

UNIVERSIDAD DE SEVILLA

E.T.S. DE INGENIEROS

DETECCIÓN EXPERIMENTAL DEL INICIO DE LA ESTRICCIÓN EN PROCESOS DE CONFORMADO DE CHAPA

TESIS FIN DE MÁSTER

Andrés Jesús Martínez Donaire

Tutor: Dr. Carpóforo Vallellano Martín

Noviembre 2009

DETECCIÓN EXPERIMENTAL DEL INICIO DE LA ESTRICCIÓN EN PROCESOS DE CONFORMADO DE CHAPA

MÁSTER EN DISEÑO AVANZADO EN INGENIERÍA MECÁNICA

Andrés Jesús Martínez Donaire

Tutor: Dr. Carpóforo Vallellano Martín

Departamento de Ingeniería Mecánica y de los Materiales Ingeniería de los Procesos de Fabricación Escuela Superior de Ingenieros Universidad de Sevilla

A mis padres y hermana,

A mi familia,

A mis amigos y compañeros

ÍNDICE GENERAL

1.	Intro	lucción	15
	1.1	Antecedentes	16
	1.2	Objetivos	18
2.	Revis	ión de metodologías experimentales	21
	2.1	El diagrama límite de conformado	22
	2.2	Metodologías experimentales de Arrieux et al.	24
	2.3	Metodología de Situ et al.	27
	2.4	Metodología propuesta por Kitting et al.	29
3.	Meto	dología ISO 12004-2:2008	33
4.	Metoo estric	lología temporal propuesta para la detección del inicio de la ción	39
5.	Prepa	ración experimental	45
	5.1	Montaje experimental y ensayos realizados	45
	5.2	Técnicas de correlación de imágenes digitales (DIC)	51
6.	Resultados experimentales y análisis comparativo de metodologías		63
	6.1	Ensayos sin influencia apreciable de la flexión (tipo Nakajima)	63
	6.2	Ensayos CON influencia apreciable de la flexión	66
	6.3	Validación de la metodología temporal propuesta en ensayos con influencia de la flexión: Método del Valle	69
	6.4	Distribución de la deformación en los ensayos con punzón	
		hemiesférico y cilíndrico: Existencia de un gradiente	73
7.	Concl	usiones y desarrollos futuros	75
8.	Biblia	grafía	79

Índice de figuras

Fig. 2-1: Esquema del DLC experimental para varios materiales	22
Fig. 2-2: Esquemas del FLD experimental con las curvas de fallo típicas	23
Fig. 2-3: Perfil de deformaciones principales en el instante de comienzo de la	
estricción	24
Fig. 2-4: Tendencia de las rutas deformación en varios ensayos realizados por	
Hotz et al. (2008)	25
Fig. 2-5: Ajustes polinómicos para la obtención de las deformaciones límite	26
Fig. 2-6: Evolución de deformaciones ε_1 en varios instantes en variables absolutas	
(Kitting et al., 2009)	27
Fig. 2-7: Evolución de deformaciones y sus derivadas temporales. Método propuesto	
por Situ et al. (2006)	28
Fig. 2-8: Datos experimentales correspondientes al ensayo IV con punzón Ø100mm.	
Aplicación método de Situ et al.	28
Fig 2-9: Detalle de la zona estable y de estricción	29
Fig. 2-10: Distribución de velocidades de deformación en ensayos de stretch-bending	
(Kitting et al.)	30
Fig. 3-1: Muestra de la dispersión existente en la determinación de DLC de un	
mismo material en distintos laboratorios (Hotz et al., 2008)	33
Fig. 3-2: Montaje de ensayos tipo Nakajima (izqda) y Marciniak (dcha)	34
Fig. 3-3: Dimensiones de punzones, matrices y parámetros en ensayos Nakajima y	
Marciniak según ISO 12004-2:2008	34
Fig. 3-4: Ejemplos de geometrías de probetas para cada camino de deformación	
(Hotz et al., 2008)	35
Fig. 3-5: Aplicación de la metodología ISO 12004-2:2008	35
Fig. 3-6 Diagrama de flujo para aplicación de ISO 12004-2:2008	37
Fig. 4-1: Desarrollo del proceso de localización en ensayo con punzón hemiesférico	
(izqda) y en ensayo de tracción realizado por Hotz et al. (2008) (dcha)	39
Fig. 4-2: Obtención del ancho de la zona de estricción	40

