield stress of 600.4 MPa and the consti-
tutive equations integration scheme, developed in Chapter 2, gives a final
stress value 635.52 MPa. However, the right grain is not likely to slip, as the
load is perpendicular to the slip direction.

The results of the simulation are collected in Figure 3.2. The soft grain
shows a perfect plastic behaviour with a yield point at around 600 MPa and
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T (s)0.0                         1.0

0.8 

Uy (mm)
Displacement 

ramp

100mm

Uy (mm)

Figure 3.1: Verification of the code: hard and soft grains in horizontal ar-
rangement.

a stabilized stress of 635.66 MPa, which fit the predicted values. On the
contrary, the hard grain stays elastic at all load stages.

3.3.2 Test 2: Vertical arrangement

In the second test, the grains are rearranged in a vertical pile such as shown
in Figure 3.3. The boundary conditions, the load and the density of GNDs
are similar to those of the previous test. Regarding the orientation of the
grains, the lower one coincides with the reference configuration, thus being
soft, while the upper one is rotated 90◦, thus becoming hard.
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Figure 3.2: Verification of the code: Stress evolution in hard and soft grains
in horizontal arrangement.

In order to satisfy force equilibrium, both blocks support the same stress at
all times. During the elastic period, the deformation is identical at all points
regardless of the orientation of the lattice. However, when the soft grain
yields, the stress level is maintained constant, impeding further deformation
of the hard grain, hence the strain rate is doubled in the soft one. This
behaviour is observed in the test, shown in Figure 3.4, indicating that the
code is correctly implemented and the performance of the subroutines is
appropriate.
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Figure 3.3: Verification of the code: hard and soft grains in vertical arrange-
ment.

26



3. FE Implementation 3.3. Verification of the code

Vertical arrangement
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Figure 3.4: Verification of the code: Strain evolution in hard and soft grains
in vertical arrangement.
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Chapter 4

Crystallography and lengthscale
effects in polycrystal deformation

This section presents a simulation on Rolls-Royce production processes for
Ti-6Al plates. The effects of crystallographic orientation, the lengthscale and
their interaction are investigated at micro- and macro-levels.

A total of four combinations of crystallographic orientations are included in
this analysis, each of them simulating a particular manufacturing procedure.
In addition, the model is scaled by various factors to provide the necessary
data to understand the lengthscale effects, intrinsically induced in the crystal
plasticity model.

4.1 Macro-scale crystallography effects

Variations in manufacturing processes lead to differences in the crystal struc-
ture of the final material. In consequence, the production procedures have
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a strong influence in the macroscopic mechanical behaviour of finished com-
ponents. These effects are satisfactorily described by the crystal plasticity
model under study, in which the crystallographic orientation is a crucial
parameter taken into account. In addition, its implementation into the com-
mercial FE package ABAQUS, enables a systematic investigation of such
effects.

z

x

y

Uz=0

Uy=0

Ux=0

T (s)0.0                         1.0

1.8 

Uy (mm)
Displacement 

ramp

Uy

Figure 4.1: Polycrystal model and boundary conditions.

A 3D model of a polycrystal is considered, shown in Figure 4.1. The plate
is composed of a hundred grains with 81 elements each, of only one element
depth. The boundary conditions are illustrated in Figure 4.1. The bottom,
left and back surfaces are constrained in the y-, x- and z-directions respec-
tively. A uniform, ramp-type displacement is applied to the top surface nodes
until a 2% macroscopic total strain is reached. The material properties of Ti-
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4. Polycrystal Deformation 4.1. Macro-scale crystallography effects

6Al at room temperature are collected in Table 2.2 and the alloy is considered
elastically isotropic.

Depending on the manufacturing process being represented, each grain is
assigned a particular crystallographic orientation. The four resulting combi-
nations are described next.

• CASE 1: Unidirectional plate. The first case represents an uni-
directional rolled plate. This procedure causes all the crystals to be
orientated towards the rolling direction. For this reason, all grains are
relatively soft, regarding the load applied along the y-axis, which is
almost perpendicular to the c-axes of the crystals.

In order to include this structure in the numerical model, the reference
configuration shown in Figure 2.1 is rotated 90◦ about the y-axis. In
addition, a random rotation of ±10◦ is applied around the z-axis. In
this way, the c-axes of all grains are contained in the xy-plane.

• CASE 2: Crossed rolled. In this case, a bidirectional rolling is
applied with perpendicular axes. This forces approximately half of the
grains to lean towards each rolling direction. When the load is applied,
parallel to the y-axis, half the crystals are soft, hence undergo plastic
slip, while the other half are stiff and likely to remain elastic under
such conditions.

The distribution of the c-axes assigned to each grain is again modified.
Half of the units undergo a 90◦ rotation about the x-axis, while the
other half rotate a similar angle around the y-axis. Once again, a
random rotation of ±10◦ about the z-axis is applied to the whole mesh.

