
Chapter 4

Model of the Middle Ear

This chapter shows the model of the middle ear used in this job. As it was said before,

Multibody Systems techniques were used. It is the objective of this chapter to make a

description of the model.

4.1 Description of the System

According to the anatomy aspects showed in chapter 2, the ossicles are two bones: the stapes

and the malleus-incus complex (MIC). The bodies were supposed as rigid bodies. This was

a good approach since the bones were not going to suffer significant elastic deformations.

In anatomy, the connection between the ossicles are called joints (in the case of the GP the

only joint is the incudo-stapedial joint) but mechanically they are coupling elements and were

described in this model as visco-elastic coupling elements. Like the joints, the suspension

of the ossicles in the tympanic membrane was considered as visco-elastic elements. At the

malleus-incus complex were the: lig. mal. anterior, lig. mall. laterale, lig. inc. posterior

and at the stapes the lig. annulare which sealed the inner ear. Two muscles were included in

this model: the musculus tensor tympani and the musculus stapedius. Finally, the tympanic

membrane was included in the model as a visco-elastic coupling element as well.

In this model they were defined 9 generalized coordinates. The orientation of the inertial

frame was established in the usual way, taking as reference the geometry of the stapes: the

y-axes in the piston-motion direction of the stapes, the x-axes in the direction of the long axe

of the footplate and the z-axe perpendicular to both of them. The location and orientation

15



16 Model of the Middle Ear

of the inertial system is shown in the figure 4.1. All the local reference systems attached to

the bones were defined in the same way.

Figure 4.1: Definition of the inertial system frame according to stapes geometry.

The nine coordinates were the following:

• Six in order to describe the rigid solid motion of the MIC: xMIC
cg , yMIC

cg , zMIC
cg , αMIC

cg ,

βMIC
cg , γMIC

cg . These coordinates represented the motion of local reference system

attached to the MIC and placed in its center of gravity. So, they represented its

motion as rigid solid and they are defined in the inertial system: three translations

and three rotations expressed in Kardan angles.

• Three in order to describe the piston-like motion of the stapes and two rocking motion:

yS
cg, αS

cg, γS
cg. As in the case of the MIC, yS

cg represented the translation of the local

reference system attached to the center of gravity of the stapes in the y axis. αS
cg

represented the rocking motion around the current x axis of the local referent system

and γS
cg the rocking motion around the current z axis of the local referent system.

These coordinates are defined in the inertial system, as well

Thus, the vector of generalized coordinates q was as it is shown in 4.1:
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(4.1)

The vector of generalized forces was the correspondent to an excitation at the umbo.

A graphical representation of the model is shown in the figure 4.2.

Figure 4.2: Mechanical model of the middle ear. The ligaments and muscles are indicated as black

lines. In particular the translations x, y and z and rotations α, β and γ of the MIC (superscript

MIC ), translation y and rotations α and γ of the stapes (superscript S) are specified.

This model was implemented in SYMBS (Symbolic Multibody Systems), a softwared

developed at the Institute of Engineering and Computational Mechanics. It is based on
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Matlab’s Symbolic Toolbox which allows symbolic algebraic computations within Matlab.

SYMBS is able to derive the symbolic equations of motion of tree-structured holonomic

multibody systems automatically, and further, a symbolic linearization of the equations of

motion with respect to an arbitrary symbolic reference motion is provided.

4.2 Modeling of Bony Parts

The first step in order to model the ossicles was the estimation of their mechanical properties.

However, the only available data about the GP were the CT data about their geometry. So,

the approach was to build a finite element model of the ossicles in the commercial software

ANSYS R©from this geometric data (see appendix a.1.).

