NOMENCLATURA Y UNIDADES

A

A_{co} Área de paso de flujo de la sección transversal del pistón de compresión. [m²]

 A_{cij} Área superficial de la celda del cuerpo expuesta a un fluido ambiente convector. [m²].

A_{ex} Área de paso de flujo de la sección transversal del pistón de expansión. [m²]

A_{tintcoen} Área de paso de flujo de la sección transversal del ducto de interconexión cilindro de compresión-enfriador. [m²]

 A_{ij} Área transversal para la conducción normal a δ_{ij} [m²]

 $A_{tintcaex}$ Área de paso de flujo de la sección transversal del ducto de interconexión cilindro de

calentador-expansión. [m²]

 $A_{tintenre}$ Área de paso de flujo de la sección transversal de la interconexión enfriador-regenerador. $[m^2]$

 $A_{tintreca}$ Área de paso de flujo de la sección transversal de la interconexión regenerador-calentador. $[m^2]$

A_D Superficie media de una partícula que conforma el regenerador. [m²]

Arregtuben Arreglo del banco de tubos del enfriador.

Arregtubca Arreglo del banco de tubos del calentador.

 A_v Superficie específica del regenerador. $\left[\frac{m^2}{m^3}\right]$

AVC_{intcoen} Área transversal de volumen de control interconexión compresión enfriador. [m²]

AVC_{en} Área transversal de volumen de control del enfriador. [m²]

AVC_{intenre} Área transversal de volumen de control interconexión enfriador regenerador. [m²]

AVC_{re} Área transversal de volumen de control del regenerador. [m²]

AVC_{intreca} Área transversal de volumen de control interconexión regenerador calentador. [m²]

AVC_{intcaex} Área transversal de volumen de control interconexión calentadorexpansión. [m²] \mathbf{C}

C Carrera del pistón. [m]

C_{ca} Coeficiente de para banco de tubos calentador. Correlación de Zhukauskas.

C_{co} Calibre de compresión. [m].

C_{ex} Calibre de expansión. [m].

 C_i Capacidad térmica del volumen de la celda que rodea el nodo i. $[\frac{kJ}{K}]$

CR_{co} Carrera de compresión. [m].

CR_{ex} Carrera de expansión. [m].

Cen Coeficiente de para banco de tubos enfriador. Correlación de Zhukauskas.

 C_p Calor específico a presión constante. $[\frac{J}{kgK}]$

 $C_{p,\text{fexten}}$ Calor específico del fluido exterior del banco de tubos del enfriador.[$\frac{J}{kgK}$]

 $C_{p,fextca}$ Calor específico del fluido exterior del banco de tubos del enfriador. $\left[\frac{J}{kgK}\right]$

C_{2ca} Coeficiente de corrección para banco de tubos calentador. Correlación de Zhukauskas, en función del número de tubos.

C_{2en} Coeficiente de corrección para banco de tubos enfriador. Correlación de Zhukauskas, en función del número de tubos.

\mathbf{D}

 D_{extco} Diámetro exterior del cilindro de compresión. [m]

D_{intintcoen} Diámetro interior del ducto de interconexión cilindro de compresiónenfriador [m].

 $D_{intint caex}$ Diámetro interior del ducto de interconexión cilindro de calentador-expansión [m].

 $D_{\text{ext int coen}}$ Diámetro exterior del ducto de interconexión cilindro de compresión-enfriador [m].

 $D_{\text{ext int caex}}$ Diámetro exterior del ducto de interconexión cilindro de calentadorexpansión [m].

D_{ext intenre} Diámetro exterior de la interconexión enfriador-regenerador. [m]

 $D_{intintenre}$ Diámetro interior de la interconexión enfriador-regenerador. [m]

D_{ext int reca} Diámetro exterior de la interconexión regenerador-calentador. [m]

 $D_{intintreca}\ Diámetro\ interior\ de\ la\ interconexión\ regenerador-calentador.\ [m]$

D_{extuboen} Diámetro exterior de un tubo del enfriador.[m]

 $D_{\mbox{\scriptsize exttuboca}}$ Diámetro exterior de un tubo del calentador.[m]

D_{inttuboen} Diámetro interior de un tubo del enfriador.[m]

