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Abstract. Robust detection of moving objects from a mobile robot is required for safe
outdoor navigation, but is not easily achievable since there are two motions involved:
the motions of moving objects and the motion of the sensors used to detect the objects.
We have experimented with a probabilistic approach for moving object detection from
a mobile robot using a single camera in outdoor environments. The ego-motion of the
camera is compensated using corresponding feature sets and outlier detection, and the
positions of moving objects are estimated using an adaptive particle filter and EM al-
gorithm. The algorithms are implemented and tested on three different robot platforms
(robotic helicopter, Segway RMP, and Pioneer2 AT) in an outdoor environment, and
the detection results are analyzed.

1 Introduction

Outdoor mobile robots have many potential applications; examples include street cleaning, traffic
policing etc. The populated outdoor environment is fairly challenging to contemporary mobile robots.
There are many reasons for this: eg. rough terrain, unstructured objects, and motion of objects in the
environment. This latter category may include motions as diverse as those due to pedestrians, bicycles,
automobiles, etc. Since some objects move faster than the robot, motion detection and estimation for
potential collision avoidance are the most fundamental skills that a robot needs to function effectively
outdoors.

Detecting motion of external objects from a moving robot is the subject of active research. There
are two independent motions involved: the motion of the robot (and hence the sensors it carries) and
the motions of moving objects in the environment. Unfortunately, those two motions are blended
together when measured through a sensor such as a camera. In order for a robot to detect moving
objects robustly, it should be able to decompose these two independent motions from sensor readings.

The computer vision community has proposed various methods to stabilize camera motions by
tracking features [1, 2] and computing optical flow [3, 4]. These approaches focus on how to estimate
the transformation (homography) between two image coordinate systems. However, the motions of
moving objects are typically not considered, which leads to poor estimation. Other approaches that
extend these methods for motion tracking using a pan/tilt camera include those in [5, 6, 7]. However,
in these cases the camera motion was limited to translation or rotation. When a camera is mounted
on a mobile robot, the main motion of the camera is a forward/backward movement, which makes the
problem different from that of a pan/tilt camera. There is other research on tracking from a mobile
platform with similar motions. [8] tracks a single object in forward-looking infrared (FLIR) imagery
taken from an airborne, moving platform, and [9, 10] tracks cars in front using a camera mounted on
a vehicle driven on a paved road.

Once motion has been identified, objects in the scene need to be tracked. Work focusing on robust
multiple target tracking using probabilistic filters includes [11] which uses a particle filter to track
people indoors (corridors) using a laser rangefinder, and [12] which also uses a particle filter to track
multiple objects using a stationary camera. A Kalman filter was used in [13] to detect and track human
activity with the combination of a static camera and a moving camera.



Figure 1: Processing sequence for moving object detection from a mobile robot

In this paper, we propose an approach to detect moving objects from a mobile robot using a single
camera in an outdoor environment. The motion detection process is performed in two steps: the ego-
motion compensation of camera images, and the position estimation of moving objects in the image
space. For robust detection and tracking, the position estimation process is performed using a Bayes
filter, and an adaptive particle filter is utilized for iterative estimation. We envisage our algorithm being
used within a control loop, thus real-time requirements and robustness are the main design issues. Our
algorithm was implemented and tested on three different robotic platforms (robotic helicopter, Segway
RMP, and Pioneer2 AT), which have unique characteristics in terms of motions. The robots were able
to detect moving objects robustly in various situations.

2 Two Independent Motions

Frame differencing, which compares two consecutive image frames and finds moving objects based on
the difference, is perhaps the most intuitive and fast algorithm for moving object detection, especially
when the viewing camera is static. However, when the camera moves (eg. when it is mounted on
a mobile robot), straightforward differencing is not applicable because a big difference is generated
by simply moving the camera even if nothing moves in the environment. There are two independent
motions involved in the moving camera scenario: motions of moving objects and the ego-motion of
the camera. Since these two motions are blended into a single image, the ego-motion of the camera
should be eliminated so that the remaining motions, which are due to moving objects, can be detected.
Figure 1 shows the processing sequence of our moving object detection algorithm. Frame differencing
is utilized, but the the ego-motion of the camera in the previous image (Image(t−1)) is compensated
before comparing it with the current image (Image(t)).