The CT data were in stl format. ANSYS is not able to read this kind of files but since

the stl file, in the ASCII format, had the information about the location of every point and

the connectivity between them it was very simple to translate the CT data into an input file

in a text format. However, due to the high number of points of the files, it was necessary

to get a rougher mesh of the surface. So, the commercial software BLENDER R©was used

(see appendix a.2.) and, thus, the computer effort was significantly reduced. Anyway, the

software BLENDER R©generates binary stl files. Due to it was necessary the stl file in the

ASCII format, the commercial software PROE R©was used in order to convert the binary file

into ASCII file.

In ANSYS R©was necessary to close the holes of the malleus handle. This holes were

not realistic and appeared in the original CT data because of precision problems since that

zone of the bone was very porous. It was not only a graphical operation but also modeling

operation since it needed to create a close surface. The reasons, besides to make a more

realistic model, were the following:

• In order to estimate the mechanical properties it is necessary to create a volume to

mesh, assign density properties, etc. to make the operations.

• In order to create a new stl file with no holes in the malleus handle it is necessary to

have a close surface.

It was well-known that the bone structure of the ossicles was not homogenus. This

structure consisted in an inner part of porous bone or trabecular bone and an outer part
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of more dense tissue or cortical bone there were no data available about the density values

of this two parts neither their thickness. However, data about mechanical properties of the

human middle ear were available (cite sim) as well as geometry data. Thus, FE models of

the malleus and incus of human were built in ANSYS R©in the same way than in GP case

and the results in the homogeneous case were compared with data from literature (see table

4.1). In order to be able to compare these results the moments of inertia were all divided

by their smaller component which in all the cases was the component of the principal axis

in the superior-inferior direction.

Bone Properties Mean Mean relative value Model Model relative value

Malleus

Mass [mg] 30.3 - 27.91 -

Density [mg/mm3] 2.39 - 2.64 -

Principal inertia [mg · mm2]

nM
AP 106.1 6.13 95.16 6.1

nM
SI 17.3 1 15.6 1

nM
LM

100.6 5.82 88.6 5.68

Incus

Mass [mg] 32.0 - 27.34 -

Density [mg/mm3] 2.15 - 2.47 -

Principal inertia [mg · mm2]

nI
AP

59.5 1.68 44.59 1.82

nI
SI 35.3 1 24.5 1

nI
LM

84.3 2.39 62.5 2.55

Table 4.1: Comparison of the principal moments of inertia. nM
AP , nI

AP : Principal axis in the

anterior-posterior direction. nM
SI , nI

SI : Principal axis in the superior-inferior direction. nM
LM , nI

LM :

Principal axis in the lateral-medial direction

The maximum committed relative error was 2% in the case of the malleus and 7% in the

case of the incus. That meant that the approach was reasonable. So, a sensitive analysis was

carried out in order to estimate the influence of the cortical bone thickness in the mechanical

properties. This thickness was estimated as it is shown in equation 4.2. Table number (4.2)

shows the different simulations played. As it is possible to see, the cortical bone thickness

did not have pretty much influence in the mechanical properties. Therefore, it was assumed

that this thickness was around the 10% of the volum of the bone.

thickness(mm) = thicknessestimation(%) · 3

√

volume(mm3) (4.2)

This estimation of the thickness was played in the GP ossicles and obtained their me-
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Bone
Properties Simulations

a b c d

Malleus

Density (cort. /trab.) [mg/mm3] 2.8/1.5 2.8 2.8/1.5 2.8/1.0

Thickness of trab. bone [% ] 5 - 10 5

Principal inertia [mg · mm2]

nM
AP

5.91 6.1 5.98 5.97

nM
SI 1 1 1 1 1

nM
LM 5.5 5.68 5.57 5.55

Incus

Density (cort. /trab.) [mg/mm3] 2.8/1.5 2.8 2.8/1.5 2.8/1.0

Thickness of trab. bone [% ] 5 - 10 5

Principal inertia [mg · mm2]

nI
AP

1.83 1.82 1.82 1.82

nI
SI

1 1 1 1

nI
LM 2.54 2.55 2.54 2.54

Table 4.2: Sensibility analisis of the cortical bone thickness influence. nM
AP , nI

AP : Principal axis

in the anterior-posterior direction. nM
SI , nI

SI : Principal axis in the superior-inferior direction. nM
LM ,

nI
LM : Principal axis in the lateral-medial direction

chanical properties (see table 4.3).