• CASE 3: Blade. As indicated by its name, this case represents the
material employed in blade construction. The c-axes of the unit cells
of the crystals are contained in the xy-plane, randomly rotated around
the y-axis. This configuration is similar to the first case, regarding
the loading conditions of the model. Moreover, the individual grains
are softer that those of the unidirectional rolling plate, as they have
not suffered any rotation about the z-axis. Nevertheless, the relative
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4. Polycrystal Deformation 4.1. Macro-scale crystallography effects

orientation of adjacent crystals and therefore their interactions, vastly
differ from one case to another.

In order to introduce this configuration into the code, the unit cell of
each grain is randomly rotated about the y-axis, remaining perpendic-
ular to it.

• CASE 4: Complete random. A uniform matrix of material with no
preferred configuration is considered last. The crystals are randomly
orientated throughout the plate, hence both hard and soft grains may
be contained in the sample.

The macro-scale stress-strain response to constant strain rate monotonic
loading is represented in Figure 4.2. The macro-scale stress is obtained as the
average stress of the top elements, which in turn, is the mean of the stresses
at their integration points. The macro-scale strain is simply obtained from
the change of length of the overall model. Under the assumption of isotropic
elasticity, the elastic period of the curves is not altered by the orientation
rearrangement. These modifications only affect the plastic behaviour.

It is worth noticicing that crystallography introduces hardening in two ways.
The former is the due to the fact that polycrystals are able to increase the
carried load until all grains in any cross-section become plastic. The latter is
caused by the generation of GNDs, whose density grows with spatial defor-
mation gradients, as explained in Section 2.2.2. The hardening introduced
by the SSDs is negligible in this study since the constant h, in equation 2.8,
is set equal to the small value of 50 and its density is fixed. Nevertheless,
the former process of material hardening also dominates against the GNDs
formation.

These phenomena readily explain the significant differences from the four
cases considered. The cross-rolled plate arrangement, in which approximately
half of the material is unfavourable to slip, gives rise to the highest hardening.
By the same token, the randomly distributed configuration shows appreciable
hardening, since it contains a wide range of orientations, whose ease to slip
differs from each other. However, the slope of the curves corresponding to
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Figure 4.2: Orientation effects in macro-scale stress-strain responses under
constant strain rate.

the first and third cases, whose grains are more uniformly distributed, are
comparatively small, being higher in the latter due to higher deformation
gradients.

4.2 Macro-scale lengthscale effects

Most standard constitutive models for the mechanical behaviour of solids
used in engineering applications consider that the stress at a given point
uniquely depends on the values of deformation at that point only. These
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local theories rely on the assumption that the material can be treated as a
continuum at an arbitrarily small scale, shown to be adequate if the charac-
teristic wave length of the deformation field remains above the resolution level
of the material model [Bažant and Jirásek, 2002]. No length scale parameter
is therefore present in the constitutive equations of these scale independent
models.

Conversely, below the resolution level, the model needs to be enriched so as to
capture the strong size-dependence that materials are experimentally shown
to exhibit [Shu and Fleck, 1999]. The well known Hall-Petch phenomenon
is an example of length effect. The physical reasoning behind the Hall-
Petch law is the accumulation of dislocations at the grain boundaries. The
stress necessary to push the dislocations into the next grain diminishes as
dislocations pile up.

Scale dependence is intrinsically introduced into the crystal plasticity model
under study in this work, by means of a gradient-type non local model. Size-
dependent plasticity is based on geometrically necessary dislocations (GNDs),
whose density evolves proportional to the derivatives of the plastic strain
field, (Eq. 2.6, Section 2.2.2).

The lengthscale effects in the macro-scale response of the polycrystal are
subsequently investigated. The model shown in Figure 4.1 is adopted again
here with overall dimensions scaled by factors of 1, 5, 10 and 100. Crystal-
lographic configuration and grain morphology are not modified. A identical
polycrystal is therefore analysed with varying lengths of 90, 450, 900 and
9000 µm, corresponding to grain sizes of 1, 5, 10 and 100 µm.

The macro-scale stress-strain response to constant strain rate, monotonic
loading is represented in Figure 4.3. The macro-scale stress and strain are
obtained following the procedure explained in Section 4.1. The density of
GNDs is now the controlling factor which determines the amount of harden-
ing the material develops. The mismatch of slip bands at the grain bound-
aries or the presence of hard, non deforming particles generate gradients of
plastic strain which enlarge the density of GNDs, leading to hardening. As
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(b) Cross Rolled
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(c) Blade
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Figure 4.3: Lengthscale effects in macro-scale stress-strain responses under
constant strain rate.
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grain size decreases, larger gradients are developed, hence higher slopes in
the plastic period of the stress-strain curves are observed.

However, this effect is naturally less pronounced in cases 1 and 3, whose
more uniform configuration hinders the development of high plastic strain
gradients, regardless of the grain size.