Real outdoor images are contaminated by various noise sources, eg. poor lighting conditions,
camera distortion, unstructured and changing shape of objects, etc. Thus perfect ego-motion compen-
sation is rarely achievable. Even assuming that the ego-motion compensation is perfect, the difference
image would still contain structured noise on the boundaries of objects because of the lack of depth
information from a monocular image. Some of these noise terms are transient and some of them are
constant over time. We use a probabilistic model to filter them out and to perform robust detection
and tracking. The probability distribution of moving objects in image space is estimated using an
adaptive particle filter [14]. As shown in Figure 1, the final particles are clustered using a mixture of
Gaussians [15] for the position estimation.

It may be noted that, taken individually, each of these techniques are well-known. Our contribution
in this paper is the experimental evaluation of these techniques on real monocular imagery from a robot
platform taken in populated unstructured outdoor environments.

3 Ego-motion Compensation

The ego-motion of the camera can be estimated by tracking features between images [1, 2, 7]. When
the camera moves, two consecutive images, I t (the image at time t) and I t−1 (the image at time t−1),
are in different coordinate systems. Ego-motion compensation is a transformation from the image
coordinates of I t−1 to that of It so that the two images can be compared directly. The transformation
can be estimated using two corresponding feature sets: a set of features in I t and a set of corre-
sponding features in I t−1. However, since there are independently moving objects in the images, a
transform model and outlier detection algorithm needs to be designed so that the result of ego-motion
compensation is not sensitive to object motions.



(a) Outdoor features (b) Selected features at time t (c) Tracked features at time t + 30

Figure 2: Feature selection and tracking

We adopt the feature selection algorithm introduced in [16] for corresponding feature set selection.
Figure 2 (a) shows selected features in the outdoor image; corners of bricks and cars, and leaves and
grass that have complex textures were selected as features. The feature selection algorithm runs on
image (It−1), and generates features (f t−1). The Lucas-Kanade method [17] is applied to track those
features in the subsequent image (I t) to find the corresponding set of features (f t). For efficiency,
the search range was limited to a small constant distance (assuming a bounded robot speed). Figure 2
shows the robustness of the tracking method. Figure 2 (b) shows the features selected from the image
It, and Figure 2 (c) shows the same features tracked over 30 frames on the image I t+30. The erroneous
features on image boundaries are eliminated for subsequent processing.

Once the correspondence < f t−1, f t > is known, the ego-motion of the camera can be estimated
using a transformation model and an optimization method. We have studied three different models:
affine model, bilinear model, and pseudo-perspective model. When the interval between consecutive
images is very small, most ego-motion of the camera can be estimated using an affine model, which
can cover translation, rotation, shearing, and scaling motions. However, when the interval is long
(most sensors on our robot including the camera produce data at 10 Hz), the camera motion in the
interval cannot be captured by a simple linear model. For example, when the robot moves forward,
the features in the image center move slower that those near the image boundary, which is a projection,
not a zoom. Therefore, a nonlinear transformation model is required for our case. On the other hand,
an over-fitting problem may be caused when a model is highly nonlinear, especially when some of the
selected features are associated with moving objects (outliers). There is clearly a trade-off between
a simple, linear model and a highly nonlinear model. We used a bilinear model for the experiments
reported in this paper:
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Given a transformation model (Tt), the cost function for least square optimization is defined as
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where N is the number of features. The model parameters for ego-motion compensation are estimated
by minimizing the cost. However, as mentioned before, some of the features are associated with
moving objects, which lead to the inference of an inaccurate transformation. Those features (outliers)
should be eliminated from the feature set before the final transformation is computed. The model
parameter estimation is thus performed using the following two-step procedure:

1. compute the initial estimate T0 using the full feature set F .
2. partition the feature set F into two subsets Fin and Fout as:

{

fi ∈ Fin if |f t
i − T0

t
t−1(f

t−1

i )| < ε

fi ∈ Fout otherwise
(3)

3. re-compute the final estimate T using the subset Fin only.

Figure 3 shows the partitioned feature sets: Fin is marked with empty circles, and Fout is marked
with filled circles. Note that all features associated with the pedestrian are detected as outliers. It
is assumed for outlier detection that the portion of moving objects in the images is relatively small
compared to the background; the features which do not agree with the main motion are considered
as outliers. This assumption will be violated when the moving objects are very close to the camera.
However, most of the time, these objects pass by the camera in a short period (leading to transient
errors), and a high-level probabilistic filter is able to deal with the errors without total failure.