These FE models, with a rougher mesh (lower computational effort) and with their

geometry fixed, were used to created new stl files to export to SIMBS and have a more

realistic graphical animation. However, in the case of the MIC, some modifications in the

geometry were made. These modifications were about the zone of the malleus handle. As

it is possible to see in the figure (4.3) there is a part of the handle that is clearly different.

This part is a bony tissue as well but it belongs to the tympanic membrane. Thus, although

in the estimation of the inertial properties this part was taken in count, in the graphical

representation was removed (see fig. 4.4).

As soon as the tympanic membrane part was removed, it was possible to see the I-beam

like cross-sectional shape in the malleus handle, as it was mentioned in the previous studies

[10] (see fig. 4.5).

Furthermore, other point to check how good the geometric MIC model is is the lever ratio

in the hinge-like motion. This ratio is defined as the ratio of the vertical distance between

the rotational axis and the umbo to the vertical distance between the rotational axis and

the incus tip (L1/L2 in fig. 4.6). According to the literature [9] this ratio has, tipically, a

value of 2.1. In this model, the lever ratio had a value of 2.045, a value which is in range.

These new geometries (MIC in fig. 4.4 as well as stapes in fig. 4.7) were possible to
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(a) (b)

(c)

Figure 4.3: (a) Detail of the different kinds of bone in the malleus handle. (b) View of the tympanic

membrane tissue attached to the MIC. (c) Model of the MIC including the tympanic membrane

tissue.
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Ossicles Mechanical properties

Mass (Kg) 5.738 · 10−6

Ixx (Kg · m2) 2.726 · 10−11

Ixy (”) −1.246 · 10−11

MIC Ixz (”) 5.68 · 10−12

Iyy (”) 1.072 · 10−11

Iyz (”) −3.41 · 10−12

Izz (”) 7.35 · 10−12

Mass (Kg) 4.958 · 10−6

Ixx (Kg · m2) 1.122 · 10−13

Ixy (”) 0

Stapes Ixz (”) 0

Iyy (”) 1.004 · 10−13

Iyz (”) 0

Izz (”) 9.26 · 10−14

Table 4.3: Masses and inertial tensors of MIC and stapes. Each inertial tensor was calculated with

regard to the frame located in the center of gravity of its body

Figure 4.4: MIC model without the tympanic membrane.
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Figure 4.5: View of the malleus handle section.

Figure 4.6: Lever ratio of the hinge-like motion of the MIC. Lever ratio: L1/L2).
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Figure 4.7: Model of the stapes.

export from ANSYS R©, as IGES files, to PROE R©in order to create new ASCII stl files.

Finally, these new files were possible to pass as input files in the software SYMBS.

4.3 Modeling of Ligaments

As it was mentioned above, the joint, ligaments and muscles were modeled as visco-elastic

elements. These elements are force elements which acts between two points described by two

local coordinate systems. In the case of ligaments and muscles, one local coordinate system

was attached to the ossicles and the other one was attached to the inertial system, which

represented the tympanic cavity. In the case of the joint, one local coordinate system was

attached to the MIC and the other one was attached to the stapes. It was assumed that two

local reference systems belong to the same force element were placed, in the initial state,

in the same point and with the same orientation according with the inertial system. In the

most of the cases stiffness matrix only has non null elements in the diagonal. However, in

the case of the lig. annulare and the tympanic membrane, due to they are considered as

3-dimensional elements, they have non null elements in the rest of the matrix components.
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The stiffness and damping coefficients were passed as matrix or vector alternatively. With

these stiffness and damping matrices, the force and moment was calculated by





F

M



 = K ·





r

ϕ



 + C ·





ṙ

ϕ̇



 , (4.3)

where r and ϕ were the relative position and orientation between the two coordinate systems.