4.3 Effects interaction in slip accumulation

Plastic slip accumulation is thought to play an important role in polycrys-
tals failure process [Dunne et al., 2007c] and it is discussed in the following
section. It is therefore interesting to analyse the influence of crystallography
orientation and lengthscale in the slip distribution.

The information needed for the study is taken from the 16 FE analyses
corresponding to the four cases in Section 4.1, scaled by factors of 1, 5, 10
and 100. The accumulated plastic strain range, that is, the difference between
the maximum and the minimum accumulated plastic strain at all integration
points, is calculated and plotted in Figure 4.4, against the lengthscale factor.
Four curves corresponding to the four cases are thus obtained. It may be
seen that the heterogeneity of the structure causes higher accumulation of
plastic deformation in certain grains while others may even remain elastic.
In the cases with a more uniform crystallographic combinations, the slip is
more equally distributed over the entire model.

The lengthscale also affects the predicted slip fields. As grain size increases,
lower gradients are developed, that is, lower hardening, which results in
higher accumulation of plastic strains, Figure 4.4.
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Figure 4.4: Orientation and lengthscale effects interaction in slip accumula-
tion.
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Chapter 5

Monotonic failure in hcp crystals

A wide range of titanium alloy components are affected by the phenomenon
of faceting, or, micro-crack development at about the length of the grain
size, almost always associated with an hcp basal plane. If faceting occurs at
a large grain, where grain is understood as a region of approximately uniform
crystallographic orientation, the subsequent propagation time of the crack to
an unacceptable length may be limited.

5.1 Faceting formation

A systematic study performed by Dunne et al. [2007b], shows that the combi-
nations of crystallographic orientations in neighbouring grains influence the
local stress and accumulated slip distribution. The configuration termed as
rogue grain, revealed as the most unfavourable, is that in which a hard grain
with c-axis near-parallel to the loading direction, is adjacent to softer grains,
with c-axis near-normal to the loading direction and a prismatic slip plane
at approximately 70◦ to the normal to the load, Figure 5.1. This particu-
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5. Failure 5.1. Faceting formation

lar combination leads to the highest stress normal to the hard grain basal,
together with the highest level of accumulated plastic strain in the adjacent
soft grains. However, crystallography alone cannot explain some features
associated with faceting, such as volume dependence.

Figure 5.1: Schematic of a rogue grain combination. A typical set of prismatic
slip planes is represented in grain S, oriented at an angle θ to the x-axis.
θ = 70◦ is shown the most unfavourable angle. [Dunne et al., 2007b]

Moreover, the morphology-crystallography interaction is found to be of im-
portance, since it may lead to a localized accumulation of slip in the soft
grain combined with a significant penetration of plastic slip into the adja-
cent hard grain. The range of grain boundary angle over which this occurs
is rather narrow, namely within ±5◦ off the angle at which the orientations
of the boundary and the active prismatic slip plane coincide.
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5. Failure 5.1. Faceting formation

Cold dwell also plays an important role in faceting. Under conditions of load
control, a hold results in load shedding, that is, stress relaxation in the softer
material due to creep straining, which leads to increasing stress in the hard
grain. Conversely, a strain hold under strain control loading, results in stress
relaxation in the hard grain, accompanied by further accumulation of plastic
slip in the softer material. Nevertheless, it is important to notice that the
hold itself does not contribute to faceting, however, during the hold, the rate
dependence of the Ti alloy leads to either load shedding under a load hold,
or plastic strain accumulation under a strain hold.

Recapitulating these ideas, the formation of facets requires:

• the existence of a rogue grain combination,

• the boundary between the hard and the soft grain having a morpholog-
ical orientation coincident with a crystallographically active slip plane
in the soft grain, and

• a loading cycle such that load shedding or stress relaxation may lead
to increased accumulated slip.

Further details on the effects of morphology and crystallography in hcp crys-
tals may be found in Dunne et al. [2007b], whose main conclusion is quoted
here:

We therefore hypothesize that it is the localized penetration of
slip into the hard grain which, under conditions of cyclic load-
ing, results in the generation of a persistent slip band and sub-
grain-level microcrack generation. Under the action of the high
basal stresses, normal to the grain c-axis, which exist in the cir-
cumstances outlined, the nucleated defect propagates through the
grain, parallel to the basal plane, until it hits the boundaries of
the adjacent softer grains.
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5. Failure 5.2. Failure in the presence of a rogue grain combination

5.2 Failure in the presence of a rogue grain
combination

The potential damage of a hard grain embedded in a matrix of soft material,
causing high stress and accumulated plastic slip local to the boundary, leads
to the thought that, under monotonic loading conditions, the presence of a
rogue grain is likely to control the failure of the material as well. Thus, a
criterion is proposed under this assumption and applied to a FEM modelled
polycrystal. The results and conclusions are provided in this section.