D_{inttuboca} Diámetro interior de un tubo del calentador.[m]

D_p Diámetro de la partícula esférica equivalente que conforma el regenerador.[m]

D_h Diámetro hidráulico.[m]

D_{intre} Diámetro interior del regenerador.[m]

D_{extre} Diámetro exterior del regenrador. [m]

D_{hilore} Diámetro del hilo del regenerador. [m]

d_{disthilose} Distancia entre hilos que conforma el regenerador.[m]

D_{extre} Diámetro exterior del regenerador.[m]

D_{extcco} Diámetro exterior cilindro de compresión.[m]

D_{exteex} Diámetro de exterior cilindro de expansión.[m]

F

f_{ca} Factor de fricción en el banco de tubos del calentador.

f_{en} Factor de fricción en el banco de tubos del enfriador.

H

 h_{ambco} Coeficiente de convección del ambiente compresión. $[\frac{W}{m^2K}]$

 h_{anbex} Coeficiente de convección del ambiente calentador. $\left[\frac{W}{m^2K}\right]$

h_{amb intenre} Coeficiente de convección del ambiente interconexión enfriador-

regenerador. $\left[\frac{W}{m^2K}\right]$

 $\mathbf{h}_{\mathrm{amb\;intcaex}}$ Coeficiente de convección del ambiente interconexión calentador-

expansión. $\left[\frac{W}{m^2K}\right]$

 $\mathbf{h}_{\text{anb int coen}}$ Coeficiente de convección del ambiente interconexión compresión-enfriador.

h_{ambre} Coeficiente de convección del ambiente donde se encuentra el regenerador.

$$\left[\frac{W}{m^2K}\right]$$

 \overline{h}_{en} Coeficiente de transferencia de calor por convección promedio en el enfriador.

$$\left[\frac{W}{m^2K}\right]$$

$$\overline{h}_{ca}$$
 Coeficiente de transferencia de calor por convección promedio en el calentador.

$$\left[\frac{W}{m^2K}\right]$$

h_{amb intreca} Coeficiente de convección del ambiente interconexión regenerador-

calentador. [
$$\frac{W}{m^2K}$$
]

h_{ij} Coeficiente de transferencia de calor por convección de la celda del cuerpo

expuesta a un fluido ambiente convectivo.
$$[\frac{W}{m^2K}]$$

K

 $K_{\rm f}$ Coeficiente dependiente del tipo de gas.

k Conductividad térmica del material de la celda. $\left[\frac{W}{mK}\right]$

L

L Longitud de biela. [m]

l_c Longitud de la biela de compresión. [m].

l_{ca} Longitud del tubo del calentador [m].

l_e Longitud de la biela de expansión. [m].

l_{en} Longitud del tubo del enfriador [m].

l_{integen} Longitud del ducto de interconexión cilindro de compresión-enfriador. [m].

 $l_{intcaex}$ Longitud del ducto de interconexión cilindro de calentador-expansión. [m].

l_{intenre} Longitud de la interconexión enfriador-regenerador. [m]

l_{intreca} Longitud de la interconexión calentador-regenerador. [m]

 l_{re} Longitud del regenerador. [m]

 l_{lx} longitud total del modelo de estudio. [m]

\mathbf{M}

m_{ca} Exponente m de la correlación de Zhukauskas para el calantador.

m_{ce} Exponente m de la correlación de Zhukauskas para el enfriador.

M_f Masa del fluido de trabajo. [kg]

Malla Número de hilos por mm de longitud

N

n_{enfriadores} Número de enfriadores por cilindros de compresión-expansión.

n_{regeneradores} Número de regeneradores por cilindros de compresión-expansión.

n_{calentadores} Número de calentadores por cilindros de compresión-expansión.

n_{litubosen} Número de líneas de tubos en el enfriador.

n_{limbosca} Número de líneas de tubos en el calentador.