In case that the coefficients were passed as vectors, the force and moment was calculated as

F (j) = k(j)r(j) + c(j)ṙ(j) , j = 1 ÷ 3 ,

M(j) = k(j + 3)ϕ(j) + c(j + 3)ϕ̇(j) , j = 1 ÷ 3
(4.4)

Attachment points were estimated according to literature data and using a graphical

representation of the bones. Table 4.4 identifies the different ligaments and muscles, whose

attachment points are shown in the figure 4.8. Since the attachment point of the tympanic

membrane was the same of the application force point, it will be seen more clearly in the

figure 4.9.

Ligaments and muscles markers

Name Marker

Musculus tensor tympani FH4

Lig. mall. anterior FH5

Lig. mall. laterale FH6

Lig. inc. posterior FA1

Incudo-stapedial joint FAS

Musculus stapedius FS2

Lig. annulare FAR

Tympanic membrane FAT

Table 4.4: Markers of the differents ligaments, muscles and joints modeled.

Due to there are no data available, human data (ref.) were taken to estimate the stiffness

and damping properties of the ligaments and muscles. These human data were scaled by a

factor which was estimated according to the equation 4.5:
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(a)

(b)

Figure 4.8: Attachment points to the ossicles of the differents ligaments and muscles.
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c1

c2

=
ω2

1

ω2
2

·
m1

m2

(4.5)

Where c is stiffness, ω is the first eigenfrequency and m the mass; {}
1

are human values and

{}
2

are GP values. In order to estimate this ratio a linear mass oscillator was assumed, with

a rotational motion around the axe that is made by the points KH5 and KA1 (see fig. 4.8.

This assumption makes sense since, how it will explained later, the first eigenmode consists

in a piston-like motion of the stapes and a hinge-like motion of the MIC around this axe.

So, typical values of the first eigenfrequencies were taken and inertial values were estimated

with mass and distance values (see table 4.5).

1 Frequency ITim.membrane Istapes Imall.handle IIncus

Human 1000 6.44 · 10−10 2.4 · 10−10 1.625 · 10−10 2.7 · 10−11

GP 2000 2.54 · 10−11 12.37 · 10−12 8 · 10−12 2 · 10−13

Table 4.5: Numerical values of first eigenfrequencies and inertial moments of tympanic membrane,

malleus handle, stapes and incus in both human and GP cases. All the values in I.S. units: Hz and

Kg · m2.

With these values a scale factor of 6 were got. Thus, the initial values of these parameters

are shown in the table 4.6.

4.4 External Forces

As it was mentioned before it was assumed in this model that the excitation was played as

a force applied in the umbo. This force only had a y component (see fig. 4.9) and it was an

harmonic function in the form:

f(t) = asin(2πft) (4.6)

The amplitude of the excitation was estimated knowing that, while in the human case

the usual level of noise in the tympanic membrane is about 60 dB, in the GP the usual

level of noise in the tympanic membrane is around 94 dB. According to this, and taking the

value of the tympanic membrane area from [5] (Atym.membrane = 23.9mm2) it was possible
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Ligaments and muscles parameters