5.2.1 Nucleation criterion

Faceting is more frequently observed under load control than under strain
control. Given this, and the previous considerations on load shedding and
strain control dwell, facet formation is considered a stress-controlled process
and a nucleation criterion is proposed based on the stress normal to the
basal plane. When a critical stress normal to the basal plane is reached, the
material fails and a crack is nucleated.

In order to incorporate the failure criterion into the crystal plasticity consti-
tutive equations, elastic-damage coupling is included reducing the material
stiffness by a factor of 1− ω, so that D = D0(1− ω).

The damage also affects the plastic formulation such that the stress is now
defined as

σ = Dεe = D0(1− ω)
(
εe

(t) + ∆εe) = σtr(1− ω)−D0(1− ω)∆εp,

which gives the residual equation

Ψ = σ − σtr(1− ω) +D0(1− ω)∆εp = 0.
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5. Failure 5.2. Failure in the presence of a rogue grain combination

Recalling that δ∆εp = P δσ, Newton algorithm scheme states that

Ψ +
∂Ψ

∂σ
δσ = [σ −σtr(1− ω) +D0(1− ω)∆εp] + [I +D0(1− ω)P ]δσ = 0,

so the stress can now be updated iteratively by

δσ = [I +D0(1− ω)P ]−1
{
σ − σtr(1− ω) +D0(1− ω)∆εp} .

The consistent elastic-plastic stiffness matrix is also modified in the same
way as the trial stress. Starting from the stress definition

δσ = δσtr +Dδ∆εp,

introducing the trial stress differential

δσtr = δ
[
D0(1− ω)

(
εe

(t) + ∆ε
)]
≡D0(1− ω)δε,

and the plastic strain increment differential δ∆εp = P δσ, results in

δσ = D0(1− ω)δε−D0(1− ω)P δσ,

so the Jacobian is finally given by

Cep =
∂σ

∂ε
= [I +D0(1− ω)P ]−1D0(1− ω). (5.1)

Nevertheless, in order to represent the nucleation of an actual crack, ω should
be close to unity. However, such a high value gives rise to severe convergence
problems after the crack formation. Aiming a tentative growth analysis, ω is
set to 0.75 to avoid numerical instabilities.

5.2.2 FEM simulation

Simulations are carried out on the polycrystal model earlier employed by
Dunne et al. [2007a], adopted here to further research on failure. The 2D
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5. Failure 5.2. Failure in the presence of a rogue grain combination

plain strain polycrystal, shown in Figure 5.2, comprises 27 grains of an aver-
age size of 20 µm. The grain morphology is arbitrarily specified to represent
the true microstructure. A rogue grain combination, marked out in bold
lines, is included with the c-axis parallel to the loading direction. Neverthe-
less, despite its orientation, the hard grain may still undergo limited slip,
since the stress field is modified at the local level. The adjacent grains are
assigned prismatic slip planes forming angles of about 70◦ to the primary
grain basal plane. All other grains are randomly orientated within ±10◦ off
the reference configuration in Figure 2.1. The bottom and left surfaces are
constrained in the y- and x-directions respectively. The top surface is con-
strained to remain straight. A two seconds ramp load is applied to a top
node, and then held for a similar amount of time. The critical stress normal
to the basal plane is set to 1150 MPa. Elastic anisotropy is assumed.

F

0.0        2.0            4.0

80000 

F(N)

T(s)

Stress-Controlled 
loading  

Figure 5.2: Model of a polycrystal containing a rogue grain marked out in
bold lines.
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5. Failure 5.2. Failure in the presence of a rogue grain combination

The results of the simulation are illustrated in Figures 5.3 and 5.4. As ex-
pected, the sample first fails within the hard grain, which still remains elastic,
next to the boundary with the soft crystal, whose plastic slip accumulation
is highest. After only a few steps, failure is distributed over most of the hard
grain. However, in despite of the goodness of the nucleation, the predicted
stress distribution is physically meaningless, since the failed crystal is still
carrying the highest stress.

a)                                              b)    c)                      

Figure 5.3: Failure in the presence of a rogue grain for various formulations:
a) Damage at integration points at t=4 s. b) Damage as an element variable
at t=4 s. c) Progressive damage as an element variable at t=4 s.

This unexpected result may be explained by the fact that failure is imple-
mented at the integration points, based solely on the state of that particular
point. This local formulation together with the redistribution of forces in
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a)                                              b)    c)                      

Figure 5.4: Stress field in the loading direction, σyy, in the presence of a
rogue grain for various formulations: a) Damage at integration points at
t=4 s. b) Damage as an element variable at t=4 s. c) Progressive damage
as an element variable at t=4 s.

the vicinity of the damaged points, permit some integration points to remain
unfailed and therefore support considerable amounts of load.