 $n_{tubosca}$ Número de tubos totales en el calentador.

n_{tubosen} Número de tubos totales en el enfriador.

n_{tuboslien} Número tubos por líneas en el enfriador.

n_{tuboslica} Número tubos por líneas en el calentador.

n_{tubostca} Número de tubos en el plano transversal del enfriador.

n_{tubosten} Número de tubos en el plano transversal del enfriador.

n Número de partículas que conforman el regenerador.

n_{rc} Número de regeneradores por cilindro.

n_{ca} Número de nodos en que se divide el calentador.

n_{co} Número de nodos en el espacio de compresión. [1].

n_{en} Número de nodos en el enfriador.

n_{re} Número de nodos del regenerdor.

n_{intene} Número de nodos de la interconexión enfriador-regenerador.

n_{intcoen} Número de nodos en la interconexión compresión enfriador.

n_{intreca} Número de nodos interconexión calentador-regenerador.

n_{intcaex} Número de nodos de la interconexión calentador-expansión.

n_{ex} Número de nodos en el espacio de expansión.[1]

n_{1x} Número de nodos longitudinales.

n_{intcoen} Número de partes en que se divide la interconexión compresión-enfriador.

Nu_{Dca} Número de Nusselt para el banco de tubos del calentador.

Nu_{Den} Número de Nusselt para el banco de tubos del enfriador.

P

p orden del intervalo de tiempo, número de paso del intervalo de tiempo.

P_f Presión del fluido de trabajo. [Pa]

Pr_{ca} Número de Prandlt de la correlación de Zhukauskas en el calantador.

Pr_{en} Número de Prandlt de la correlación de Zhukauskas en el enfriador.

Pr_{sca} Número de Prandlt de la correlación de Zhukauskas en el calentador.

Pr_{sen} Número de Prandtl de la correlación de ZhuKauskas en el enfriador para la temperatura superficial.

Q

 q_i Calor generado en, o añadido al volumen de la celda en i por otros medios distinto al de convección superficial. [W].

 q'_{ca} Transferencia de calor por unidad de longitud de tubos en el calentador. $[\frac{W}{m}]$

 $q_{en}^{'}$ Transferencia de calor por unidad de longitud de tubos en el enfriador. [$\frac{W}{m}$]

R

r Radio de la manivela. [m]

r_c Radio de la manivela de compresión. [m].

r_e Radio de la manivela de expansión. [m].

 R_{ij} Resistencia térmica entre los nodos i y j. $\left[\frac{K}{W}\right]$

 R_f Constante del gas.[$\frac{Pam^3}{kgK}$]

Re_{Dnáx.ca} Número de Reynolds para la correlación de Zhukauskas para el calantador.

 ${
m Re}_{{
m Dm\acute{a}x},{
m en}}$ Número de Reynolds para la correlación de Zhukauskas para el enfriador.

S $S_{lontubosen}$ Separación longitudinal entre tubos del enfriador.[m] S_{lontubosca} Separación longitudinal entre tubos del calentador.[m] S_{trubosen} Separación transversal entre tubos del enfriador.[m] S_{trubosca} Separación transversal entre tubos del calentador.[m] Separación diagonal entre tubos del enfriador.[m] S_{Den} Separación diagonal entre tubos del calantador.[m] S_{Dca} \mathbf{T} Tiempo.[s] Temperatura ambiente expansión. Tambex

T_{ambco} Temperatura ambiente compresión. Temperatura ambiente interconexión calentador-expansión. $T_{\text{amb int caex}}$ $T_{\text{amb int reca}}$ Temperatura ambiente interconexión regenerador-calentador.[K] Temperatura ambiente interconexión enfriador-regenerador.[K] T_{amb intense} Temperatura ambiente interconexión compresión-enfriador.[K] $T_{amb\ int coen}$ Temperatura del ambiente donde se encuentra el regenerador del sistema.[K] Temperatura del fluido de trabajo. [K] $T_{\rm f}$ Temperatura superficial del calentador. [K] T_{sca} Temperatura de entrada del fluido del banco de tubos del calentador. [K] T_{ica} T_{ien} Temperatura de entrada del fluido del banco de tubos del enfriador. [K] T_{sen} Temperatura superficial del enfriador. [K] T_{0ca} Temperatura de salida del fluido del banco de tubos del calentador. [K]

Temperatura de salida del fluido del banco de tubos del enfriador. [K] T_{0en} T_{i}^{p} La temperatura de todos los nodos próximos unidos al nodo i en el paso del intervalo de tiempo p. [K].