Figure 3: Inliers (empty circles) and outliers (filled circles)

(a) Image at time t − 1 (b) Image at time t (c) Compensated image of (a)

Figure 4: Image Transformation: (c) is the transformed image of (a) into the coordinates of (b)

For frame differencing, Image I t−1 is converted using the transformation model before being
compared to the image I t in order to eliminate the effect of the camera ego-motion. For each pixel
(x, y):

Icomp(x, y) = It−1
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T t
t−1

−1
(x, y)

)

(4)

Figure 4 (c) shows the compensated image of Figure 4 (a); the translational and forward motions
of the camera were clearly eliminated. The difference image between two consecutive images is
computed using the compensated image:

Idiff (x, y) = | (Icomp(x, y) − It(x, y)) | (5)

Figure 5 compares the results of two cases: frame differencing without ego-motion compensation
(Figure 5 (a)) and with ego-motion compensation (Figure 5 (b)).

4 Moving Object Detection

The Frame Differencing step in Figure 1 generates the difference images, I 0
diff , I1

diff , · · · , It
diff ,

whose normalized pixel values represent the probability of moving objects. Based on the sequence of
these difference images, the position and size of the moving objects are estimated. This estimation
process can be written using a Bayesian formulation. Let xt represent the position of a moving object
and Pm(xt) be the posterior probability distribution of the object:
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The Particle filter [18] is a simple but effective algorithm to estimate the posterior probability
distribution recursively, which is appropriate for real-time applications. In addition, its ability to

(a) difference without compensation (b) difference with compensation

Figure 5: Results of frame differencing



(a) Input image (b) Particles filter output (c) Gaussian mixture function

Figure 6: Moving object detection procedure

perform multi-modal tracking is attractive for multiple object detection and tracking. An efficient
variant, called the Adaptive Particle Filter, was introduced in [14]. This changes the number of
particles dynamically for a more efficient implementation. We implemented the Adaptive Particle
Filter to estimate the posterior probability distribution in Equation 6.

Particle filters require two models for the estimation process: an action model and a sensor model.
A constant-velocity action model was assumed for moving object detection. Where an ith particle is
defined as st = [x y]T and ∆t is a time interval,

st+1

i = st
i + ∆t × ṡt

i + Normal(
γ

ωt
i

) (7)

Parameterized noise is added to the constant-velocity model in order to overcome an intrinsic lim-
itation of the particle filter, which is that all particles move in a converging direction. However, a
dynamic mixture of divergence and convergence is required to detect newly introduced moving ob-
jects. [18] introduced a mixture model to solve this problem, but in the image space the probability
P (xt|It

diff ) is uniform and the dual MCL becomes random. Therefore, we used a simpler, but ef-
fective method by adding inverse-proportional noise. For the sensor model, the normalized difference
image (Idiff ) is directly used as sensor input. The particle filter uses a m×m fixed-size mask (usually
5 × 5) to evaluate each particle. By using the mask, salt-and-pepper noise can be eliminated.
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Figure 6 (b) shows the output of the particle filter. Red dots represent the position of particles, and
the horizontal bar on the top-left corner of the image shows the number of particles being used.

The particle filter generates a set of weighted particles that estimate the posterior probability distri-
bution of moving objects, but the particles are not easy to process in the following step. More intuitive
and meaningful data can be extracted by clustering the particles. Given the estimated posterior distri-
bution using particles, a mixture of Gaussians is inferred corresponding to the posterior distribution
using the Expectation-Maximization (EM) algorithm [15]. The Gaussian mixture function represents
the original posterior distribution and the regions of moving objects can be extracted by thresholding
the Gaussian mixture function. Figure 6 (c) shows the Gaussian mixture function, and the blue rect-
angle indicates the extracted region of the pedestrian in the input image. For real-time response, the
maximum iterations of the EM algorithm is fixed to a constant.

5 Experimental Results and Discussion

The algorithms were implemented and tested in various outdoor environments using three different
robot platforms: robotic helicopter, Segway RMP, and Pioneer2 AT. Each platform has unique char-
acteristics in terms of its ego-motion. The Robotic Helicopter [19] in Figure 7 (a) is an autonomous
flying vehicle carrying a monocular camera facing downward. Once it takes off and hovers, planar
movements become the main motion, and moving objects on the ground stay at a roughly constant
distance from the camera most of the time; however, pitch and roll motions for a change of direc-
tion still generate complicated video sequences. Also, high-frequency vibration of the engine adds
motion-blur to camera images. The Segway RMP in Figure 7 (b) is a two-wheeled, dynamically stable
robot with self-balancing capability. It works like an inverted pendulum; the wheels are driven in the
direction that the upper part of the robot is falling, which means the robot body pitches whenever it



(a) Robotic Helicopter (b) Segway RMP (c) Pioneer2 AT

Figure 7: Robot platforms for experiments

moves. Especially when the robot accelerates/decelerates, the pitch angle increases seriously. Since
all sensors are directly mounted on the platform, the pitch motions prevent direct image processing.
Therefore, the ego-motion compensation step should be able to cope with not only planar movements
but also pitch motions. The Pioneer2 AT in Figure 7 (c) is a typical four-wheeled, statically stable
robot. Since the Pioneer2 robot is the most static platform among these robot platforms, we drove the
robot on the most severe test environment. Figure 8 (c) and Figure 9 (c) show the rocky terrain where
the robot was driven. In addition, the moving objects were occluded occasionally because of the trees
in the environment.