In order to avoid unlocalised damage, the criterion is modified to account for
the influence of neighbouring points in the fracture process. Thus, damage
is dealt with as an element variable. When the average stress at the element
reaches the critical value, the whole element loses its stiffness.

The new approach improves the localization of the damage. Elements fail
following a defined path, Figure 5.3. The estimated crack starts at the spot
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mentioned earlier and propagates through the grain, parallel to the basal
plane. Another crack nucleates after a short time, local to the left hard-
soft boundary and propagates through the hard grain in opposite direction,
until it merges with the former crack. However, the hard grain still supports
elevated levels of stress.

Therefore, a new modification is made to improve the formulation. In order
to prevent the material from carrying any load once failed, it is necessary
to further diminish the stiffness of the material. With the aim of avoiding
convergence problems, the reduction is applied over several steps. When the
average stress at the element reaches the critical value, its stiffness becomes
65% smaller and continues dicreasing in following steps as

D(n) = (1− ω)D0,

where
ω = 0.65 + 0.035∆t,

up to ω = 0.95.

The progressive stiffness reduction may be understood as the progressive
loss of stiffness as the crack propagates through the element at a constant
rate. However, the lack of experimental data together with the strong mesh
dependence impede the adjustment of the growth rate.

These modifications considerably improve the results. Failed elements are
successfully prevented from carrying significant load, which is progressively
redistributed towards the undamaged material. The results of the three anal-
yses are compared in Figures 5.3 and 5.4. It is important to notice that the
wider damaged area within the last approach in Figure 5.3, corresponds to
approximately the same number of elements as that within the second for-
mulation, which undergo much larger deformations due to a larger reduction
of stiffness. These results are therefore closer to the experimentally expected
behaviour.

Furthermore, if the load is augmented up to 90000 MPa, the crack eventu-
ally overcomes the grain boundary barriers at the end of the hold period,
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5. Failure 5.2. Failure in the presence of a rogue grain combination

propagating through the adjacent grains, Figure 5.5.

Figure 5.5: Under a higher load, the crack overcomes the barriers and prop-
agates.

In conclusion, a failure criterion is proposed and simulated based on the stress
normal to the basal plane. When this stress reaches a critical value, the
stiffness of the material is reduced by several methods, at both integration
point and element levels. The implementation of damage as an element
variable seems to provide better results. Under these conditions, it is shown
that failure occurs within the rogue grain. The most striking feature is the
nucleation of the crack in the hard grain, local to the grain boundary where
the maximum accumulated plastic slip is predicted. This may confirm the
influence of such parameter in the process. The crack continues growing
throughout the hard grain until it reaches the next boundary. It is worth
indicating that plastic slip still accumulates during the load hold and that
part of the crack growth occurs during that period.
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5. Failure 5.3. Failure in the absence of rogue grain combinations

5.3 Failure in the absence of rogue grain com-
binations

In the absence of rogue grain combinations, the fracture criterion developed
in the previous section is no longer appropriate to predict crack nucleation.
In a piece of material with all grains favourably orientated to slip, the stress
normal to the basal plane is maintained at moderate levels due to plastic
slip. Therefore, a new criterion is necessary to include these circumstances.

5.3.1 Nucleation criterion

Experimental results are available from a sample of soft material tested at
Swansea University [Bache, 2007]. Stress control tensile test with load dwell
was carried out on the sample, which exhibits fracture perpendicular to the
loading direction, as shown in Figure 5.7. This leads to the development of
the view that the stress parallel to the loading direction controls the process.
When it reaches a certain value, the material fails and its stiffness is reduced
by a factor of 1− ω, where ω = 0.75, so that D = D0(1− ω). The implicit
integration equations are again modified as described in Section 5.2.1.

The same three approaches developed earlier are now applied following the
same steps, with the only difference at element level, (approaches b) and c) in
Figures 5.3, 5.4, 5.8 and 5.8). Failure occurs when the first integration point
reaches the critical stress, as opposed to the averaged value used before.

5.3.2 FEM simulation

A 2D plain strain polycrystal model is used to reproduce the conditions of the
experiment. Grain morphology and orientation were determined by Bache
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Figure 5.6: Polycrystal model of the experimental sample.

[2007] using electron back scatter diffraction (EBSD), indicated by differing
colours in Figure 5.6. The bottom and left surfaces are constrained in the
y- and x-directions respectively. The top surface is constricted to remain
straight. A one second ramp load is applied to a top node, and then held for
400 milliseconds. The critical stress parallel to the loading direction is set
to 750 MPa. Elastic anisotropy is assumed.