Element Stiffness component Value Damping component Value

Musculus tensor tympani

CH4X 5 DH4X 5 · 10−4

CH4Y 11.66 DH4Y 8.33 · 10−4

CH4Z 6.66 DH4Z 5 · 10−4

CH4AL 0 DH4AL 0

CH4BE 0 DH4BE 0

CH4GA 0 DH4GA 0

Lig. mall. anterior

CH5X 1083 DH5X 25 · 10−3

CH5Y 216.6 DH5Y 11.6 · 10−3

CH5Z 216.6 DH5Z 11.6 · 10−3

CH5AL 12.8 · 10−4 DH5AL 0

CH5BE 12.8 · 10−5 DH5BE 0

CH5GA 12.8 · 10−5 DH5GA 0

Lig. mall. laterale

CH6X 50 DH6X 5 · 10−4

CH6Y 133.3 DH6Y 1.66 · 10−3

CH6Z 50 DH6Z 5 · 10−4

CH6AL 0 DH6AL 0

CH6BE 0 DH6BE 0

CH6GA 0 DH6GA 0

Tympanic membrane

KT11 591.6 · 10−1 DTX 1.66 · 10−3

KTXY 20.3 · 10−1 DTY 0

KTXZ -0.18 DTZ 1.66 · 10−3

KTXα −0.32 · 10−3 DTAL 0

KTXβ 1.29 · 10−1 DTBE 0

KTXγ 0.56 · 10−1 DTGA 0

KTYY 73.5 · 10−1

- -

KTYZ −61.5 · 10−1

KTα 0.25 · 10−2

KTYβ −0.24 · 10−4

KTYγ −0.928 · 10−6

KTZZ 720 · 10−1

KTZα −0.585 · 10−1

KTZβ 9.72 · 10−4

KTZγ −1.33 · 10−5

KTαα 2.6 · 10−4

KTαβ −1.8 · 10−4

KTαγ −3.98 · 10−8

KTββ 4.18 · 10−4

KTβγ 1.8 · 10−4

KTγγ 7.81 · 10−5

Lig. inc. posterior

CA1X 666 DA1X 3.33 · 10−3

CA1Y 83.3 DA1Y 3.33 · 10−3

CA1Z 50 DA1Z 3.33 · 10−3

CA1AL 3.83 · 10−5 DA1AL 0

CA1BE 3.83 · 10−5 DA1BE 0

CA1GA 3.83 · 10−5 DA1GA 0
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Lig. inc. posterior

CA1X 666 DA1X 3.33 · 10−3

CA1Y 83.3 DA1Y 3.33 · 10−3

CA1Z 50 DA1Z 3.33 · 10−3

CA1AL 3.83 · 10−5 DA1AL 0

CA1BE 3.83 · 10−5 DA1BE 0

CA1GA 3.83 · 10−5 DA1GA 0

Incudo-stapedial joint

CASX 333.3 DASX 8.33 · 10−4

CASY 333.3 DASY 8.33 · 10−4

CASZ 333.3 DASZ 1.66 · 10−3

CASAL 4.16 · 10−5 DASAL 1 · 10−9

CASBE 4.16 · 10−5 DASBE 5 · 10−9

CASGA 4.16 · 10−5 DASGA 5 · 10−9

Lig. annulare

KRYY 5 · 101

- -

KRYα −1.51 · 10−5

KRYγ −1.57 · 10−1

KRαY −2.03 · 10−5

KRαα 1.125 · 10−5

KRαγ −1.585 · 10−6

KRγY −0.16 · 10−1

KRγα −1.553 · 10−6

KRγγ 3.33 · 10−5

Musculus stapedius

CS2X 25 DS2X 8.33 · 10−4

CS2Y 0 DS2Y 0

CS2Z 0 DS2Z 0

CS2AL 0 DS2AL 0

CS2BE 0 DS2BE 0

CS2GA 0 DS2GA 0

Table 4.6: Numerical values of the initial stiffness and damping coefficients (All the units in the

I.S. x, y and z components are numerical values traslational spring stiffnesses in these directions

while α, β and γ components are numerical values of rotational spring stiffnesses around the current

x, y and z axes, respectively. In the case of Lig. annulare and tympanic membrane, there are the

matrix components.
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to calculate the amplitude which value is shown in the table 4.7. The frequency of the

excitation was assumed equal than in the human case.

Excitation parameters

Parameter Value

Amplitude a (N) 0.748 · 10−6

Frequency f (Hz) 1000

Table 4.7: Numerical values of excitation force parameters.

Figure 4.9: Application point of the excitation, KH7.