The computation was performed on embedded computers (Pentium III 1GHz) on the robots. Low
resolution (320x240 pixels) input images were chosen for real-time response, and the tracking algo-
rithm was able to process five frames per second. Since the algorithm is supposed to run in parallel
with other processes (eg. navigation and communication), less than 70 percent of the CPU time was
dedicated for tracking. The snapshots of the particle filter tracking moving objects are shown in Fig-
ure 8. The maximum number of particles was set to 5,000, and the minimum number of particles
was set to 500. The figures show that the particle filter reduces the number of particles for efficient
estimation when it converges.

The performance of the tracking algorithm was evaluated by comparing to the positions of manu-
ally tracked objects. For each video sequence, the rectangular region of moving objects were marked
manually and used as ground truth. Figure 9 shows this evaluation process. The left windows show
the input images, and the right windows show the posterior distribution (Gaussian mixture) functions.
The thick rectangles indicate the position of manually-tracked objects, the thin rectangles indicate
the output of the tracking algorithm, and the thin lines show the distance between the center of the
rectangles. The final evaluation result is shown in Table 1. Motions is the number of moving objects
over the total number of frames. Detected is the total number of detected objects, and True + and
False + are the number of correct detections and the number of false-positives. Detection Rate shows
the percentage of moving objects correctly detected, and Avg. Error is the average Euclidean distance
in pixels between the ground truth and the output of tracking algorithm. The average distance error
should not be considered as actual error measurement since the tracking algorithm does not perform
an explicit object segmentation; it may track a part of an object that generates motion while the ground
truth always tracks the whole objects even though only part of the object moves.

The Robotic helicopter result shows that the tracking algorithm missed six objects, but five of them
were the cases when a moving object was introduced and showed only partially on the boundary of
the image plane. Once the whole object entered into the camera field-of-view, the tracking algorithm
detected it robustly. For the Segway RMP result, the detection rate was satisfactory, but the average
distance error was larger than the others. The reason was that the walking person was closer to the
robot and the tracking algorithm often detected the upper body only, which caused a constant distance
error. The Pioneer2 AT result was the worst; however, as explained in the previous section, the terrain
for the experiment was more challenging and the input images were more blurred and unstable.

6 Conclusion and Future Work

A robust real-time algorithm for moving object detection was introduced for an outdoor robot carrying
a single camera. The ego-motion of the camera was estimated using corresponding feature sets, and
the positions of moving objects were estimated using an adaptive particle filter. The algorithms were



(a) Robotic helicopter

(b) Segway RMP

(c) Pioneer2 AT

Figure 8: Particle filter output

(a) Robotic helicopter

(b) Segway RMP

(c) Pioneer2 AT

Figure 9: Performance Evaluation

Platform Motions Detected True + False + Detection Rate Avg. Error
Robotic helicopter 35 / 43 29 29 0 82.86 % 13.26
Segway RMP 220 / 230 208 206 2 93.63 % 20.29
Pioneer2 AT 172 / 195 126 114 12 66.28 % 13.54

Table 1: Performance of moving object detection algorithm



implemented and tested on three different real robots in various outdoor environments, and the per-
formance statistics shows the current system can detect moving objects robustly in the camera image
space, and shows a basic tracking capability.

The current system can also estimate the direction and speed of the moving objects since the
state vector of the particle filter includes velocity information. A limitation of the current system is
that it provides the position and velocity information of moving objects in the image space, which
is 2-dimensional. Since a single camera has limit on retrieving depth information, the information
from a camera alone is not rich enough to construct full 3-dimensional models of moving objects.
However, our robots are equipped with a laser rangefinder, which provides the depth information of
a singe plane. Given the optical properties of a camera and the geometry between the camera and
the laser rangefinder, the distance information from the laser rangefinder can be projected onto the
image coordinates. As a result, the image pixels at the same height as the laser rangefinder will have
depth information. For ground robots, this partial 3D information can be enough for safe navigation
assuming all moving obstacles are on the the same plane as the robot.
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