Three analyses are performed under the approaches described in the previous
section. The results are shown in Figure 5.7 and 5.8. In the three studies, a
crack initiates approximately at the centre of the specimen, which coincides
with the experimental evidence. However, further growth is only adequately
represented by the failure model implemented at the element level, that is, the
whole element loses its stiffness when the average stress reaches the critical

48



5. Failure 5.3. Failure in the absence of rogue grain combinations

a)                                 b)                     c)                                d)

Figure 5.7: Failure in the Swansea sample for various formulations: a) Dam-
age at integration points at t=0.96 s. b) Damage as an element variable
at t=0.90 s. c) Progressive damage as an element variable at t=0.88 s. d)
Experimental fracture.

value. In addition, it seems to be better reproduced by the single reduction
step criterion. It may be readily explained by the uniform stress field across
the section, probably leading to very high growth rate. The predicted crack
follows a path similar to that in the sample test until the analysis stops due to
convergence problems. The strain field obtained from the element approach
is also comparable to that in the experiment specimen, Figure 5.8.

Therefore, it may be concluded that a failure criterion based on the stress
parallel to the loading direction, in which the stiffness of an element is reduced
up to 75% when the stress at any of its integration points reaches a critical
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5. Failure 5.4. Elastic anisotropy effects in failure

a)                                 b)                     c)                                d)

Figure 5.8: Total strain field in the loading direction, εyy, in the Swansea
sample for various formulations: a) Damage at integration points at t=0.96 s.
b) Damage as an element variable at t=0.90 s. c) Progressive damage as an
element variable at t=0.88 s. d) Experimental deformation.

value, successfully predicts the crack nucleation, and qualitatively describes
the directions of subsequent growth.

5.4 Elastic anisotropy effects in failure

Dunne et al. [2007a] show that, at the macro-scale, the effect of elastic
anisotropy is rather insignificant compared to that of anisotropic plasticity,
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5. Failure 5.4. Elastic anisotropy effects in failure

caused by slip of differently orientated grains. However, at grain level, it may
lead to noticeable differences in accumulated plastic slip, which is considered
of significance in crack nucleation.

Elastic anisotropy effects in crack nucleation and growth are investigated.
Isotropic elasticity is introduced in the two models by simply assuming
the z-direction modulus equal to that in the two orthogonal directions.

The three previous studies are performed firstly on the rogue-grain polycrys-
tal of Figure 5.2. The isotropic condition does not significantly affect the
nucleation and subsequent growth process. The crack initiates a few seconds
earlier at the same location, due to the large plastic strain developed, and
propagates as described above.

However, the simulations on the Swansea sample in Figure 5.6 surprisingly
bring into light a strong dependence on the elastic behaviour. It may be seen
in Figure 5.9, that the strain fields under the elastic isotropy assumption
differs vastly from the others. It provokes the material to fail in the bottom
of the sample, far from the anisotropic and the experimental results.

A possible explanation may lay in the homogeneous or otherwise structure
of the model. It may be possible that elastic anisotropy becomes impor-
tant as plastic anisotropy diminishes. This explains the absence of effects in
the former model, strongly plastically anisotropic, as well as the differences
encountered in the latter, with more homogeneous crystallography.

It is concluded, therefore, that the assumption of the elastic behaviour needs
to be considered carefully, since it may noticeably influence the results of any
simulation.
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5. Failure 5.4. Elastic anisotropy effects in failure

a)                                 b)                     c)                                d)

Figure 5.9: Isotropic and anisotropic failure and strain fields for damage at
element element. a) Elastically anisotropic failure. b) Elastically isotropic
failure. c) Elastically anisotropic strain field. d) Elastically isotropic strain
field.
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Chapter 6

Conclusions and Further work

Implicit integration of crystal plasticity has been implemented into ABAQUS
and verified by means of a simple two grains model. Crystallographic mi-
crostructure has been shown to have significant influence in the macro- and
micro-scale response of the material. Hardening caused by unfavourably ori-
entated grains has been found considerably higher than that due to plastic
strain gradients generated by orientation mismatch.

Lengthscale effects have been successfully represented by the intrinsic size-
dependence introduced by the density of geometrically necessary dislocations.
It has been demonstrated that as size increases, hardening diminishes and
further plastic slip accumulates.

Failure under monotonic loading containing a dwell period has been ad-
dressed by various criteria and predictions have fitted the experimental data.
A failure criterion based on the stress normal to the basal plane has been
implemented and nucleation has occurred within the rogue grain, local to
the grain boundary where the maximum accumulated plastic strain has de-
veloped. This has possibly confirmed the influence of slip accumulation in
facet formation. Further research should clarify the role of plastic slip and
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6. Conclusions

determine the appropriate way of including, if necessary, this parameter into
the damage criterion.

In the absence of rogue grain combinations, a failure criterion based on the
stress parallel to the loading direction has successfully predicted the nucle-
ation, and qualitatively described the directions of subsequent growth of a
crack observed in the experimental sample being simulated.

Moreover, some polycrystals have been reported to exhibit a strong depen-
dence on the elastic behaviour. Vast differences in strain fields and con-
sequent crack formation have arisen depending on the assumptions made
concerning isotropy or anisotropy.