Fig. 4-3: Detección del instante de comienzo de la estricción	41
Fig- 4-4: Determinación de la deformación principal máxima límite	42
Fig. 4-5: Aplicación de la metodología temporal propuesta en sus dos	
variantes ε_1 ó ε_3	43
Fig. 4-6: Datos experimentales correspondientes al ensayo III con punzón cilíndrico	
de 10mm. Aplicación del método propuesto	43
Fig. 5-1: Esquema del montaje experimental con punzón cilíndrico	45
Fig. 5-2: Punzones Nakajima Ø100mm y cilíndricos Ø10 y Ø20 mm, montaje	
experimental, prensa-chapas	46
Fig. 5-3: Tipología de probetas ensayadas: tracción pura, deformación plana,	
zona biaxial	46
Fig. 5-4: Dimensiones acotadas de las probetas de deformación plana (arriba) y tracción	
pura (abajo)	47
Fig. 5-5: Caminos de deformación evaluados típicamente (izqda), evoluciones reales	
obtenidas en función de la geometría de las probetas (Hotz, 2008) (dcha)	47
Fig. 5-6: Máquina de ensayos Erichsen y sistema de medición óptico ARAMIS®	48
Fig. 5-7: Indicación del domo del punzón, zona donde debe comenzar la fractura	48
Fig 5-8: Probetas biaxiales con roturas fuera de la zona recomendada	49
Fig. 5-9. Disposición de las fibras en las probetas	49
Fig. 5-10: Tarjeta de adquisición de datos,	50
Fig. 5-11: Probeta original y probeta con patrón estocástico aplicado	50
Fig. 5-12: Patrón estocástico incorrecto (izqda) y patrón con buen contraste (dcha)	51
Fig. 5-13: Determinación manual de deformaciones	52
Fig. 5-14: Definición de las facetas y elementos de correlación	53
Fig. 5-15: Posibles transformaciones en los elmentos	55
Fig. 5-16: Proceso iterativo para la determinación del campo de desplazamientos	55
Fig. 5-17. Determinación del vector desplazamiento 3D	56
Fig. 5-18: Esquema básico del sistema óptico	57
Fig. 5-19 Modelo de proyección considerado	57
Fig. 5-20: Placa de calibración para el sistema ARAMIS®	58
Fig. 5-21: Resultado de la calibración	59

Fig. 5-22: Selección de tamaño, solapamiento de facetas y parámetros de precisión	60
Figura 5-23. Identificación de facetas en distintos instantes	61
Fig. 5-24: Máscara de cálculo y representación de resultados ɛ1 sobre la malla virtual	
empleada	61
Fig. 6-1: Diagrama Límite de Conformado con punzón 100mm	66
Fig. 6-2: Dependencia de la deformación mayor límite con la severidad de la flexión	68
Fig. 6-3: Evolución del perfil de desplazamiento y derivada espacial en distintos	
instantes hasta el fallo. Método del Valle	69
Fig. 6-4: Método del Valle. Determinación de la deformación límite ϵ 1 una vez	
conocido el instante de comienzo de la estricción, t3	70
Fig. 6-5: Representación gráfica de la estricción en ensayo II con punzón 20mm	71
Fig. 6-6: Distribución de deformaciones en ensayo con punzón hemiesférico	
de Ø100mm	73
Fig. 6-7: Evolución de deformaciones en ensayo con punzón cilíndrico de Ø20mm	74
Fig. 6-8: Evolución de deformaciones en ensayo con punzón cilíndrico de Ø10mm	74

Índice de tablas

Tabla 6-1. Resultados obtenidos con ensayos Nakajima y condiciones de	
deformación plana	64
Tabla 6-2. Resultados obtenidos con ensayos Nakajima y condiciones biaxiales	64
Tabla 6-3. Resultados obtenidos con ensayos Nakajima y condiciones cercanas a	
tracción pura	65
Tabla 6-4. Resultados usando punzón cilíndrico Ø 20 mm	66
Tabla 6-5. Resultados usando punzón cilíndrico Ø 10 mm	67
Tabla 6-6. Resultados incluyendo Método del Valle en ensayos con punzón	
cilíndrico Ø 20 mm	71
Tabla 6-7. Resultados incluyendo Método del Valle en ensayos con punzón	
cilíndrico Ø 10 mm	72