\mathbf{V}	
v _f Velocidad del fluido. [m/s]	
V _{max tubosca}	Velocidad máxima del fluido en el banco de tubos del enfriador. [m/s]
V _{max tubosen}	Velocidad máxima del fluido en el banco de tubos del enfriador. [m/s]
v _{tubosca} Velocidad del fluido a la entrada en el banco de tubos del calentador.[m/s]	
v _{tubosen} Velocidad del fluido a la entrada en el banco de tubos del enfriador.[m/s]	
$V_{\rm f}$ $V_{\rm O}$	umen del fluido de trabajo. [m ³]
V _{ana} Vo	umen aparente del regenerador. [m³]

Volumen de compresión. [m³] $V_{\rm C}$ Volumen de expansión. [m³] V_e Volumen de la celda [m³] V_{i} V_{intcoen} Volumen de interconexión cilindro de compresión-enfriador. [m³] V_{intcaex} Volumen de interconexión cilindro de calentador-expansión. [m³] Volumen de la interconexión enfriador-regenerador. [m³] Volumen de la interconexión regenerador-calentador. [m³] Volumen de una partícula que conforma el regenerador. [m³] V_p Volumen del regenerador. [m³] V_{r} $VC_{intcoen}$ Volumen de control interconexión compresión-enfriador. [m³] VC_{en} Volumen de control enfriador. [m³] Volumen de control interconexión enfriador-regenerador. [m³] $VC_{intenre}$ Volumen de control regenerador. [m³] VC_{re} Volumen de control interconexión regenerador-calentador. [m³] VC_{intreca} Volumen de control calentador. [m³] VC_{ca}

X

 $VC_{int caex}$

x desplazamiento del pistón referido al P.M.S. (Punto Muerto Superior) e inferior a C.[m].

Volumen de control interconexión calentador-expansión. [m³]

LETRAS GRIEGAS

- α Desplazamiento angular de la manivela respecto a la posición correspondiente al P.M.S.[rad]
- α_{dif} Difusividad térmica. $[\frac{m^2}{s}]$
- β Ángulo que forma el eje de la biela con el cilindro. [rad]
- γ Ángulo de desface. $\left[\frac{\pi}{2}\right]$
- δ_{ii} La distancia de la conducción entre los nodos i y j.[m]
- $\rho \qquad \text{Densidad de la celda. } [\frac{kg}{m^3}]$
- $\rho_{\text{\tiny fexten}} \quad \text{Densidad del fluido que atraviesa el banco de tubos del enfriador.} [\frac{kg}{m^3}]$
- ρ_{fextca} Densidad del fluido que atraviesa el banco de tubos del calentador. $[\frac{\text{kg}}{\text{m}^3}]$
- ΔP Caída de presión. [Pa]
- Δt intervalo de tiempo t. [s]
- ΔT_{ml} Diferencia de temperaturas media logarítmica. [K]
- $\Delta T_{ml_{\,ca}}\,$ Diferencia de temperaturas media logarítmica en el calentador. [K]
- $\Delta T_{ml_{\,en}}$ Diferencia de temperaturas media logarítmica en el enfriador. [K]
- Δx_{lx} Espaciamiento longitudinal.[m]
- Δy_{1y} Espaciamiento transversal.[m]
- Δy_{lyco} Espaciamiento transversal compresión. [m]
- Δy_{lyex} Espaciamiento transversal compresión. [m]
- $\Delta y_{lyintcoen}$ Espaciamiento transversal interconexión compresión-enfriador. [m]
- Δy_{lyen} Espaciamiento transversal enfriador. [m]
- $\Delta y_{lyintenre}\,$ Espaciamiento transversal interconexión enfriador. [m]
- $\Delta y_{\mbox{\tiny lyre}}$ Espaciamiento transversal regenerador. [m]
- $\Delta y_{lvintreca}$ Espaciamiento transversal interconexión regenerador-calentador. [m]
- Δy_{lvca} Espaciamiento transversal calentador. [m]
- $\Delta y_{lyint caex} \,$ Espaciamiento transversal calentador-expansión. [m]

- ϵ Porosidad del regenerador.
- λ Índice de inclinación máxima de la biela.
- $\lambda_{\rm c}$ Índice de inclinación máxima de la manivela de compresión.
- $\lambda_{\rm e}$ $\;$ Índice de inclinación máxima de la manivela de expansión.