On the other hand, major problems of convergence and mesh-dependence
would be avoided with the assessment of a non-local approach in modelling
failure. This should therefore be the next step to follow in this line of research.

In summary, various studies have been carried out on the titanium alloy
Ti-6Al, bringing into light several interesting features. Experimental data is
now a prime requirement in order to validate these observations and reinforce
the conclusions.
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Appendix A

Resumen del proyecto

A.1 Breve descripción

El presente trabajo se enmarca dentro del proyecto de colaboración entre la
renombrada firma Rolls-Royce y el Departamento de Ingeniería de la Uni-
versidad de Oxford.

Durante años, ambas entidades han unificado esfuerzos en la investigación
de los materiales empleados en la industria aeronáutica. En concreto, las
aleaciones de titanio empleadas en discos y álabes de turbinas han sido y
son de primordial interés, al presentar comportamientos que se escapan al
conocimiento actual.

Este trabajo se centra en uno de estos vacíos: el fenómeno conocido como
faceting, o aparición de micro-grietas del tamaño aproximado de grano. Este
proceso es normalmente asociado con ciertas combinaciones cristalográficas,
por lo que es clara la necesidad de un modelo de comportamiento que recoja
las carasterísticas de la microestructura, como son las orientaciones de los
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A. Resumen del Proyecto A.1. Breve descripción

distintos granos que conforman la pieza.

Por este motivo, Dunne et al. [2007a] proponen un modelo de plasticidad
policristalina, basado en el estancamiento y posterior liberación de disloca-
ciones deslizantes, estadísticamente acumuladas, (SSDs), de densidad ρ, y
∆F energía de activación. En dicha formulación, el gradiente de velocidad
plástica es definido como

Lp =
∑
κ

ρ b2ν exp

(
−∆F

kT

)
sinh

(
(τκ − τc − r)b2

kT
√
ρ+ ρG

)
sκ ⊗ nκ, (A.1)

donde ν es la frecuencia en que las dislocaciones intentan saltar las barreras,
con o sin éxito; k es la constante de Boltzman; T la temperatura absoluta;
τκ la tensión tangencial en el sistema κ-ésimo; τc la tensión tangencial crítica
y sκ y nκ los vectores dirección y normal asociados al κ-ésimo sistema de
deslizamiento, respectivamente. El volumen de activación es b2l, donde l es
el camino libre medio, l = 1/

√
ρ+ ρG, y b la magnitud del vector de Burger.

En esta ecuación, ρG representa la densidad de dislocaciones geométricamente
necesarias. La evolución de dichas dislocaciones en el plano κ de normal n
es descrita por Busso et al. [2000] como

∆ρκG =
∆γκ

b
curl[nκF p], (A.2)

donde la deformación tangencial, ∆γκ, se calcula a través de la Ecuación A.1,
teniendo en cuenta que

Lp =
∑
κ

γ̇κsκ ⊗ nκ.

El comienzo de la plastificación viene marcado por la ley de Schmid, esto
es, un cristal bajo carga fluye cuando la tensión tangencial en alguno de
sus sistemas de deslizamiento alcanza un valor crítico. Asímismo, tiene en
cuenta dos tipos de endurecimiento, el producido por el gradiente del campo
de deformaciones plásticas y su consecuente producción de GNDs, y el debido
a la acumulación de SSDs, que entorpece su propio movimiento.
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A. Resumen del Proyecto A.2. Estudio cristalográfico

La implementación del modelo en el programa comercial de Elementos Finitos
ABAQUS, se lleva a cabo a través de un “elemento definido por el usuario”,
desarrollado en una subrutina UEL. La descripción detallada de la integración
implícita de las ecuaciones y del algoritmo empleado, puede encontrarse en
los Capítulos 2 y 3 de esta memoria.

A continuación se recogen los resultados más relevantes de la investigación.
En primer lugar se describen los resultados del estudio sobre la influencia de
la orientación cristalográfica en el comportamiento macro- y micro-mecánico.
La dependencia de la escala intrínseca del material es posteriormente enfo-
cada, para terminar con la propuesta de varios criterios de fallo y su imple-
mentación en modelos policristalinos.

A.2 Estudio cristalográfico

El comportamiento de policristales a nivel macroscópico está definido por la
configuración cristalográfica de su estructura. El hecho de que cada grano
del material plastifique a un valor distinto de carga, según su posición rel-
ativa, provoca que, mientras existan zonas en estado elástico, la tensión
requerida para incrementar la deformación aumente. Esto se traduce en
una elevada pendiente del tramo plástico de la curva tensión-deformación
del material. Una vez que todos los cristales entran en período plástico,
el endurecimiendo es debido únicamente a los dos mecanismos mencionados
anteriormente, basados en la generación de dislocaciones.

Resulta por tanto evidente, la necesidad de un análisis del comportamiento
macro-mecánico de los materiales provenientes de distintos procesos de fab-
ricación, pues posiblemente, las estructuras adquieren ciertas orientaciones
preferentes según el procedimiento.

Así, un total de cuatro casos son considerados bajo estudio. Compuestos
de la misma aleación pero cuya microestructura se adapta para simular el
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A. Resumen del Proyecto A.2. Estudio cristalográfico

proceso de fabricación al que han sido sometido. Dichos prodecimientos y
las combinaciones resultantes se detallan en el Capítulo 4. Los resultados se
resumen en la Figura A.1.

En dicha gráfica puede observarse un importante endurecimiento en el caso
designado como “Cross Rolled”, que corresponde a la mayor proporción de
material en posición desfavorable para la plastificación, permaneciendo por
tanto elástico. Las configuraciones “Unidirectional” y “Blade” muestran una
menor pendiente debido a la mayor uniformidad de su microestructura. Es
más, la diferencia entre ambas curvas es causada por otro de los tipos de
endurecimiento ya mencionados, el debido al gradiente del campo de defor-
maciones, más pronunciado en este último.
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Figure A.1: Influencia de la orientación cristalográfica en el comportamiento
macroscópico de la aleación Ti-6Al.
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A.3 Influencia de la escala geométrica

La influencia de la escala geométrica intrínseca del material, mostrada ex-
perimentalmente en numerosas ocasiones, es recogida en el modelo a través
de la dependencia geométrica de la densidad de GNDs, Ecuación A.2.

La no coincidencia de bandas de deslizamiento en los límites de grano, así
como la presencia de zonas rígidas, generan deformaciones no uniformes que
provocan la formación de dislocaciones. Como ya se ha explicado anteri-
ormente, esto conlleva un endurecimiento del material. A medida que el
tamaño de grano disminuye, se producen mayores gradientes que resultan en
mayores pendientes de la zona plástica.

Naturalmente, este efecto es menos pronunciado a medida que crece la uni-
formidad de la textura, pues la falta de gradientes impide la creación de
dislocaciones. La Figura A.2 muestra los resultados de los cuatro casos an-
teriores, para diferentes escalas.

A.4 Criterios de Fallo

La última sección se centra en el fallo del material en la presencia o ausencia
de la combinación cristalográfica más desfavorable, conocida como “rogue
grain”. Dicha configuración incluye un grano rígido inmerso en una matriz
blanda y es considerada una de las causas del fallo por “faceting” descrito al
comienzo de este documento.

Un criterio de nucleación, basado en la tensión normal al plano basal, es
integrado en las ecuaciones constitutivas a dos niveles, fallo independiente de
puntos de integración, o fallo conjunto del elemento. Cuando dicha tensión
se sobrepasa, la matriz de rigidez disminuye hasta un 95%.
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(a) Unidirectional Plate
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(b) Cross Rolled
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(c) Blade
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Figure A.2: Efecto de la escala geométrica en la curva tensión-deformación
de la aleación Ti-6Al.
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A. Resumen del Proyecto A.5. Conclusiones

Las simulaciones pertinentes prueban la capacidad del modelo de recoger el
fallo en el lugar esperado, es decir, en el grano duro, junto al límite con
la zona blanda donde se acumula mayor plastificación. El criterio, además,
predice el posterior crecimiento de grieta a través los granos adyacentes tras
un período de tiempo en que la carga se mantiene constante a alto nivel.

En la ausencia de esta perjudicial combinación, el criterio es modificado para
predecir la rotura cuando la tensión paralela a la carga alcanza un valor
crítico.

Ensayos realizados en laboratorio permiten la verificación de los resultados,
que muestran una sorprendente similitud con los datos experimentales (véase
Capítulo 5).

A.5 Conclusiones

Varios estudios se han llevado a cabo sobre la aleación Ti-6Al, permitiendo
una mejor comprensión del comportamiento de dicho material en diferentes
circunstancias. La influencia de la estructura cristalina o de la escala geomé-
trica han sido investigadas y detalladas en el presente documento.

Igualmente, criterios de fallo que predicen la correcta nucleación y poste-
rior crecimiento de grieta han sido desarrollados e incluidos en una subrutina
UEL, del programa comercial de Elementos Finitos ABAQUS-Standard. Ade-
más, se ha confirmado la influencia de la acumulación de deformación plástica
en el fallo del material, que debe ser analizada en futuros estudios.

Por otra parte, se ha encontrado una fuerte influencia del comportamiento
elástico a nivel microscópico, que da lugar a muy diferentes resultados en las
simulaciones realizadas. Datos experimentales son requisito indispensable
para la confirmación de éste y demás resultados.
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A. Resumen del Proyecto A.5. Conclusiones

Por último, como futura línea a seguir, se ha concluído necesario el enfoque
de daño no local, para así evitar los problemas de convergencia y dependencia
de la malla.
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